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Abstract

Introduction: The main goal of this study was to examine the patient age and
sex dependent expression of KCNQ1 and HERG genes that encode potassium
channels responsible for the occurrence of long QT syndrome (LQTS).

Material and methods: The study enrolled 43 families whose members suffered
from LQTS type 1 (LQTS1) or 2 (LQTS2) or were healthy. The study attempted to
prove that f-actin is a good endogenous control when determining the expres-
sion of the studied genes. Examination of gene expression was achieved with
quantitative real-time PCR (QRT-PCR). Expression of the investigated genes was
inferred from the analysis of the number of mRNA copies per 1 pg total RNA iso-
lated from whole blood.

Results: Significantly lower KCNQ1 and KCNH2 mRNA levels in healthy females
than healthy males were observed (p = 0.032; p = 0.02). In male patients both
transcripts were expressed at a lower level (p = 0.0084; p = 0.035). The com-
parison of transcriptional activity of KCNQ1 and KCNH2 in healthy adults and
children revealed higher KCNQ1 and lower KCNH2 mRNA levels in healthy adults
(p = 0.033; p = 0.04), higher KCNQ1 and lower KCNH2 mRNA levels in adult
patients below 55 years old than in adults over 55 years old (p = 0.036;
p = 0.044), and significantly higher KCNQ1 and lower KCNH2 mRNA levels in
adult patients (over 55 years) than in paediatric patients (below 15 years)
(p = 0.047; p = 0.08).

Conclusions: The results support the hypothesis that KCNQ1 and HERG gene
expression is influenced by age and gender in human patients with long QT
syndrome and in healthy subjects.

Key words: long QT syndrome, KCNQ1 gene, HERG gene, expression, potassium
channel.

Introduction

Genetic disorder is an important cause of sudden cardiac death (SCD) in
children without structural heart diseases [1, 2]. However, the risk in affect-
ed patients is not uniform because of variable penetrance and is influenced
by age, gender, genotype, environmental factors, therapy, and possibly oth-
er modifier genes [3]. In recent years, numerous advances have been made
in the identification of the genotype-phenotype relationship and risk factors
for cardiac events in long QT syndrome (LQTS) patients [1, 4-10].
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Hereditary long QT syndrome (LQTS) is charac-
terized by prolonged ventricular repolarization on
the ECG and arrhythmia-related syncope and sud-
den death [3, 11-13]. Mutations in several ion chan-
nel genes are known to cause this disorder [14],
mutations in the KCNQ1 gene causing type-1 long
QT syndrome [15, 16] and in the human ether-a-go-
go-related gene (HERG) causing type-2 long QT syn-
drome [17]. Mutations involving the KCNQ1 gene
result in reduction of the slow component of the
delayed rectifier repolarizing current Iy, HERG muta-
tions have been found to be associated with reduc-
tion of the rapid component of this current Iy, and
both contribute to lengthening of the QT interval
[15, 18]. In humans the KCNQ1 gene is expressed in
kidneys, placenta, lungs and heart. The highest
mMRNA transcript levels of the KCNQ1 gene have
been observed in heart muscle cells; no expression
was found in brain, skeletal muscles or liver [19, 20].
The KCNH2 gene was shown to be important in
preventing premature heart stimulation [21, 22].

The aim of this study was to answer the ques-
tion how the expression of genes encoding slow
and fast potassium channels, KCNQ1 and HERG,
respectively, changes depending on age and gen-
der of the patient.

Material and methods

Gene expression was studied in subjects from
unrelated families; initial diagnoses were based on
such clinical features as altered ECG and echocar-
diography. One hundred sixty-three patients from
the Paediatric Cardiology Department of the Med-
ical University of Silesia in Katowice-Ligota were
enrolled in the study, including 98 with clinically
diagnosed (ECG) LQTS. Type 1 LQTS was diagnosed
in 60 patients and type 2 LQTS in 38 patients. The
remaining 65 patients were healthy individuals
without clinically confirmed LQTS symptoms; these
individuals were from 43 families whose members
were diagnosed with the long QT syndrome. The
principal goal of this study was to examine the
expression of KCNQ1 and HERG genes that are
responsible for the occurrence of LQTS1 and LQTS2.
Additionally, the study attempted to answer the
question whether and how the expression of the
examined genes depends on patients’ age and gen-
der. The study also attempted to verify whether
B-actin is a good endogenous control for deter-
mining the expression of the studied genes.

