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Abstract
Most methods of deciding which hits from a screen to send for confirmatory testing assume that
all confirmed actives are equally valuable and aim only to maximize the the number of confirmed
hits. In contrast, “utility-aware” methods are informed by models of screeners’ preferences and
can increase the rate at which the useful information is discovered. Clique-oriented prioritization
(COP) extends a recently proposed economic framework and aims—by changing which hits are
sent for confirmatory testing—to maximize the number of scaffolds with at least two confirmed
active examples. In both retrospective and prospective experiments, COP enables accurate
predictions of the number of clique discoveries in a batch of confirmatory experiments and
improves the rate of clique discovery by more than three-fold. In contrast, other similarity-based
methods like ontology-based pattern identification (OPI) and local hit-rate analysis (LHR) reduce
the rate of scaffold discovery by about half. The utility-aware algorithm used to implement COP is
general enough to implement several other important models of screener preferences.

2 Introduction
Deciding which initial positives (“hits”) from a high-throughput screen (HTS) to submit for
confirmatory experiments is a basic task faced by all screeners.1,2,3 Most methods of
selecting hits aim only to maximize the number of confirmed hits, assuming that all
confirmed actives are equally valuable regardless of their novelty.4,5,6,3,7,8 We hypothesize,
in contrast, that the molecules that establish the activity of new molecular scaffolds are more
valuable, and this notion can be formalized in “utility-aware” methods so as to alter which
hits are sent for confirmatory testing. Ultimately, these methods can increase the rate at
which the useful information is discovered in a screen.

To a limited extent, this hypothesis has been supported by three distinct narratives in the
literature. First, the selection of hits for follow up is an important step that affects the
sensitivity of the screening campaign. Several studies have shown that there can be a
substantial number of false negatives buried in screening data, indicating that HTS data can
be noisy enough that true actives are missed,5,9,10 and careful statistics can recover some of
these false negatives.3,7,8,9

Second, the first utility-aware method—diversity-oriented prioritization (DOP)—was
successfully applied to HTS data so as to increase the rate of active scaffold discovery by as
much as 17%.10 DOP works by formalizing a preference often stated by screeners: they are
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not looking for active molecules as much as looking for novel active scaffolds.11,12 DOP
defines a scaffold—or a particular cluster—as active if at least one example of the scaffold
is successfully confirmed active and uses this definition to derive a utility-aware
prioritization algorithm. Together, these two narratives suggest that some actives remain
undiscovered and that formalizing screeners’ preferences could improve the rate of
discovery by focusing attention on the most informative examples.

Some methods use molecular clustering to improve the design of HTS experiments. For
example, several pick molecules for follow-up using statistical tests on the data from a
single-dose screen to find clusters of active molecules.13,14,8 These methods favor clusters
that contain several active molecules, and attempt to simultaneously send many very similar
molecules for confirmatory testing. As intended, these methods successfully increase the
number of active molecules identified in confirmatory testing. Rather than picking large
groups of similar molecules for follow up, our method aims to maximize the number of
clusters with at least two successfully confirmed active examples.

Our effort to consider the diversity of hits in addition to activity is closely related to similar
work in the internet and database search field.15,16,17,18 Likewise, recent work in chemical
informatics has suggested considering activity when picking diverse sets of molecules can
be desirable.19 In line with these efforts, this study extends the DOP method10 by (1)
introducing a more complex utility function which more accurately models many screeners’
preferences and (2) deriving a more general utility-aware prioritization algorithm which can
accommodate several important screener preferences.

In this study, we define a scaffold as active if at clique of at least two of its examples have
been confirmed as actives. This reflects the preferences of medicinal chemists stated in
several personal communications; they prefer that the activity of a scaffold is established by
more than one active example before they choose to pursue it further. This definition
motivates the development of a more general and more complex utility-aware prioritization
algorithm, which can optimize many different choices of a utility function. Although we
focus on just one definition of a clique, a flexible prioritization algorithm is important
because screeners have different preferences.20 The clique definition of an active scaffold
and prioritization algorithm together yield a new method: clique-oriented prioritization
(COP), which we validate in both retrospective and prospective experiments.

