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Using dynamic nuclear polarization (DNP)/nuclear magnetic resonance instrumentation that utilizes
a microwave cavity and a balanced rf circuit, we observe a solid effect DNP enhancement of 94 at
5 T and 80 K using trityl radical as the polarizing agent. Because the buildup rate of the solid ef-
fect increases with microwave field strength, we obtain a sensitivity gain of 128. The data suggest
that higher microwave field strengths would lead to further improvements in sensitivity. In addition,
the observation of microwave field dependent enhancements permits us to draw conclusions about
the path that polarization takes during the DNP process. By measuring the time constant for the
polarization buildup and enhancement as a function of the microwave field strength, we are able to
compare models of polarization transfer, and show that the major contribution to the bulk polariza-
tion arises via direct transfer from electrons, rather than transferring first to nearby nuclei and then
transferring to bulk nuclei in a slow diffusion step. In addition, the model predicts that nuclei near
the electron receive polarization that can relax, decrease the electron polarization, and attenuate the
DNP enhancement. The magnitude of this effect depends on the number of near nuclei participating
in the polarization transfer, hence the size of the diffusion barrier, their T1, and the transfer rate. Ap-
proaches to optimizing the DNP enhancement are discussed. © 2012 American Institute of Physics.
[doi:10.1063/1.3670019]

I. INTRODUCTION

Dynamic nuclear polarization (DNP) is a method of en-
hancing nuclear magnetic resonance (NMR) signals by trans-
ferring the large Boltzmann polarization of unpaired electrons
to the nuclear spin reservoir, thereby enhancing the NMR sig-
nal intensities by several orders of magnitude.1, 2 Since DNP
greatly enhances the signal-to-noise ratio, it permits other-
wise prohibitively long experiments to be performed and/or
acquisition of enhanced information, both in shorter periods
of time. There are many situations that can benefit greatly
from the enhanced sensitivity of DNP. For instance, protein
samples exhibit spectra that are intractable without multi-
dimensional experiments. Concurrently, the multiple dimen-
sions and the magnetization transfer steps involved in acqui-
sition of these spectra often lead to results with low sensitivity.
Thus, there are now many examples where the quality of spec-
tra of biological samples improves dramatically with polariza-
tion enhancement.3–13 Another compelling illustration of the
utility of DNP involved NMR studies of surfaces where spec-
tral acquisition required many days or weeks of signal aver-
aging without DNP, whereas with DNP excellent results were
obtained in less than an hour.14

Continuous wave (CW) DNP in insulating solids gen-
erally proceeds via one of three mechanisms, depending on
the relative magnitude of the nuclear Larmor frequency (ω0I),
and the homogeneous (δ) and inhomogeneous linewidths
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(�) of the electron paramagnetic resonance (EPR) spec-
trum. In the case ω0I � δ, � (the EPR spectrum is nar-
row compared to the nuclear Larmor frequency), the solid
effect (SE) (Refs. 15–17) governs the DNP process. Since
the SE utilizes forbidden electron-nuclear transitions, the
transition moments exhibit a ω−2

0I dependence. Therefore,
the experimentally observed SE enhancements at high field
(≥5 T) and liquid-N2 temperatures (80–90 K) in contempo-
rary DNP experiments have until recently been limited to
∼5–15,18–21 although higher enhancements have been ob-
tained at lower fields and liquid-helium temperatures.22, 23 In
contrast, in the regime � > ω0I > δ, the three-spin cross
effect (CE) becomes dominant.24–30 The CE utilizes birad-
icals, where two electrons are tethered together in the cor-
rect relative orientation,28–30 as polarizing agents, and to date
it has proven to be the most efficient DNP mechanism for
high field experiments, yielding 1H enhancements of up to
250.31, 32 The third mechanism, thermal mixing (TM), is im-
portant when the EPR spectrum is homogeneously broadened
– when �, δ ≥ ω0I.33–35 However, at high fields (≥5 T) the
g-anisotropies of many polarizing agents are typically larger
than the homogeneous contributions to the linewidth, and
therefore, TM has not been an important mechanism in most
contemporary magic angle spinning DNP experiments. How-
ever, at the lower temperatures (∼1.5 K) used in dissolution
DNP where the EPR line behaves homogeneously, it could be
dominant.36

Considerable effort has been focused on understanding
the steps involved in the transfer of the large electronic po-
larization to nuclei. Quantum mechanical treatments were
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used to describe the two-spin interaction in the SE,37–39 and
the three-spin interaction in the CE,30 and rate equations
have been used to describe the buildup of polarization in the
bulk.27, 40 More recently, simulations were used to understand
interactions in small systems of spins,41, 42 and finally ex-
periments monitoring the attenuation of electron polarization
were performed to better understand the behavior of the elec-
tron spin reservoir during DNP.39, 43, 44 However, as we con-
tinue to optimize DNP experiments via modifications to sam-
ples, development of polarizing agents, instrumentation, and
implementation, including pulsed-DNP techniques, it is im-
portant to understand all the steps and limiting factors active
in the DNP polarization transfer.

The goal of this paper is to provide a description of the
transfer of polarization from the electrons to the nuclei guided
by experimental data, and to determine the role of the “diffu-
sion barrier” in this process. Interestingly, the “diffusion bar-
rier” has been defined in a variety of ways, and its size has
been measured with both indirect and direct experiments, re-
sulting in conflicting estimates of the barrier radius. The ini-
tial discussion of a spin-diffusion barrier was included in the
pioneering work of Bloembergen45 on the effects of param-
agnetic relaxation in crystals. Subsequently, Khutsishvili de-
fined the barrier size in terms of the shift in the resonance fre-
quency due to electron-nuclear coupling relative to the NMR
linewidth.46 Blumberg proposed a similar definition, stipu-
lating the radius as the position where the electron nuclear
coupling became larger than the local dipolar field (giving
a slightly larger radius than Khutsishvili).47 Goldman,48 and
Schmugge and Jeffries,22 used the Blumberg definition to-
gether with relaxation data to indirectly predict barriers with
radii of 16 to 17 Å. In the 1970s, Wolfe, in a series of ele-
gant experiments using single crystals, directly measured the
radius of the diffusion barrier in Yb3+/Nd3+-doped yttrium
ethyl sulfate (YES) and Eu2+ doped crystals of CaF2.49–51

In particular at ∼1.7 K, the electron T1 (hereafter T1s) be-
comes long and it is possible to observe resonances from nu-
clei adjacent to the paramagnetic center as well as the large
line due to the bulk resonance whose position is unshifted by
the paramagnet. Saturation of the bulk resonance with a weak

field subsequently saturates all of the lines in the spectrum
except those from nuclei immediately adjacent to the metal
center, indicating that essentially all nuclei directly commu-
nicate with the bulk. The radius of the diffusion barrier de-
rived from these measurements is ∼5 Å which is significantly
smaller than predicted by the Khutsishvili and Blumberg
definitions and estimated by Goldman and Schmugge and
Jefferies. Interestingly, this distance is comparable to the C·
→ –CH2– distance on trityl (OX063)- suggesting it may be
unnecessary to consider the spin-diffusion barrier at all. Fi-
nally, we should mention that other efforts directed at mea-
suring the size of the diffusion barrier are discussed in greater
detail in the recent review article by Ramanathan.52