Total RNA extraction

Total RNA extraction was performed using Feno-
zol total RNA isolation Reagent Set (A&A Biotech-
nology). Consent to use blood samples taken from
patients was obtained from the Bioethics Commit-
tee of the MUS in Katowice.

QRT-PCR

Assessment of transcriptional activity of the
investigated genes was carried out using com-
mercial kits (TagMan Gene Expression Assays
Applera for KCNQ1 gene inventoried set 4331182
Hs00165003m1 — length of PCR product 78 bp; for
HERG gene inventoried set 4331182 Hs00542478m1
— length of PCR product 82 bp). The number of
mRNA copies of the investigated genes was deter-
mined based on kinetics of the QRT-PCR reaction
using an ABI PRISM™ 7000 sequence detector
(Applied Biosystems, CA, USA) and a ROX Quanti-
Tect Probe RT-PCR kit containing a fluorescent dye.
QRT-PCR was carried out in one step. The reaction
mix contained 10 pl 2 x QuantiTect Probe RT-PCR
Master Mix, 0.1 pl QuantiTect RT Mix (Qiagen
GmbH, Germany) and 1 pl mix of TagMan Gene
Expression Assay starters and probes (Applied
Biosystems), RNA matrix and pyrogen-free water.
The reaction mix to amplify B-actin gene DNA stan-
dards contained 25 pl 2 x QuantiTect Probe RT-PCR
Master Mix (Qiagen GmbH, Germany) and 0.5 uM
sense and antisense starters, B-actin cDNA tem-
plate and pyrogen-free water (Applied Biosystems
TagMan Gene Expression Assays for AKT 4331182
Hs 99999903 _m1). The reverse transcription reac-
tion (in two repeats) was carried out at 50°C for
30 min. Following initial activation of HotStar Taq
DNA Polymerase (95°C/15 min), a two-step reaction
was carried out including denaturation at 94°C
for 15 s and starter annealing at 60°C for 60 s
(40 cycles). Final elongation of amplification prod-
ucts was carried out at 72°C for 10 min. To confirm
the absence of non-specific amplification, the PCR
products were analysed by polyacrylamide gel elec-
trophoresis and sequence analysis (ABIPRISM377).

Statistical analysis

Expression level of the investigated genes was
inferred from the analysis of the number of mMRNA
copies per 1 pg total RNA. The data were exported
from an Excel datasheet to the STATISTICA v.7.1 data
analysis software system (StatSoft Inc. 2006).
Descriptive statistics were computed including
median, standard deviation and average values. The
degree of normality was examined with the
Shapiro-Wilk test. Due to the lack of normal distri-
bution of the investigated parameters, we used
a non-parametric test (Mann-Whitney U-test) to
analyse the results from the experimental and con-
trol groups. The statistical significance level was set
at p < 0.05.

Results

A series of QRT-PCR reactions was performed.
The electrophoretic evaluation of amplimers (length
of PCR product for KCNQ1 gene — 78 bp; for HERG
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gene — 82 bp) and sequence analysis confirmed the
specificity of the performed QRT-PCR reaction (data
not shown). The results are expressed as the num-
ber of mRNA copies of the analysed genes per 1 ug
of total RNA. We have determined B-actin mRNA
copy number in all analysed groups. The B-actin
mRNA copy numbers were not statistically differ-
ent between control and affected groups and may
be a good endogenous control for determining the
expression of the studied genes.