3 Data
3.1 Single-Dose HTS

For most of our experiments, we use a screen based on a fluorescence polarization assay for
molecules that inhibit MEX-5. The technical details of the assay and subsequent analysis
can be found in PubChem (PubChem AIDs 1832 and 1833). For 301, 856 small molecules
screened in duplicate, activity is defined as the mean of the final, corrected percent
inhibition. We use 301, 617 of these for which all necessary data are available. After
filtering out molecules with autofluorescence and those without additional material readily
available, there remain 1322 with at least one screen-activity greater than 25%. These are
labeled “hits” and tested for dose-response behavior in the first batch of confirmatory
experiments. Of these tested molecules, 839 yield data consistent with inhibitory activity.
Each hit is considered a confirmed “active” if the effective concentration at half maximal
activity (EC50) is less than or equal to 20μM. Using this criterion, 410 molecules are
designated active.

Swamidass et al. Page 2

J Chem Inf Model. Author manuscript; available in PMC 2013 January 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.2 Quantitative HTS
We apply our methods to two additional screens: a screen for inhibitors of BAZ2B protein
(AID 504333)21 and a screen for inhibitors of JMJD2A-tudor domain (AID 504339).22 The
BAZ2B screen identifies 3, 205 actives with inhibitory EC50 less than or equal to 10μM out
of 359, 824 molecules; the JMJD2A screen identifies 5, 974 actives out of 388, 413
molecules.

Both of these screens are Quantitative High-Throughput Screens (qHTS)—in which every
compound in the library of small molecules is tested for dose-response behavior. This allows
us to simulate a two-stage HTS: a single dose primary screen followed by a confirmatory
dose-response experiment. We choose the single-dose datapoint measured at 11μM to
simulate the primary-screen activity, while blinding the EC50s for these compounds from
our analysis until they are prioritized for follow-up experiments in the simulation.

4 Methods
4.1 Scaffold Clusters

Often, HTS campaigns aim to identify as many new scaffolds as possible. Sometimes
intellectual property concerns dictate both avoiding particular scaffolds and defining
discoveries using the scaffold concept. Furthermore, it is scaffolds, not specific hits from the
screen, which are often the most important starting points from which lead-refinement
proceeds.11,12,23,24 Therefore, we focus on scaffold-based clustering. Nonetheless, our
methods can be easily adapted to similarity-based clustering if desired. To do so, molecules
would be grouped by similarity rather than by common scaffold.

The molecules from this screen are clustered into groups with common scaffolds. These
scaffold groups are disjoint sets of molecules. Scaffolds are computed from the structure of
each molecule using the definition of molecular frameworks described in:25 contiguous ring
systems and the chains that link two or more rings together. In order to ensure our findings
are not overly dependent on the choice of scaffold definition, we replicate our experiments
using a modification of this definition which replaces every atom in the scaffold with a
carbon. The results of the carbon-scaffold experiments are not presented because their
results are not notably different.

Although molecular frameworks are only an approximation of a medicinal chemists’
subjective concept of a scaffold,24,23 frameworks are commonly used in chemical
informatics because they are clearly defined and easy to compute. Although we define
scaffolds as the molecular frameworks, COP is compatible with more sophisticated scaffold
detection algorithms; all it requires is that molecules are placed in structurally sensible
groups.

4.2 Economic Framework
COP, just like DOP, extends a recently described economic framework for interpreting HTS
data, initially introduced to decide how many hits to send for confirmatory testing.9 This
framework is used to iteratively choose each batch of hits to be sent for confirmatory testing
so as to maximize the expected surplus of the batch: the expected utility minus the expected
cost. The expected surplus is computed using three mathematical models: utility, cost, and
predictive. The utility model specifies the preferences of the screener, the cost model tracks
the cost of running a confirmatory experiment, and the predictive model guesses the
outcome of future confirmatory experiments.
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4.3 Cost Model
The cost model is relevant in two ways. First, in some scenarios, the cost of acquiring
different molecules varies. In the context of HTS, however, all molecules under
consideration are usually equally accessible. Therefore, we assume that it costs the same
amount to send each molecule for confirmatory testing. Second, there is both a large fixed
and smaller variable cost associated with sending molecules for confirmatory tests.
Consequently, the confirmatory tests are most efficiently performed in large batches, just as
is done in practice.