In this paper, we consider the role of partial or total
quenching of spin-diffusion on the DNP process. With this
goal in mind, we have focused on SE experiments, as this
mechanism is the simplest of the three CW DNP mechanisms,
involving only two spins in the initial polarization transfer. We
have performed a series of experiments where we measured
(1) the time constant for the polarization buildup, (2) the po-
larization enhancement, ε, and (3) the ω1S dependence of ε. In
order to explain our experimental observations, we consider
three models based on differential equations describing the
polarization transfer from electrons to the bulk nuclei, each
representing a different pathway of polarization transfer, and
we attempt to fit our data to each model. The models, which
are shown schematically in Figure 1, consider (A) transfer
of electron polarization to all the nuclei, (B) transfer first to
the nuclei neighboring the electron (inside the “diffusion bar-
rier”) and then to the bulk and (C) finally to nuclei outside
the “diffusion barrier” and subsequently to the bulk via 1H
spin-diffusion. Model (A) is the null hypothesis, for which
the spins inside the diffusion barrier do not consume much
electron polarization, either because they are few in number,
or their T1s are long enough that they do not use much polar-
ization. In view of the experimental results from Wolfe show-
ing a very thin barrier, it is important to consider this case.
Model (B) follows the mechanism discussed by Blumberg and
Khutsishvili where the barrier is passable due to coupling of
the spin-diffusion process to other interactions, albeit slowly,

(A) (B) (C)

FIG. 1. Three possible models for the transfer of polarization from an electron (red) to nearby nuclei (yellow) and the bulk nuclei (green). In (A),
we show a model where spin-diffusion is fast among all nuclei that receive polarization. Due to the rate of this diffusion process, all nuclei main-
tain nearly the same polarization, and thus, one can consider only the total nuclear polarization. In (B), spin-diffusion is fast among both the nearby
and bulk nuclei. However, there is a slow spin-diffusion step to transfer polarization between these two groups. In this case, we allow electron-nuclear
polarization transfer only to nearby nuclei and then to the bulk via spin-diffusion. In (C), spin-diffusion is fast among the bulk nuclei. However, we
do not allow any transfer of polarization between the nearby and bulk nuclei, but rather allow for a fast DNP step to the nearby nuclei, and a slow
DNP step to the bulk nuclei. We note these illustrations are not representative of the shape of the spin-diffusion barrier, nor the number of nuclei
inside it.
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so that spins near the electron are polarized first, and then
polarization diffuses outward to the bulk nuclei. This model
has been used recently by Hovav et al., where calculations
are done in Liouville space with a single “core” nucleus and
bulk nuclei to which polarization diffuses.42 Model (C) does
not allow spin-diffusion across the barrier – in the spirit of
Wolfe’s experimental results where protons within 3–4 Å do
not show any diffusion. However, there will be polarization
transfer from the electron to nuclei within the spin-diffusion
barrier, and due to T1 relaxation, these nuclei can act as a po-
larization sink.

The model that best fits the experimental data – the mag-
nitude of the enhancement, the polarization build-up time,
and the ω1S dependence – is case (C). However, the pro-
tons of trityl are on the border of the 5 Å radius measured
by Wolfe, suggesting that our diffusion barrier may have
a larger radius.53 We also note that when the microwave
field strength is not limiting, the solid effect has the po-
tential to provide very large enhancements at high fields
and can further increase the sensitivity gain per unit time
by an acceleration factor, κ = T1I /TB , since the solid ef-
fect generates polarization on a time scale shorter than the
nuclear T1.

The paper is organized as follows. In Sec. II, we outline
three mathematical models for solid effect polarization trans-
fer and the rate equations that describe each. Section III pro-
vides the experiments details, and Sec. IV describes the exper-
imental results including the pulse sequence used to acquire
the data, and the experimental polarization buildup times ac-
quired as a function of the microwave field, ω1S. This is fol-
lowed by a discussion of the experimental results and includes
a description of the approximate size of the diffusion barrier
based on data from the experiments of Wolfe49–51 and a struc-
ture of Finland trityl determined via EPR measurements and
quantum chemical calculations.53

II. THEORY

A. Rate equations

To understand the transfer of electron polarization to bulk
nuclear polarization, we employ a slow (seconds) time-scale,
and use linear differential equations to describe this trans-
fer. To obtain these expressions, we first consider a Liouville
space calculation that leads to the differential equations given
in Eq. (7) below.

We start by examining the Hamiltonian describing a sin-
gle electron and many nuclei. This Hamiltonian governs in-
teractions leading to electron-nuclear polarization transfer in
the microwave rotating frame, where we will assume the mi-
crowave frequency is near the condition for positive, double
quantum (�mS = ±1, �mI = ±1) DNP enhancement (ωMW

= ω0S − ω0I). The terms of the Hamiltonian in Eq. (1) are the
electron Zeeman, nuclear Zeeman, electron-nuclear coupling,
nuclear-nuclear coupling, and microwave Hamiltonians, re-
spectively. �ω0S is the microwave offset from the electron
Larmor frequency, the ω0Ij

are the nuclear Larmor frequen-
cies, the Aj are the secular electron-nuclear dipole couplings,
Bj and Cj are the non-secular electron-nuclear dipole cou-

plings, ��Dj,k is the nuclear-nuclear coupling tensor, and ω1S

is the microwave field strength. Note that, because we are in
the rotating frame, rapidly oscillating electron-nuclear dipole
terms have been dropped,

H0 = HS + HI + HIS + HII ,

H = H0 + HM,

HS = �ω0SSz,

HI =
NI∑
j

−ω0Ij
Ijz,

HIS =
NI∑
j

AjSzIjz + Bj

2
Sz(I

+
j + I−

j ) + Cj

2i
Sz(I

+
j − I−

j ),

HII =
NI∑
j

NI∑
k>j

�Ij
��Dj,k

�Ik,

HM = ω1S

2
(S+ + S−). (1)

Note that our Hamiltonian, H, only describes interactions be-
tween spins, and does not include interaction of the spins with
the lattice. In principle, it is possible to describe the full sys-
tem with

d

dt
ρ(t) = −i[Hf (t), ρ(t)], (2)

where Hf(t) and ρ(t) describe the full spin system and lat-
tice. However, such an approach is prohibitively difficult, and
we are only interested in the state of the spin system, so we
will use a superoperator approach to include the relaxation
brought about by the lattice interaction with the spin system.54