Significantly lower KCNQ1 and KCNH2 mRNA lev-
els in healthy females than healthy males were
observed (Mann-Whitney U test, p = 0.032;
p = 0.02; Figure 1), whereas in male patients both
transcripts were expressed at a lower level than in
female patients (Mann-Whitney U test, p = 0.0084;
p = 0.035; Figure 2). The comparison of transcrip-
tional activity of KCNQ1 and KCNH2 genes in
healthy adults and children revealed considerably
higher KCNQ1 and lower KCNH2 mRNA levels in
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Figure 1. Comparison of KCNQ1 and KCNH2 mRNA
levels between healthy females and males. Results
are expressed as copy numbers per 1 pg of total RNA
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Figure 3. Comparison of KCNQ1 and KCNH2 mRNA
levels between healthy adults and healthy children.
Results are expressed as copy numbers per 1 ug of
total RNA

healthy adults (Mann-Whitney U test, p = 0.033;
p = 0.04; Figure 3).

We have also compared KCNQ1 and KCNH2
mRNA copy numbers in patient groups divided
into subgroups based on their age (adults — age
below 55 years and over 55 years; children — age
below 15 and over 15 years). This analysis showed
remarkably higher KCNQ1 and lower KCNH2 mRNA
levels in adult patients below 55 years old than in
adults over 55 years old (Mann-Whitney U test,
p = 0.036; p = 0.044; Figure 4).

Moreover, significantly higher KCNQ1 and lower
KCNH2 mRNA levels were detected in adult patients
(age over 55 years) than in paediatric patients
(age below 15 years) (Mann-Whitney U test,
p = 0.047; p = 0.08; Figure 5).

Discussion

The existence of differences in heart rhythm dis-
orders in women compared to men has been
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Figure 2. Comparison of KCNQ1 and KCNH2 mRNA
levels between female and male patients. Results
are expressed as copy numbers per 1 pg of total RNA
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Figure 4. Comparison of KCNQ1 and KCNH2 mRNA
levels between adults patients (age > 55 years and
age < 55 years). Results are expressed as copy num-
bers per 1 ug of total RNA
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Figure 5. Comparison of KCNQ1 and KCNH2 mRNA
levels of adult patients (age > 55 years) and paedi-
atric patients (age < 15 years). Results are expressed
as copy numbers per 1 ug of total RNA

known at least since 1996, when Burke et al. [23]
described electrocardiographic changes in the form
of prolonged QT duration, higher incidence of sinus
rhythm at rest, and the tendency to recurrent nodal
tachycardia or a medication-induced ventricular
tachycardia torsades de pointes (TdP) [24]. In
women, a prolonged QT interval (also corrected),
on average by 10-20 ms compared to that of men,
and shorter QT dispersion have been confirmed [25,
26]. There has also been proven higher incidence
of complications and pro-arrhythmic effect of var-
jous drugs such as antihistamines, antibiotics (ery-
thromycin), antiarrhythmics (sotalol), antidepres-
sants and others. The ability of these drugs to block
potassium channels suggests still undefined dys-
function of these channels in women [27, 28]. The
studies of Rautaharju et al. [29] have also confirmed
that the QTc interval is longer in women than in
men aged 15-55 years, while no differences were
observed in corrected QTc duration in children up
to 15 years old and adults over 55 years old. There
are several explanations for the mechanisms
responsible for QT prolongation and a tendency to
arrhythmia in women. These include very low lev-
el of androgens with their protective effect and con-
sequently decreased QTc as opposed to men,
genetically based differences in the density of
potassium channels in the cell membrane of
myocardial cells, modulating effects of oestrogens
on the function and kinetics of potassium and cal-
cium channels, modulating the expression of ion
channels [30-34], and prolongation of QTc as well
as dominance of the parasympathetic system
favouring the extension of the QT [35-37]. The study
by Liu et al. [32] suggests low expression of genes
encoding potassium channels in female rabbit
myocardium cells compared with male rabbits (den-
sity of potassium channels lower by 20%, cellular
Ik1 potassium currents lower by 14%). Besides the