4.4 Predictive Model
We consider two predictive models: a logistic regressor (LR)26 and a neural network with a
single hidden node (NN1),27 structured to use the screen activity as the single independent
variable and the result of the associated confirmatory experiment as the single dependent
variable. Both models are trained using gradient descent on the cross-entropy error using the
monotonic prior defined in.10 This protocol yields models whose outputs are interpretable as
probabilities, allowing us to define

(1)

where zx is the output of the predictive model on molecule x, and P (x) is used to
parameterize a family of independent binomial distributions, each one modeling the
distribution of confirmatory test outcomes for a particular molecule as a single biased coin-
flip.

4.5 Utility Model
The utility model, U(D), assumes the screener has rational preferences characterized as a
monotonically increasing function of the total discovery so far, D. In this study, we define
the total discovery as the sum of the discovery across all scaffolds

(2)

where i ranges over all the scaffolds, ai is the number of confirmed active molecules with
the ith scaffold, and d(·) is the “discovery function” that returns the total discovery yielded
by the scaffold group as a function of the total actives discovered so far. In this study, a
scaffold is considered to be ‘active’ if at least two examples of the scaffold have been
confirmed active. This is equivalent to defining the discovery function as

(3)

Several other definitions of the discovery function are explored in the Discussion.
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4.6 Prioritization Algorithm
Consistent with the economic framework, we propose selecting the next batch of molecules
to send for confirmatory testing so as to maximize the expected marginal discovery (EMD)
of the next batch. The proof in10 demonstrates that maximizing the EMD is a very good
approximation for maximizing profit, as long as the very reasonable assumption holds that
the utility function is an increasing function of discovery and a fixed cost model is used, as
is the case in our framework.

In the case of COP, as we will see, prioritizing molecules by EMD does not work. Instead,
molecules should be ordered and picked based on their amortized expected marginal
discovery (AEMD, pronounced “aimed”) score, which is computed from the EMD of each
molecule and described in the following sections. Prioritizing molecules by AEMD
maximizes the EMD of the of the next batch.

A separate strategy is required to choose molecules to include in the first batch, before the
predictive models have been trained and the probability vector can be computed. In many
situations, prioritizing molecules by HTS activity for the first batch may be appropriate. We
propose choosing the first batch using the non-parametric prioritization algorithm described
in Section 4.9.

4.7 Expected Marginal Discovery
If the goal is to maximize discovery, molecules within a scaffold group should be screened
in order of decreasing likelihood of activity. Given this ordering constraint, it becomes
sensible to ask what the EMD of each molecule in the group. This question, of course,
depends on the reasonable presumptions that the marginal discovery function is always
greater than or equal to zero and the utility function is an increasing function of discovery.

For each molecule in a scaffold group, with the constraint that within a scaffold group they
are screened in order of decreasing likelihood of activity, we can compute the EMD of each
molecule as

(4)

where P (x is rth active) is the probability molecule x is the rth active molecule in its
scaffold group, nx is the number of molecules with the same scaffold as x, and d′(·) is the
“marginal discovery function,” defined as

(5)

P (x is rth active) is computed as

(6)

where P (x)—the probability that x is active—is computed using Equation 1, and P ([r − 1]
actives before x) is the probability that the number of molecules with the same scaffold
confirmed active before molecule x is tested is exactly equal to r − 1. This last probability
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can be computed by convolving the binomial distributions associated with each molecule in
the scaffold group tested prior to x. With this machinery, we compute the expected
discovery of a batch of molecules by summing up the EMD associated with each molecule
in the batch.

The EMD of a batch of molecules is the sum of each molecule’s EMD, so prioritizing
molecules by EMD maximizes the expected utility of the next batch. This result holds while
the marginal discovery function is monotonically decreasing and the utility is an increasing
function of discovery. Using EMD as a priority in this way is exactly the strategy
successfully used by10 to prioritize hits with a decreasing marginal discovery function.
Unfortunately, COP does not satisfy this condition; its marginal discovery function is not
monotonically decreasing. In this case AEMD scores can be used to prioritize molecules.

4.8 Amortized Expected Marginal Discovery
The EMD is computed using an ordering constraint that enforces, within a scaffold group,
molecules to be tested in order of decreasing likelihood of activity. When the marginal
discovery function is monotonically decreasing, ordering molecules by EMD does not
violate this constraint. However, non-monotonic marginal discovery functions, like COP,
shuffle the order within scaffold groups. Therefore, we seek to define a new score which
will be on average equal to the EMD of a batch, while when used for prioritization will not
violate the ordering constraint.