The superoperator equation is given in Eq. (3), where σ is a
column vector describing the state of the spin system,

d

dt
σ = − (iH + �) σ + �σ eq. (3)

In Eq. (3), the superoperator H is given by H = H ⊗
E − E ⊗ H̃, where H is the Hamiltonian from Eq. (1),
E is the identity operator, and H̃ is the transpose of H.
� is the relaxation superoperator, which describes popu-
lation transfer between states of the spin system brought
about by the matrix. If we consider the basis set defined
by (Sz, I1z, I2z, . . . , S+, S−, . . . ), then � will contain the relax-
ation rates for individual states along its diagonal, and any
cross-relaxation between spins on the off-diagonal. σ eq is the
equilibrium population, where σeq ∝ exp (−H0/kBT ) (such
that H0σ eq = 0, where H0 = H0 ⊗ E − E ⊗ H̃0). We want
to model observations made over the time scale of the nu-
clear relaxation, which allows us to assume that many of the
quantum-mechanical states in the system have reached quasi-
equilibrium. A state in quasi-equilibrium evolves rapidly
compared to the time scale of observation (up to ∼100 ms
in our case). This causes the state to react relatively quickly
to changes in other states that are not in quasi-equilibrium.
Although the state in quasi-equilibrium may change on the
time scale of the observation, it is still reasonable to use the
following approximation for that state, which we denote by
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σ j, allowing for a quasi-steady-state solution of the value of
the state σ j in terms of the other states,

d

dt
σ j =

∑
k

−(iHj,k + �j,k)σ j + �j,kσ eq,j = 0. (4)

We will assume quasi-equilibrium for all states except the
polarization states (Sz, I1z, I2z, . . . ). A similar assumption was
made by Hovav et al. when computing the evolution of
polarization.41 In particular, they assume a quasi-equilibrium
of the coherences connecting eigenstates of the static
Hamiltonian to accelerate their computations. For our argu-
ments, we do not go into the eigenframe, since this was only
necessary for the method of computation. We also go one step
further, assuming quasi-equilibrium for states without a trans-
verse component, which we will refer to as spin-order states
(I1zI2z, for example). One may note that the results in Hovav
et al. do not show any oscillations that would result from a
coherence not in quasi-equilibrium, suggesting this approach
is reasonable.41

For states involving a coherence (Sx, I1x, . . . ), the assump-
tion of quasi-equilibrium is clearly reasonable since the life-
time is on the order of 1 μs for the electron, and is on the order
of 1 ms for a nucleus. Also, we may do this for states includ-
ing a factor of Sz (SzI1z, SzI2x, . . . ), since the electron T1 is
on the order of 1 ms (although we will not initially make this
assumption for the electron polarization itself). This leaves
the states describing nuclear spin-order (I1zI2z, for example).
These spin-orders represent the buildup of polarization on one
nucleus that is dependent on the state of another. We do ex-
pect some of this behavior, because the state of one nucleus
will change the offset of the DNP condition on another. How-
ever, this effect is small, and therefore, the spin-orders should
also remain small. Nuclear spins that are distant from the elec-
tron should have relatively uniform polarization due to rapid
spin-diffusion, which will suppress spin-order. Spins near to
the electron will have less uniform polarization, although their
T1s will be shorter so that the lifetime of spin-order adjacent
to the electron will be reduced. Thus, it should be a reasonable
approximation to include spin-order in the quasi-equilibrium
assumption.

Under the quasi-equilibrium assumption, we set deriva-
tives of all states to zero, except the polarization states (Sz,
I1z, I2z, . . . ). We group the states in quasi-equilibrium into two
column vectors: σ Q contains the states in quasi-equilibrium
whose derivatives are zero, and σ P contains the polariza-
tion states. As such, we can rewrite Eq. (3) with the quasi-
equilibrium assumption(dσQ/dt = 0), and divide the super-
operator matrices H and � into sub-matrices HPP, HQP,
HQQ, �PP, �QP, and �QQ,⎡
⎣ d

dt
σP

0

⎤
⎦ = −

[
iHPP + �PP iH̃QP + �QP

iHQP + �QP iHQQ + �QQ

][
σP

σQ

]

+
[

�PP �QP

�QP �QQ

] [
σP,eq

σQ,eq

]
. (5)

We will assume that we can omit all cross-relaxation; thus, we
can eliminate the two matrices (�QP) that couple the polariza-
tion states to the states in quasi-equilibrium. It is also possi-

ble to eliminate HPP from Eq. (5), which describes coherent
transitions between polarization states, because there are no
terms in the Hamiltonian driving transitions directly between
these states. This results in Eq. (6), for which we discuss the
remaining terms,

⎡
⎣ d

dt
σP

0

⎤
⎦ = −

[
�PP iH̃QP

iHQP iHQQ + �QQ

][
σP

σQ

]

+
[

�PP 0
0 �QQ

] [
σP,eq

σQ,eq

]
. (6)

Omission of cross-relaxation implies that �PP and �QQ are di-
agonal matrices that contain T1 relaxation rates of all the spins
and relaxation rates of all the states in quasi-equilibrium, re-
spectively. The products −�PPσ P and �PPσ P, eq lead to T1

loss and recovery towards thermal equilibrium, respectively.
Although their magnitudes are much smaller, −�QQσ Q and
�QQσ Q, eq lead to loss and recovery towards thermal equilib-
rium of non-polarization states, respectively.

The matrix HQP contains terms that connect the polar-
ization states to the states in quasi-equilibrium, namely, the
non-secular electron-nuclear dipole couplings (HIS excluding
zz terms), the non-secular parts of the nuclear-nuclear dipolar
coupling (HII excluding zz terms), and the microwave Hamil-
tonian (HM).

All terms in the Hamiltonian appear in the matrix HQQ.
In the particular basis set we are using, the Zeeman terms (HS

and HI) will appear on the diagonal of HQQ. The diagonal
element of HQQ corresponding to a particular state will give
the frequency at which a particular state oscillates from real
to imaginary, which we will refer to as the phase oscillation
of that state. An important point: states with a slow phase os-
cillation are likely to play a major role in the DNP and spin-
diffusion processes. When there is transfer to a state with slow
phase-oscillation, that state does not rapidly invert its sign and
invert the transfer, and hence becomes populated (note that
population transfer can occur between two or more rapidly
oscillating states if there is a match of the frequencies, but in
our case we match to the polarization states which are not os-
cillating). Of course, high-order states that are less likely to
be accessed will not play a major role, even if their phase-
oscillation is slow.

This is a simplification of the resonance condition, since
many additional states may be involved in the resonance,
complicating the situation. The electron-nuclear and nuclear-
nuclear dipole couplings (HIS and HII) will connect the states
in HQQ, and as a result, resonance conditions will be a com-
plex function of many of the couplings. HM will also connect
the states in HQQ, although because the microwave is far off-
resonant, its effects will be less important.