differences in the duration of the QT interval
between women and men, also differences in the
dynamics of adaptation of QT duration to heart rate
changes, as well as differences in the morphology
of ST-T segments have been observed. They result
from lower heart muscle weight, dissimilar thorax
configuration and probably different ionic structure
of cell membrane of heart muscle in women com-
pared to men [32, 38]. Further studies revealed that
among patients reported to the international reg-
istry of patients with cLQTS women constituted
70% of the probands [4, 5, 31, 39, 40]. Moss et al.
[41] have proposed criteria for diagnosis of QT pro-
longation specific to gender and age of the test: for
children aged 0-15 years the volume of QTc > 0.46,
for men > 16 years greater than 0.45, and females
QTc > 0.46 [9, 41, 42]. We here aimed at assessing
the effects of KCNQ1 and KCNH2 gene expression
level on the occurrence of long QT interval syn-
drome. To our knowledge, this is the first study that
examines KCNQ1 and HERG gene expression in
human patients. The rather unique character of this
study results from comparing the expression levels
of KCNQ1 and KCNH2 genes in subjects with clini-
cally diagnosed LQT1 and LQT2 syndromes and in
healthy subjects. The present study is also the first
to use patients’ peripheral blood as the material for
the subject investigation. Studies on KCNQ1 and
HERG expression reported so far were based on ani-
mal biopsy material or commercially available cell
lines. We have found significantly lower KCNQ1 and
KCNH2 mRNA levels in healthy females than in
healthy males and significantly lower KCNQ1 and
KCNH2 mRNA levels in male patients compared
with female patients. These findings suggest that
the higher male risk related to acquired cardiovas-
cular disorders in the unaffected population is coun-
terbalanced in the affected population by higher
female risk related to the genetic disorder [43]. Pre-
vious studies have suggested that the rate of
increase in cardiac events generally plateaus in
adult males [4, 9]. Event manifestations specifical-
ly in LQT1 and LQT2 patients might be modulated
differently by age and gender [9, 44]. Preliminary
studies suggest that a pro-arrhythmic response may
be genetically determined as a result of mutations
or polymorphisms in genes encoding ion channels
in heart muscle cells [31]. The incidence of life-
threatening events was lower among LQT1 patients
compared to the other genotypes, partly because
of the high prevalence of silent mutation carriers
[QTc, 440 ms]; the risk was higher among LQT2
females vs. males and LQT3 males vs. females [45].
We have also compared KCNQ1 and KCNH2 mRNA
copy numbers between healthy adults and healthy
children and found significantly higher KCNQ1 and
lower KCNH2 mRNA levels in healthy adults com-
pared to healthy children. The risk of arrhythmic
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complications in patients with long QT syndrome
also varies according to sex, age and genotype. In
LQT1 syndrome caused by mutation of the KCNQ1
gene, the risk is increased in boys before 15 years
of age and in adult females is higher than in men.
In the LQT2 syndrome caused by mutation in the
HERG gene a preponderance of arrhythmic compli-
cations risk in girls could be observed but it is very
visible in adult women [4, 9, 10]. Comparative analy-
sis of KCNQ1 and KCNH2 mRNA copy numbers in
patients divided into subgroups based on age
(adults — age below 55 years and over 55 years; chil-
dren — age below 15 and over 15) in the present
study showed significantly higher KCNQ1 and low-
er KCNH2 mRNA levels in adult patients (age over
55 years) than in adult patients (age below
55 years). Children are typically affected and more
than 50% of the patients have experienced their
first episode of syncope or cardiac arrest by the age
of 15 years [10, 46, 47]. A few additional findings
emphasized high risk for first cardiac events during
adolescence, with girls experiencing an increased
risk compared with boys, a crossover in risk by sex
at approximately age 13 years, and a lower rate of
first cardiac events in the adult years than in the
younger years [4, 5, 11, 48]. LQT1 children were con-
sidered as a low-risk group compared to LQT2 or
LQT3 mutation carriers, especially under beta block-
er therapy [46, 49]. In 2008 Goldenberg et al. [43]
suggested that the subjects who are affected with
this cLQTS and survive to age 40 years have a rel-
atively lower risk of experiencing disease-related
fatal or near fatal arrhythmic events than their
younger counterparts. It is also possible that the
increasing prevalence of other forms of cardiac and
non-cardiac acquired disease processes may dom-
inate mortality risk in the older age group. In our
study adult patients (age over 55 years) presented
significantly higher KCNQ1 and lower KCNH2 mRNA
levels than paediatric patients (age below 15 years).
Gender and age also play significant roles in influ-
encing the clinical course of LQTS in that cardiac
events tend to occur more frequently in children,
with males having an increased risk of events dur-
ing pre-adolescence and females having higher
event rates in adolescence and beyond [4].
Although many LQTS patients develop symptoms
during adolescence, some of them experience the
first cardiac event in their adulthood [50]. The mech-
anism of interaction between KCNQ1 and HERG
genes is not simple. It has been reported that
KCNQ1 coexpression modulates HERG function by
enhancing membrane expression of HERG, and that
the 2 proteins co-immunoprecipitate, and colocal-
ize in myocytes. In vivo studies in genetically mod-
ified rabbits also support a HERG-KCNQ1 interac-
tion [51]. Trafficking-competent KCNQ1 variably
influences the function of HERG long QT alleles.