Letting D ̄ be a vector of EMD values such that each component corresponds with an
untested molecule within a single scaffold group ordered in the same way their EMD was
calculated, we propose “amortizing” vector D ̄ in a particular way to generate a vector of
AEMD scores Ā guaranteed to be monotonically decreasing, and therefore guaranteed to
prioritize molecules within a scaffold group in the same order used to compute their EMD.
The amortization algorithm requires D ̄ from which it computes the AEMD vector Ā:

1. Given a vector of EMDs associated with a set of untested molecules with the same
scaffold, D ̄, initialize the AEMD vector Ā to be an empty vector of the same length.

2. Start with first component of D ̄ by letting the iteration variable i be 1.

3. Let another iteration variable j equal arg maxj [mean of components i to j of D ̄], the
index which maximizes the amortized value of component i.

4. Assign the mean of components i to j of vector of D ̄ to components i to j of Ā.

5. While unassigned components in Ā remain, increment i to j + 1 and return to step 3.

This algorithm redistributes the values of D ̄ to generate a monotonically decreasing vector.

For example, consider a scaffold group containing three untested molecules with the
probabilities {0.8, 0.5, 0.3}. Using a clique-oriented discovery model (Equation 3), the
computed EMD vector is {0, 0.4, 0.15} from which the amortization algorithm computes the
AEMD vector as {0.2, 0.2, 0.15}. Consider another scaffold group with two untested
molecules and one confirmed active molecule. Suppose the probabilities for this group are
{1, 0.4, 0.2}. The expected marginal discovery is {0, 0.4, 0.12} which yields the AEMD
scores {0.4, 0.12} corresponding to the first and second untested molecules in the group. A
reference implementation, coded in Python, of the algorithm required to compute AEMD
scores from an ordered probability vector and an arbitrary marginal discovery function is
included in the Supporting Information.

When the batch boundary falls at the edge of a scaffold’s amortization group (computed in
step 3 and stored in j), the sum of the AEMDs in the next batch is exactly the EMD of the
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batch; otherwise the sum of AEMDs is a very close approximation that only barely slightly
overshoots the true EMD. Therefore, as we would hope, sorting all the molecules from all
the groups by their AEMD scores and choosing the top molecules for confirmatory testing
maximizes the EMD of the batch while maintaining the within-scaffold ordering used to
compute the EMD scores.

4.9 Non-Parametric Prioritization
The AEMD algorithm presented in prior sections is relatively complicated and requires
several parameters to be learned from the data. In contrast, we also developed a simpler non-
parametric solution to COP that does not require parameters to be learned from the data. The
non-parametric COP (COP-NP) algorithm for cliques of size c prioritizes molecules as
follows:

1. For each scaffold group, let a be the number of molecules within the group that
have already been confirmed active.

2. Within each group, sort the untested molecules in the scaffold group by their
activity in the primary screen and consider two cases: (a) a ≥ c and (b) a < c.

a. If a ≥ c then assign priority 0 to all the untested molecules.

b. Otherwise, assign the priority of the top (c – a) molecules to be the
activity of the untested molecule with the (c – a)th highest activity. Assign
priority 0 to the rest of the untested molecules.

3. Across the entire screen and all scaffold groups, select those molecules with highest
priority for further testing.

This implementation assumes that higher activities in the primary screen are desirable and
that the worst possible activity is zero.

As we will see, COP-NP often works as well as the more complicated AEMD algorithm,
even though it does not 3t any parameters to the data. However, COP-NP cannot predict
how many scaffolds will be discovered in the next batch, nor can it accommodate more the
complicated discovery functions described in the Discussion.

5 Results
5.1 Scaffold Distributions in Screen

A skewed distribution of scaffolds in HTS data would motivate our algorithm by revealing
redundant experiments where molecules are prioritized by HTS activity alone. We
considered three sets of molecules: the full set of molecules from the screen (the Library),
the first batch sent for dose-response confirmation (the Dosed), and the molecules
subsequently confirmed as active (the Active). There were 301, 617, 1, 322 and 410
molecules, and 84, 440, 1, 043, and 331 scaffolds (respectively) in each of these sets. Each
scaffold was represented by, on average, 3.57, 1.27, and 1.24 examples (respectively). The
molecules were not distributed evenly amongst scaffolds; a few scaffolds were
disproportionately frequent and a large number were represented by a single example (Table
1). These results were expected and reflect the robust observation that molecules follow a
power-law distribution when clustered.28 Similar distributions would be expected if the data
had been clustered by almost any clustering algorithm.