We now rearrange Eq. (6) to produce Eq. (7) which shows
that the polarization states are linearly coupled under the
quasi-equilibrium assumption, and discuss several processes
that will occur during DNP as described by Eq. (7). For each
process, we will give a differential equation that shows how
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the process will manifest itself in our model,

σQ = −i(iHQQ + �QQ)−1HQPσP

+ (iHQQ + �QQ)−1�QQσQ,eq,

dσP

dt
= −(�PP + H̃QP (iHQQ + �QQ)−1HQP )σP

+�PPσP,eq + iH̃QP (iHQQ + �QQ)−1�QQσQ,eq.

(7)

1. Relaxation

The matrix �PP is diagonal and contains the longitudi-
nal relaxation rates of all spins in the system. With some re-
arranging of Eq. (7), we see the term �PP(σ P, eq − σ P) that
is responsible for all electron and nuclear T1 loss and recov-
ery. Relaxation loss of coherences occurs via the matrix �QQ.
Additionally, although small, there is some population of the
states in quasi-equilibrium, which contributes to polarizations
of the spins via the term iH̃QP

(
iHQQ + �QQ

)−1
�QQσQ,eq.

Without this term, the loss due to some conversion of polar-
ization to coherence would cause calculated polarizations to
fall short of the thermal equilibrium. Although important for
exact Liouville space calculations, this term only makes small
contributions here and will not be explicitly included in our
treatment. Therefore, the effects of T1 relaxation will appear
in our model as

dP
j

I

dt
= 1

T
j

1I

(
P

eq
I − P

j

I

)
,

dPS

dt
= 1

T1S

(
P

eq
S − PS

)
.

(8)

2. Spin-diffusion

The non-secular terms in the nuclear-nuclear dipolar
Hamiltonian will generate double- and zero-quantum coher-
ences between nuclei. This generation of the coherences oc-
curs via the matrix HQP, but once generated are governed
by the matrix iHQQ + �QQ. The diagonal elements of HQQ,
which result from HI, determine that double-quantum coher-
ences of spins j and k (I+

j I+
k + I−

j I−
k ) oscillate at a frequency

ω0Ij
+ ω0Ik

, so they will not become populated, whereas the
zero-quantum (I+

j I−
k + I−

j I+
k ) are nearly static and, thus, can

be populated. Once the zero-quantum coherence is generated,
polarization loss on nucleus j and polarization gain on nucleus
k will be proportional to the population of the coherence, as is
given by the matrix HQP. This inverse proportionality results
in conservation of polarization during spin-diffusion.

Transfer to many other states will affect the population of
the coherence. This is how the spin-diffusion barrier manifests
itself in this picture. The secular coupling (AjSzIjz + AkSzIkz),
appearing in the matrix HQQ, will transfer the zero-quantum
coherence, I+

j I−
k + I−

j I+
k , to Sz(I

+
j I−

k + I−
j I+

k ) with a rate
proportional to Aj − Ak, where the net oscillation frequency is
either higher or lower depending on the state of the electron.
As a result, it will be more difficult to transfer polarization

into this coherence and, therefore, inhibit spin-diffusion lead-
ing to the spin-diffusion barrier. In fact, without relaxation
of the states involved, spin-diffusion would be completely
quenched, but non-zero relaxation rates of I+

j I−
k + I−

j I+
k and

Sz(I
+
j I−

k + I−
j I+

k ) in �QQ give a finite rate of spin-diffusion.
Note that nuclear dipole couplings will also have the same
offsetting effect, although to a much smaller extent.

It is interesting to note that if the Sz state of the electron
either has a short lifetime or is rapidly modulated by the mi-
crowave field (near on-resonant radiation), then it will be dif-
ficult to populate Sz(I

+
j I−

k + I−
j I+

k ). This will help accelerate
spin-diffusion. The former case is described by Horvitz.55 The
latter case is electron-nuclear decoupling.22, 54, 56 We note that
our experiments are much too far off-resonant for electron-
nuclear decoupling to be significant. Therefore, Eq. (9) gives
the rate of spin-diffusion in our model, in a form that con-
serves polarization, and note that k

n,j

SD does not change signif-
icantly with microwaves on or off,

dP
j

I

dt
=

NI∑
n=1

k
n,j

SD

(
P n

I − P
j

I

)
. (9)

3. Off-resonant electron saturation

The microwave Hamiltonian (HM) generates electron co-
herence (i(S+ − S−)) via the matrix HQP. Once there, terms in
HQQ resulting from the electron-Zeeman (HS) and electron-
nuclear couplings (HIS) will govern the electron coherence’s
further evolution. The Zeeman (�ω0SSz) and secular cou-
plings (AjSzIjz) will combine to give an ensemble of oscil-
lation frequencies of the electron. For the solid effect, this
oscillation is fast, so the electron coherence will be rapidly
returned to electron polarization via HM in HQP. However,
there will be a small average population of the coherence,
and this will be subjected to electron T2 relaxation, resulting
in partial saturation of the electron. We note that aside from
transferring from i(S+ − S−) to various i(S+ − S−)Ijz states
(leading to offsets on the oscillation frequency), transfer out
of the electron coherence is slow compared to equilibration
of the electron coherence with the electron polarization. The
result is that off-resonant saturation of the electron is largely
decoupled from other processes. As such, we may then use
a single loss term to describe the off-resonant saturation of
the electron, as shown in Eq. (10). Note that k0 will vary with
the oscillation frequency of the electron; however, for a rela-
tively narrow EPR resonance, the variation in k0 will be small
enough that it can be approximated with a single value,

dPS

dt
= −k0PS. (10)

4. Solid effect DNP

The initial step of the solid effect matches that of
the off-resonant microwave irradiation, with a transfer of
electron polarization to electron coherence via the HQP

matrix. However, in this case the non-secular electron-
nuclear dipole coupling (Bj

2 Sz(I
+
j + I−

j )) in the HQQ matrix
drives the electron coherence to electron-nuclear zero- and
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double-quantum coherences. Assuming the double-quantum
DNP condition is satisfied (ωMW ≈ ω0S − ω0I), the double
quantum coherence (S+I+

j + S−I−
j ) has a phase oscillation

near zero, and therefore, this state becomes populated. The
microwave field ((ω1S/2)(S+ + S−)) then converts this to
iSz(I

+
j − I−

j ), and finally the non-secular electron-nuclear
dipole coupling (BjSz(I

+
j + I−

j )) in the HQP matrix gener-
ates nuclear polarization. Of course, as with the other pro-
cesses, this will be offset by secular couplings to other spins.