Otherwise the KCNQ1 gene product can form het-
eromultimers with two other potassium channel
proteins, KCNE1 and KCNE3, and interact with
CALM. In turn, HERG transcript variants encoding
distinct isoforms have been identified. Isoform
3 has no channel activity by itself, but modulates
channel characteristics when associated with iso-
form 1. It is also reported that KCNQ1 and HERG
share unique interactions with KCNE1, 2 and 3 sub-
units. KCNE1 (IsK or MinK) recapitulates IKs when
associated with KCNQ1, whereas it augments the
amplitude of an IKr-like current when co-expressed
with HERG [52]. Recent studies have led to the dis-
covery of microRNAs (miRNAs) as a new player in
cardiac excitability by fine-tuning expression of ion
channels, transporters, and cellular proteins, which
determines the arrhythmogenicity in many condi-
tions. A single mRNA may regulate the expression
of many genes with similar functions and modu-
late the complex picture of the phenotype or dis-
ease activity. The excess may also play a role in the
paradoxical increase in target gene expression. It
was stated that the following participate in cardiac
function of micro RNA: mir-1, mir-133 (arrhythmias),
mir-21, mir-195 (cardiac hypertrophy), mir-208 (con-
tractility of the heart muscle) [53-55]. Disorders of
epigenetic mechanisms of gene regulation may also
be the cause of many monogenic and complex dis-
eases. Epigenetics is one of the fastest growing
fields of genetics: studies of variation that is not
dependent on the primary DNA sequence and the
results from the action of specific regulatory mech-
anisms (DNA methylation, modification of histone
proteins, expression of antisense RNA or RNAi) [56].
As the concept of phenotypic heterogeneity of long
QT syndrome was postulated and confirmed, the
idea had been looming that modifier genes had to
exist. Swartz et al. in 2006 currently making a spe-
cific effort towards the identification of modifier
genes, not only for the duration of QT interval but
also, even more, for the clinical severity of LQTS.
This research group has identified a first modifier
gene for the severity of LQTS. The practically impor-
tant conclusion is that common polymorphism can
amplify the consequences of rare mutations [57].

However, in the light of the results obtained
herein it is suggested that gene expression profiles
may be an additional criterion of differential diag-
nosis of LQTS types. At present this is an experi-
mental method which may be helpful in LQTS diag-
nosis.

In conclusion, our results support the hypothe-
sis that variations in KCNQ1 and HERG gene expres-
sion is influenced by age and gender in human
patients with long QT syndrome and in healthy sub-
jects. This research has been restricted to small
sample numbers which limits the generalizability
of its findings. A replication study for the associa-
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tion between gender and age and expression of the
analysed genes needs to be performed.
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