Strikingly, 67% of the dosed molecules were singletons: the only example of their scaffold
sent for confirmatory tests. If the aim of the screen is to find active scaffolds supported by at
least two confirmed active examples, this means that more than two thirds of the
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confirmatory tests were wasted on confirming molecules that will not yield useful
information. Similarly, though less dramatic, more than 14% of the screened molecules were
singletons. These distributions were not unique to this screen but observed across hundreds
of screens from PubChem (Figure 1).

The consistent observation of such a high number of singletons means a substantial number
of molecules sent for confirmatory experiments cannot be used to confidently establish the
activity of a scaffold. To a limited extent, this point should be tempered by the fact that there
is no definitive definition of scaffold. Some of these singletons may be de-orphaned and
grouped with others when a different scaffold definition is used. Likewise, careful library
design with this concern in mind is more likely to substantially shift this distribution.29

Nonetheless, the striking prevalence of singletons is a consequence of the robustly observed
power-law distribution of molecules and is not likely to be improved much by shifting the
definition of a scaffold.

These distributions give us some clues as to COP’s behavior. First, we predict that COP
would substantially alter how molecules are prioritized. Second, we predict, in a best case
scenario, that COP could as much as triple the number of active cliques discovered from a
fixed number of confirmatory experiments. Of course, there are more precise ways of
predicting the performance improvements possible with COP, but empirical benchmarks are
more important at this stage.

5.2 Predicting Yield
One test of our mathematical machinery is to assess whether it can accurately predict yield
—the number of clique discoveries in a batch of experiments—using Equation 4 in
conjunction with either of the two predictive models, LR and NN1.

In this experiment, the 1322 molecules with known dose-response outcomes were ordered
by their HTS activity in decreasing order. They were then divided into plates of 30
molecules each. The yield of each plate was predicted by training a predictive model (LR or
NN1) on the outcomes of all prior confirmatory tests, as described in the Methods section.
The predicted probabilities of activity were then used in conjunction with Equation 4 to
predict the number of clique discoveries in each plate. The predictions of LR and NN1 were
quite close to the observed yield, demonstrating that the COP mathematical machinery can
predict the number of clique discoveries in a plate (Figure 2).

5.3 Reordering Hits
Another test of COP is to verify that it modiffes the order in which molecules are sent for
confirmatory testing. In the first experiment, we compared the order of the dosed molecules
as ranked by HTS activity to the order generated by the COP algorithm as described in the
Methods section. The dosed molecules were batched in plates of 30 and COP was iteratively
used pick the molecules in the next batch. In most of these experiments, COP-NP also
performed comparably but is omitted for clarity.

Two important observations were made in this experiment. First, COP reduced the number
of confirmatory experiments required to discover the same scaffolds discovered using HTS
ordering (Figure 3). LR and NN1 found all the cliques in the data in 376 and 378
confirmatory experiments (respectively). Therefore, the remaining batches of molecules are
not tested, implying that resources could be saved.

Second, the ranks generated by LR, NN1, and NP are well-correlated (Figure 4). This
suggests that subtle differences in the predictive model may not substantially affect how
molecules are ordered. Furthermore, of the three methods, NP is the most different,
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suggesting that—on other datasets—the most substantial differences in performance maybe
between COP-NP and parameterized versions of COP.

The results of this first experiment should be interpreted with caution; only the Dosed
molecules were available to the COP algorithm in this test. In practice, all the library’s
molecules would be available and it is possible that different results could be realized.

5.4 Increasing Clique Discovery Rate
The most important in silico test of COP is to verify that it increases the rate of clique
discovery. In this experiment, the 1322 dosed molecules are prioritized by COP in batches
of 30. For a fixed number of confirmatory experiments, more cliques are discovered using
COP (Figure 5). For batches of 30, COP discovers an average of 3.54 cliques per batch,
compared to 1.07 when molecules are ordered by HTS activity, almost exactly the three-fold
improvement we expected as a best case scenario. This result was consistent for both the LR
and NN1.

5.5 Prospective Validation
Although these retrospective experiments are promising, the most important overall test of
COP is a prospective experiment. In this experiment, we presumed a realistic batch size of
500 molecules and used COP, in conjunction with both predictive models, to pick the next
batch. The COP batch was compared with the next batch selected by HTS activity alone.