We should note that the solid effect does not generally
conserve polarization as spin-diffusion does. First, we already
noted there is off-resonant saturation of the electron. Sec-
ond, loss of nuclear polarization can occur when transferred
to iSz(I

+
j − I−

j ). This effect will occur without an applied
microwave field, and as a result, this will manifest itself in
the observed T1I so we do not need to further account for
it. Therefore, if we account for off-resonant saturation of the
electron, we can then also consider the solid effect to be polar-
ization conserving, and can represent the solid effect process
in our model as

dP
j

I

dt
= k

j
DNP(PS − P

j

I ),

dPS

dt
=

NI∑
n=1

kn
DNP

(
P n

I − PS

)
.

(11)

5. Higher order processes

One should note that under DNP conditions, the matrix
HQQ is not block-diagonal, meaning that every spin polariza-
tion is connected to every other spin polarization, although in
many cases very weakly. This results from transfers with more
steps inside the HQQ matrix, which can lead to interesting re-
sults. Hovav et al. have recently shown an example of this
with a chain of coupled spins.42 We will describe polariza-
tion transfer between spins via coupled differential equations.
However, one should note that although our formulas suggest
polarization transfers between spin pairs, this does not mean
additional spins are not involved in those transfers, and the
rate constants driving polarization between spin-pairs may be
larger or smaller due to these effects.

6. Rate equations

We can now write rate equations describing the polar-
ization transfer, as shown in Eq. (12), and discuss why this
formula is reasonable,

dP
j

I

dt
= k

j
DNP

(
PS − P

j

I

)+
NI∑
n=1

k
n,j

SD

(
P n

I − P
j

I

)

+ 1

T
j

1I

(
P

eq
I − P

j

I

)
,

dPS

dt
= −k0PS +

NI∑
n=1

kn
DNP

(
P n

I − PS

)+ 1

T1S

(
P

eq
S − PS

)
.

(12)

In Eq. (12), PS represents the electron polarization, and the
P

j

I represent the nuclear polarizations. T1S and T
j

1I give
the longitudinal relaxation. k

n,j

SD (P n
I − P

j

I ) describes nuclear
spin-diffusion, which in this form is polarization conserving
(kn,j

SD = k
j,n

SD ). Off-resonant saturation of the electron is given
by −k0PS. Finally, the solid effect is given by k

j
DNP(PS − P

j

I ),
which is also treated as polarization conserving, since we have
already accounted for off-resonant electron saturation.

We now examine Eq. (12) in limiting situations to cal-
culate enhancements and time constants for the polarization
transfer.

B. Implications of the rate equations

There are several unknown parameters in Eq. (12),
including the rate constants of polarization transfer and spin-
lattice relaxation. The polarization transfer rate constants are
for DNP driven polarization transfer from the electron to the
jth nucleus (kj

DNP) and spin-diffusion mediated transfer from
the jth to the kth nucleus (kj,k

SD ). The spin-lattice relaxation
rate constants are 1/T

j

1I for the ith nucleus and 1/T1S for the
electron. Finally, the rate constant for partial saturation of
the electron due to the off-resonant microwave field is k0. In
the absence of simplifying assumptions, these equations are
not particularly useful. We, therefore, consider the nuclear
polarization adjacent to the electron, and the average nuclear
polarization of bulk nuclei. The nuclei in the immediate
vicinity of the electron are few in number; in fact, for Finland
trityl, 1H ENDOR performed by Bowman et al. showed the
closest approach of a solvent proton to be 4.8 Å from the
electron,53 and on the border of the ∼5 Å diffusion barrier
observed by Wolfe. One may consider where the electron-
nuclear dipolar coupling and nuclear-nuclear dipole coupling
become similar in magnitude; however, if one considers pro-
tons ∼3 Å apart, this occurs at ∼25 Å away from the electron.
As a result, almost all nuclei in a sample with 40 mM radical
concentration would fall inside this boundary. Clearly, the
diffusion barrier must fall between these limits, but for the
moment we will not make assumptions about the distance.
We will, however, assume some nuclei are within the barrier.
For simplicity, we also assume these near neighbor protons
(using the parlance of Wolfe et al.) within the barrier are
equal in polarization, and describe them with a single polar-
ization term, P

(n)
I , where (n) refers to the nearby nuclei; their

DNP and spin-lattice relaxation rates are k
(n)
DNP and 1/T

(n)
1I ,

respectively. Note we have dropped the superscript j because
we are considering the near neighbor nuclei as equivalent.

As one moves away from the electron to the more distant
bulk nuclei, we encounter a polarization gradient, resulting
from a finite rate of spin-diffusion. This gradient will atten-
uate the DNP rate because transfer from electrons will be
inhibited by the higher nuclear polarization near the electron.
However, in many cases it is not difficult to account for this
polarization gradient. We will argue in a forthcoming paper
that it is not usually necessary to explicitly include spin-
diffusion. This is a result of the fact that when spin-diffusion
is sufficiently rapid, the polarization gradient (but not the
average polarization) equilibrates quickly relative to the
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total DNP buildup time, and the ratio of nuclear polarization
near the electron to the average nuclear polarization remains
approximately constant throughout most of the DNP buildup
processes. One may then use an effective rate constant, k

(b)
DNP,

which is some fraction of the average DNP rate constant,
and accounts for the attenuated rate of DNP. This constant
gives the rate of polarization transfer when multiplied by
the difference of the electron polarization and the spatially
averaged bulk nuclear polarization, allowing us to forgo
explicit inclusion of the polarization gradient in our models.
It is safe to use these assumptions if the initial DNP polar-
ization transfer is rate limiting and, therefore, has a strong
influence on the DNP enhancement, as one would see from
a dependence of enhancement on microwave power. Similar
arguments can be used to describe the transfer of polarization
from nearby nuclei to bulk nuclei, the effective rate given here
as kSD, where SD refers to the spin-diffusion process between
the nearby and bulk nuclei (this is different from k

n,i
SD because

this rate constant refers to a single nuclear pair, whereas kSD

refers to the net diffusion between nearby and bulk nuclei).
We will use the effective rate constants, kSD and k

(b)
DNP

(and will see in our experimental results that this is justified
by a strong power dependence). We also introduce N

(b)
I , N

(n)
I ,

and NS which are the number of bulk and nearby nuclei in
the sample that are being treated equivalently, and the number
of electrons in the sample, respectively. Using these assump-
tions, Eq. (12) can be rewritten as

dP
(b)
I

dt
= k

(b)
DNP

(
PS − P

(b)
I

)+ kSD
(
P

(n)
I − P

(b)
I

)
+ 1

T
(b)

1I

(
PI,eq − P

(b)
I

)
,

dP
(n)
I

dt
= k

(n)
DNP

(
PS − P

(n)
I

)+ N
(b)
I

N
(n)
I

kSD
(
P

(b)
I − P

(n)
I

)
+ 1

T
(n)

1I

(
PI,eq − P

(n)
I

)
,

dPS

dt
= −k0PS + N

(b)
I

NS

k
(b)
DNP

(
P

(b)
I − PS

)
+N

(n)
I

NS

k
(n)
DNP

(
P

(n)
I − PS

)+ 1

T1S

(
PS,eq − PS

)
.