Even without the results of the confirmatory tests, this experiment reinforces several results
from the retrospective experiments. First, the batches generated by LR and NN1 are almost
identical, with only 9 molecules different, corresponding with the observation that LR and
NN1 yield almost identical performance in the retrospective experiments. Second, the
predicted increase in discovery rate agrees well with the retrospective estimates. LR predicts
a three-fold increase in the rate of clique discovery (54.2 compared with 17.4). Likewise,
NN1 predicts a similarly high 2.5-fold increase in the rate of clique discovery (41.9
compared with 16.2).

Finally, as many molecules as possible were obtained and sent for confirmatory testing (460
for LR and NN batches and 477 for the HTS batch). These experiments confirm that more
cliques were discovered in the COP batches; 30 cliques were discovered in both LR and
NN1 batches, compared with 9 cliques in the HTS batch. Furthermore, these yields were
fairly close to the predictions made by the COP machinery. Although LR and NN1 slightly
overestimated COP’s yield, they slightly underestimated the improvement relative to HTS
ordering. Respectively, LR and NN1 predicted 3.1-fold and 2.6-fold increases, while clique
discovery increased by 3.3-fold in the experiment.

5.6 Comparison to OPI and LHR
Finally, to further examine the behavior of COP, we use the qHTS data to simulate a two-
stage HTS experiment as described in the Data section. In these benchmark experiments, we
sent molecules for confirmation in batches of 500 using the COP algorithm and two methods
from the literature—local hit-rate analysis (LHR)8 and ontology-based pattern identification
(OPI)14—using the default settings recommended by their designers. As the designers of
LHR suggest, we also benchmark a third method a variation of LHR—which we abbreviate
as LHR3—that prioritizes molecules using LHR but sends at most 3 molecules per scaffold
for follow up. LHR, LHR3, and OPI work by ranking molecules higher when their structural
neighbors have a statistically higher activity in the primary screen than expected by chance.
Like all commonly used methods of prioritizing hits, OPI and LHR neither use information
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from confirmatory experiments run on prior batches nor attempt to maximize the structural
diversity of the confirmed hits.

Implicit in this experimental structure is the view that if and only if an acceptable dose-
response curve is obtained then the molecule is a true active. This, of course, is not always
the case. For example, impurities in the library can often cause molecules tested in dose-
response to be either false positives or false negatives. With more complete data, like data
from dry-power retests, it would be possible to use the exact same framework prioritize
molecules in a more accurate manner. Therefore, this limitation not so much a limitation of
COP but more of a limitation of our testing strategy.

COP consistently discovered more scaffolds than LHR and OPI on both qHTS datasets
(Figure 6). All three variants of COP (LR, NN1, and NP) performed comparably with each
other, about two times better than ranking by HTS activity alone, while LHR, LHR3, and
OPI performed worse than HTS ranking. These data confirmed results from both the
retrospective and prospective experiments on the MEX data. COP substantially increased
the rate of scaffold discovery.

6 Discussion
Both retrospective and prospective experiments demonstrate that COP increases the rate of
clique discovery from an HTS experiment by as much as three-fold. The key result of this
work is that screener’s preferences, when more accurately modeled, can be applied to
change the order in which molecules are tested so as to increase the rate of discovery.

This study focuses on a particular discovery model by defining a unit of discovery as a
clique of two active molecules with the same scaffold. This choice of a discovery model is
certainly not a settled decision, and we expect this to begin a conversation, rather than end
one, about what exactly screeners hope to find in a HTS experiment. For example, some
screeners might find singleton hits useful if they are the only example of their scaffold in the
whole library.

While the best choice of a discovery model is still open for discussion, our mathematical
machinery is general enough to handle several important cases (Figure 7). For example,
standard HTS prioritization which ignores scaffold groups can be emulated by choosing the
uniform marginal discovery

(7)

More interestingly,12 describes both harmonic and arithmetic weighting schemes which are
used to modulate how a molecule classifier’s performance is scored. These weighting
schemes are statements about the screener’s preferences and can be formulated as marginal
discovery functions,

(8)

for the harmonic weighting scheme and
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(9)

for the arithmetic weighting scheme, where, within each scaffold group, a is the number of
active examples and n is the total number of examples in the group. Likewise, COP can be
generalized to expresses several definitions of a clique

(10)

where c is the minimum number of confirmed actives required to define a clique. This
generalization exposes that DOP is a special case of COP with c = 1.

Entirely new discovery functions are imaginable. For example, a geometric discovery
function

(11)

would exhibit diminishing returns like the harmonic model while allowing the rate at which
discovery decays to be tuned with the parameter 0 < r < 1. A more “knowledge-based”
function, based on informal surveys of screeners, suggests a function like

(12)

which formalizes the notions that occasionally singleton actives are interesting, a scaffold is
confirmed by a second active is much more likely to be interesting, and subsequent
confirmed actives provide some information but not as much as finding new scaffolds. Of
course, the actual values here are entirely subjective and chosen merely to illustrate a point.
It may be possible to learn the discovery function from empirical data by observing which
scaffolds screeners decide to pursue in real HTS experiments,

(13)

in a strategy related to those used in some economic studies.30,31,32 This possibility raises
questions about how the chemical details of the scaffold might influence its value to the
screener. Perhaps the discovery function would be usefully defined as

(14)

where  is the chemical structure of the scaffold and i is the number of confirmed inactive
examples in this scaffold group. These possibilities, of course, are beyond the scope of this
study and will be left to future work.
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Furthermore, all these utility-aware methods of prioritization can and should be used
simultaneously with other HTS analysis methods. For example, other prioritization methods
designed to reduce false positives—by using better controls, chemical information, or other
strategies —are all entirely compatible with COP; the priorities generated by these methods
can either be substituted for the HTS activity or be presented as an additional independent
variable to the predictive model.

Moreover, COP is a seamless extension of a previously defined economic framework and
can, therefore, be used to compute the marginal cost of discovery (MCD).9 The MCD is the
predicted number of confirmatory experiments required to discover one more clique of
actives, and yields an optimal strategy for deciding how many molecules should be sent for
confirmatory testing. The key point here is that the mathematical machinery developed for
COP is a unifying framework which expresses all prior work, inspires new possibilities, and
yields functional prioritization algorithms in all cases.

7 Conclusion
When screeners’ preferences are rigorously formulated, they can be applied to increase the
rate of information discovery from HTS experiments in utility-aware protocols. COP
follows from the observation that screeners look for a clique of a few active examples of a
scaffold to establish the scaffold’s activity; in both retrospective and prospective
experiments, COP shuffles the order in which hits are confirmed and, thereby, increases the
rate of clique discovery by up to three-fold.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Singleton proportion. Each point in this figure corresponds to a PubChem screen executed
on 100 to 5000 molecules, the typical size of confirmatory screens. The star corresponds
with the dose-response experiment of the MEX screen used in this study. Across these
screens, about 55% of molecules are singletons, the only example of their scaffold.
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Figure 2.
Prediction confirmation of clique discoveries. The predicted discoveries of active cliques
(LR and NN1) along with actual, observed discoveries (labeled “data”). Compounds were
ordered by HTS activity and grouped into batches of 30. (left) Predictions and observations
of clique discoveries in each batch. (right) Predictions and observations of total cliques after
each batch.
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Figure 3.
Reordering hits. For the Dosed molecules, a comparison of COP (using LR or NN1) ranks to
HTS ranks indicates that COP substantially reorders the hits for followup.
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Figure 4.
Comparing COP orderings. (top) COP-LR and COP-NN1 rank molecules in nearly the same
order. (bottom) COP-NP rank molecules somewhat differently than COP-LR.
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Figure 5.
Improvement in scaffold discovery rate. The number of cliques discovered by COP versus
HTS ordering as a function of the number of 30 molecule plates sent for confirmatory tests.
In this figure, COP used the NN1 predictive model. The results using LR yield an identical
curve.
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Figure 6.
Comparison on qHTS data. On both the (left) BAZ2B and (right) JMJD2A-tudor datasets,
COP substantially outperforms both HTS ranking and existing methods like LHR and OPI.
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Figure 7.
Possible marginal discovery functions. Uniform and arithmetic discovery functions suppose
that each example of a scaffold is worth the same amount. The diversity-oriented function
only values the first example of every scaffold. The clique-oriented functions only value
either the second or third active example of the group. The harmonic and geometric (shown
with r = 0.5) functions value each active less and less as more of the same scaffold are
discovered. The knowledge-based function intends to model a more complex preference,
similar to COP, but also valuing singletons and larger cliques.
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