(13)

It is the case that off-resonant saturation in our experiments
is not negligible, with k0 being as large as 0.31 ms−1, which
competes with 1/T1S of 0.71 ms−1. k0 can be calculated via
the Bloch equations57 for off-resonant irradiation as shown in
Eq. (14), if the field strength and T1S and T2S are known,

k0 = ω2
1ST2S

1 + �ω2
0ST

2
2S

. (14)

It is then possible to eliminate k0 from the equations,
and maintain the form of Eq. (13) via the definitions

in Eq. (15),

1

T ∗
1S

= k0 + 1

T1S

,

P ∗
S,eq = PS,eq

T ∗
1S

T1S

,

dPS

dt
= N

(b)
I

NS

k
(b)
DNP

(
P

(b)
I − PS

)+ N
(n)
I

NS

k
(n)
DNP

(
P

(n)
I − PS

)
+ 1

T ∗
1S

(
P ∗

S,eq − PS

)
. (15)

One should note that this causes the amount of polarization
available for DNP to decrease, if k0 is on the order of T −1

1S ,
since (T ∗

1S)−1 ≥ T −1
1S in all cases.

Here, we have separated the rate equations for the bulk
and near neighbor nuclear polarizations. Knowing the mech-
anism via which polarization transfers from electrons to bulk
nuclei is crucial in order to understand the primary processes
of DNP. Therefore, three cases of polarization transfer are
tested here and illustrated in Figure 1.

Case (A): As noted above, the experimental evidence
from Wolfe’s experiments suggests that the spin-diffusion
barrier is much thinner than is commonly assumed, and there-
fore, it is important to consider the limiting case where it van-
ishes. Thus, in case (A), we examine the possibility of ignor-
ing nearby nuclei, or equivalently treating them as part of the
bulk, and transferring polarization directly to the bulk. If nu-
clei adjacent to the electron are omitted from consideration,
then Eq. (13) simplifies to Eq. (16), which is commonly found
in the literature.27, 58–60 Here, we have dropped the superscript
(b) from kDNP and T1I, since we are no longer differentiating
between bulk and near neighbor nuclei,

dPI

dt
= kDNP (PS − PI ) + 1

T1I

(PI,eq − PI ),

dPS

dt
= NI

NS

kDNP (PI − PS) + 1

T ∗
1S

(
P ∗

S,eq − PS

)
. (16)

Assuming that the electron rapidly reaches quasi-equilibrium
(dPS/dt = 0) leads to Eq. (17),

1

TB

=
(

1

T1I

+ kDNP

1 + NI

NS
kDNPT

∗
1S

)
,

P ∞
I = TB

(
kDNP

1 + NI

NS
kDNPT

∗
1S

P ∗
S,eq + 1

T1I

PI,eq

)
,

PI (t) = P ∞
I (1 − exp (−t/TB)) . (17)

Here, we introduce TB, which is the time constant for the ap-
pearance of polarization due to microwave irradiation, and
P ∞

I , which is the polarization obtained on the nuclei in an in-
finitely long DNP experiment. Experimentally measuring T1I

and TB then allows one to calculate the expected enhancement
in this model, as given in Eq. (18),

ε∞ = TB

((
1

TB

− 1

T1I

)
P ∗

S,eq

PI,eq
+ 1

T1I

)
. (18)
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Under a specific set of experimental conditions determined
by the temperature and sample characteristics, there is an
upper bound on the enhancement that is less than |γS/γ I |.
It is a function of the number of nuclei per electron
(NI/NS), and the electron and nuclear spin-lattice relaxation
times (T1S, T1I). In Figure 2, we plot ε∞ calculated when
(NI/NS) kDNPT1S � 1 and k0 ≈ 0. We see that increasing
T1I increases the maximum possible enhancement as does in-
creasing the electron concentration, whereas increasing T1S

decreases enhancement. Although these parameters can be
difficult to vary independently, they may be optimized in a
sample by changing the electron and proton concentrations,
or by varying the temperature or the paramagnetic center to
alter T1S.

Case (B): In case (B), we examine a two-step model in
which the major path of polarization to the bulk is through
the nearby nuclei adjacent to the electron spin via a slow
spin-diffusion step. By requiring polarization to proceed
initially from the electron to the nearby nuclei, and then to
the bulk, we obtain Eq. (19), where we have dropped the

superscripts on kDNP since we only transfer to nearby nuclei,

dP
(b)
I

dt
= kSD

(
P

(n)
I − P

(b)
I

)+ 1

T
(b)

1I

(
PI,eq − P

(b)
I

)
,

dP
(n)
I

dt
= kDNP

(
PS − P

(n)
I

)+ N
(b)
I

N
(n)
I

kSD
(
P

(b)
I − P

(n)
I

)
+ 1

T
(n)

1I

(
PI,eq − P

(n)
I

)
,

dPS

dt
= N

(n)
I

NS

kDNP
(
P

(n)
I − PS

)+ 1

T ∗
1S

(
P ∗

S,eq − PS

)
. (19)

One may again assume a fast quasi-equilibrium of the
electron with the nearby nuclei, but it is not clear that
quasi-equilibrium between the nearby and bulk nuclei is rea-
sonable. Instead, we assume that the derivatives of the nearby
and bulk nuclear polarization have a proportionality, α, and
utilize this to solve for the buildup time (see Appendix for
derivation),

α = 1

2kSD

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
⎡
⎣ kDNP

1 + N
(n)
I

NS
kDNPT

∗
1S

+ kSD

(
N

(b)
I

N
(n)
I

− 1

)
+
(

1

T
(n)

1I

− 1

T
(b)

1I

)⎤⎦

+

√√√√√
⎡
⎣ kDNP

1 + N
(n)
I

NS
kDNPT

∗
1S

+ kSD

(
N

(b)
I

N
(n)
I

− 1

)
+
(

1

T
(n)

1I

− 1

T
(b)

1I

)⎤⎦2

+ 4
N

(b)
I

N
(n)
I

k2
SD

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

1

TB

= kSD (1 − α) + 1

T
(b)

1I

. (20)

Also, we may calculate the enhancement given in Eq. (21),

ε∞ = 1

PI,eq

kSDDT
(b)

1I + PI,eq

1 + kSD (1 − C) T
(b)

1I

. (21)
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FIG. 2. Maximum solid effect DNP enhancement, ε∞ as a function of the
product (NI /NS ) T1S at different values of the nuclear spin lattice relaxation
time T1I. Note that as the nuclear T1I increases, the maximum DNP enhance-
ment also increases.

The constants C and D are calculated, along with intermediate
constants A and B, and are given in Eq. (22),

A =
N

(n)
I

NS
kDNPT

∗
1S

1 + N
(n)
I

NS
kDNPT

∗
1S

,

B = P ∗
S,eq

1 + N
(n)
I

NS
kDNPT

∗
1S

,

C =
N

(b)
I

N
(n)
I

kSDT
(n)

1I

1 + N
(b)
I

N
(n)
I

kSDT
(n)

1I + kDNP (1 − A) T
(n)

1I

,

D = kDNPBT
(b)

1I + PI,eq

1 + N
(b)
I

N
(n)
I

kSDT
(n)

1I + kDNP (1 − A) T
(n)

1I

. (22)

In this case, we must also calculate the observed nuclear
longitudinal relaxation rate, T obs

1I , because it will be different
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from T
(b)

1I . This is because T
(b)

1I represents the bulk spin-lattice
relaxation, but does not include relaxation enhancement that

results from spin-diffusion to paramagnetically relaxed nuclei
adjacent to the electron,

αT1 =
−
(
kSD

(
N

(b)
I

N
(n)
I

− 1
)

+
(

1
T

(n)
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− 1
T
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(
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T
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))2
+ 4 N

(b)
I

N
(n)
I

k2
SD

2kSD
,

1

T obs
1I

= kSD(1 − αT1 ) + 1

T
(b)

1I

. (23)

Case (C): In case (C), we consider the buildup of nuclear
polarization if some electron polarization transfers to nearby
nuclei (which act as a polarization sink), and some transfers
directly to more distant bulk nuclei without being transferred
to the nearby nuclei first. In this case, we assume that polar-
ization transfer from the nearby nuclei to the bulk via spin-
diffusion is ineffective, a situation that may be created both
by fast spin-lattice relaxation of nearby nuclei and by the spin-
diffusion barrier,45, 47–51, 61–64
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(n)
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(P ∗
S,eq − PS). (24)

The nearby nuclei and electrons should both reach quasi-
equilibrium, and therefore, we may set both of their deriva-
tives to zero. However, for a clearer understanding of this pro-
cess, we start by simply setting dP

(n)
I /dt = 0. Writing P

(n)
I as

a function of PS then allows us to rearrange dPS/dt as shown
in Eq. (25),
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Defining a new T eff
1S and P eff

S,eq allows us to simplify the equa-
tions
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In this form, we see that the transfer to the nearby nuclei sim-
ply depletes the overall amount of polarization that is avail-
able from the electron, and also increases the effective elec-
tron relaxation rate. One may then evaluate the differential
equations in Eq. (26) in the same manner as was done for
Eq. (16), and obtain the buildup time and enhancement in
Eq. (27),

1
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⎛
⎝ 1
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⎞
⎠ .

(27)

III. EXPERIMENTAL

The power-dependence experiment seen in Figure 6
was performed with a 30 mW microwave source operating
at 139.5 GHz. All other experiments were recorded using
a 120 mW source operating at 140.0 GHz. A coiled TE011

resonator (Q ∼ 1000) was used to enhance the microwave
field strengths to obtain electron nutation frequencies of up to
3.5 MHz, and to also act as a solenoid NMR coil.65 Electron
nutation frequencies were determined using a two-pulse echo
where the second pulse was set to approximately the length of
a π -pulse, and the first pulse was incremented. A value of T1S

= 1.43 ms was measured for trityl radical using a saturation
recovery experiment, with a 3 ms saturation pulse and
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detected with a Hahn echo. T2S = 890 ns was measured by
incrementing the delay in a Hahn echo. This was performed
at several pulse lengths and powers, and the reported T2S was
extrapolated to infinite pulse length, thus removing dephasing
effects from electron-electron couplings. A double-balanced
1H, 13C RF circuit was used for RF irradiation and detection.
Balancing of the circuit has greatly decreased arcing between
the iris of the microwave resonator and the waveguide. 40 mM
OX063 trityl (a gift from K. Golman and J.-H. Ardenkjær-
Larsen of Nycomed Innovation AB, now GE Healthcare,
Malmö, Sweden) was used as a polarizing agent, being
dissolved in a 60:25:15 (by volume) 13C3-glycerol:D2O:H2O
solution for the experiments in Figure 6, and dissolved in a
60:40 (by volume) 13C3-glycerol:D2O solution for all other
experiments. All experiments were performed at 80 K. The
magnetic field was set to a position corresponding to the posi-
tive solid effect matching condition, ωMW = ω0S − ω0I, for 1H
polarization. Experiments were performed by first applying a
saturating train of pulses on both the 1H and 13C channels, fol-
lowed by microwave irradiation for some period, and finally
1H polarization was transferred to 13C via cross-polarization
(CP) (Refs. 66 and 67) and observed via echo-detection.68

For nuclear T1 measurements, a delay was placed between
the microwave irradiation period and the CP period, and the
polarization decay was measured rather than the buildup. Be-
cause our spectrometer can perform both the required NMR
and EPR measurements, all nutation frequencies, T1S and T2S,
and DNP buildups and enhancements were measured on the
same sample, and the sample was not removed between these
measurements. The exception to this statement is the power
dependence illustrated in Figure 6, which was recorded
earlier.

−100 −50 0 50 100
Δω/2π

On signal
Off Signal
(x20)

ε∞=94

1H CP CW

e-

13C CP

CW

π
2

2π
 3

2π
 3

16

(a)

(b)

FIG. 3. (a) Pulse sequence used for acquisition of DNP enhanced signals.
Following saturation of the 1H and 13C magnetization is a long CW mi-
crowave pulse that transfers electron polarization to 1H that is subsequently
transferred to 13C for observation. (b) Comparison of enhanced 13C signal
and the off-signal, recorded with recycle delays of 10 s and 18 s, respec-
tively. We scale both spectra to the amplitude that would be obtained with an
infinitely long recycle delay, based on buildup and T1 data.
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FIG. 4. Microwave field dependence of the DNP enhancement and buildup
times. The length of polarization time is varied to observe the magnitude
of the NMR signal, allowing one to determine the DNP buildup time, TB.
Measurement is taken at four power levels.

IV. RESULTS AND DISCUSSION

Figure 3 shows an enhancement of 94 obtained using the
full microwave strength (ω1S/2π = 3.5 MHz). We recorded
the on-signal with a 10 s recycle delay (RD) and the off-signal
with an 18 s recycle delay, and scaled the peak amplitudes
to give the relative intensity that would be obtained for an
infinite recycle delay on both on- and off-signal, where the
scaling factor is given by (1 − exp (tRD/TB))−1 where tRD is the
recycle delay, and TB the characteristic buildup time. When
the buildup time and T1 are different, as seen in Figures 4 and
5, a better measure of the improvement in signal-to-noise ratio
is sensitivity (S/N*t−1/2) rather than enhancement, which in
this case is a factor of 128. (One may take more factors into
account when calculating improvements from DNP, such as
dilution of the sample and bleaching due to the electron spin,
as done recently by Jannin et al.69) To our knowledge, this
is the best gain in sensitivity reported for contemporary DNP
experiments using the solid effect with 1H enhancement at
high fields (5 T). Additionally, we see in Figure 6 that as we
increase the microwave field strength, we do not yet observe
evidence of saturation of the solid effect.

We attribute our high enhancement to the use of a TE011

microwave cavity, which is a high-Q (∼1000), fundamental
mode structure and, thus, gives a large gain in the microwave
field strength. This suggests that if microwave field strength is
not a limiting factor, then DNP with a narrow line radical via
the solid effect could perform very well at high fields, since
it can give both large enhancements and decrease the recycle
delay. In contrast, in most cases high microwave fields have

20 40 60 80 100 120
t [s]

T1=13.7 s

FIG. 5. Nuclear T1 (T obs
1I ) measured by first polarizing 1H via DNP for

10 s, then turning off the microwaves for some period of time and observ-
ing the magnetization decay with a rate constant of 1

/
T obs

1I .
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FIG. 6. Microwave field strength dependence of the solid effect DNP en-
hancement, ε, after 10 s (relative to off-signal acquired with 10 s recycle
delay).

not been shown to decrease the buildup times when the cross
effect is the dominant DNP mechanism (a recent exception
can be found in Feintuch et al.21).

To gain more information about the DNP processes from
these experiments, we test each of the models discussed in
Sec. II and determine whether they fit the observed buildup
curves and enhancements. We first note that the strong power
dependence seen in Figure 6 shows that spin-diffusion is suf-
ficiently fast to use effective rate constants to account for po-
larization gradients due to finite rates of spin-diffusion. Thus,
the three models that we proposed that use this assumption are
valid. Crucial to testing these models are the buildup curves
shown in Figure 4, where we have incremented polarization
times at increasing microwave field strengths to observe the
DNP buildup time, TB, and enhancements. In Figure 5, we
show the data where we have polarized the sample for 10 s,
and then incremented a delay in order to observe T1 relaxation
(T obs

1I ).
Case (A): In this case, we have neglected any important

role of nearby nuclei. If this model is correct, then we may
calculate the value of ε∞ from TB and T obs

1I using Eq. (18).
Taking the values for TB in Figure 4, T obs

1I = 13.7 s from
Figure 5, and P ∗

S,eq from Table I, we calculate the value of
ε∞ for each field strength and show this in Figure 7 according
to model (A), using Eq. (18).

One can see that for each microwave field strength, the
observed enhancement is lower than the enhancement pre-
dicted by case (A). This indicates that case (A) is not suf-
ficient to describe the polarization transfer, and some addi-
tional process must be attenuating the total enhancement. Fits
to cases (B) and (C) explore whether this attenuation is due
to an inefficient transfer of polarization to the bulk via a spin-
diffusion step, or due to depletion of the electron polarization
by a transfer to isolated nearby nuclei, respectively.

TABLE I. Using the Bloch equations and T1S = 1.43 ms, T2S = 890 ns,
(see Sec. III for details) and �ω0S

/
2π = 212MHz, we calculate the electron

polarization available for DNP, P ∗
S,eq as defined in Eq. (4). Note that �ω0S

= ω0I.

ω1S/2π

(MHz)
P ∗

S,eq/PI,eq

3.5 459
2.5 539
1.5 611
1.1 632

50 100 150 200

50

100

150

200

ε∞
calc

ε ∞ob
s

FIG. 7. Calculated and experimentally observed solid effect DNP enhance-
ments for the observed buildup times shown in Figure 4 and using Eq. (7).
Note that the experimentally observed enhancements are significantly lower
than expected theoretically indicating that the model discussed as Case (A) is
not supported by the experimental data.

Case (B): We next consider the two-step model, for which
we have an initial DNP step to nearby nuclei, and then a slow
spin-diffusion step to bulk nuclei. In this case, we are con-
fronted with many parameters, and more complicated formu-
las, so we refer to computer simulations to find a solution.
We utilize the equations found in Sec. II and Appendixes A
and B to quickly calculate accurate T obs

1I and TB rather than
solving the differential equations numerically. One may note
that there are several unknown parameters, including kDNP,
kSD, T (b)

1I , T (n)
1I , T1S, N (b)

I /N
(n)
I , and N

(b)
I /NS , whereas we have

three known parameters, TB, T obs
1I , and ε∞. Therefore, we

must sample the space to obtain the range of acceptable so-
lutions. We fix T1S at 1.4 ms because N

(n)
I /NS and T1S always

appear together in our equations; thus, it is redundant to vary
both parameters. We take TB, T obs

1I , and ε∞ for full microwave
field strength (3.5 MHz) and use a simplex routine to fit cal-
culated values to these experimental measurements, using the
fit function given in Eq. (28). We weight the enhancements,
observed T1I and TB equally, and also apply a penalty if the
simulation uses a ratio of bulk nuclei to electrons that is less
than 1500 (for our sample, there are ∼1640 protons per elec-
tron),

σ = (εcalc
∞ − εobs

∞
)2 + (T calc

B − T obs
B

)2 + (T calc
1I − T obs

1I

)2
+1000

(
N

(b)
I

/
NS ≤ 1500

)
. (28)

We performed 1000 simplex fits using the MATLAB (Ref. 70)
fminsearch function, with random starting positions between
the upper and lower starting bounds specified in Table II

TABLE II. Parameters used to simulate the experimental data to Case (B)
model, and some of the results. The simulation was performed only for
the full microwave field strength (3.5 MHz) with the measured parameters
TB = 7.4 s, ε∞ = 94, and T obs

1I = 13.7 s.

N
(n)
I

NS

N
(b)
I

N
(n)
I

kDNP

(s−1)
kSD

(s−1)
T

(n)
1I

(s)
T

(b)
1I

(s)

Lower starting bound 1 1 0 0 0 0
Upper starting bound 1000 1000 1 2 30 300
Max. value for fit 4537 4.4 3.9 0.16 668.1 10.1
Min. value for fit 340 0.6 0.1 0.03 15.1 4.6
Example fit 519 3.0 1.0 0.03 45.6 9.3
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(the simplex fit does not prevent solutions from being out-
side the bounds). The error, σ , is evaluated for the three pa-
rameters and minimized. Of the 1000 simplex fits, 191 fits
have an rms <0.5. We tabulate the range of each of the
six parameters used for these 191 fits in Table II, and also
show one example fit. We see that it is possible to fit the
experimental data to this model; however, we find for all
solutions that T

(n)
1I > T

(b)
1I which is physically unreasonable

(Table II two right columns), as proximity to the electron
causes paramagnetic relaxation and results in a short T1I.45

Thus, the experimental data are not explained satisfactorily
with reasonable parameters by this model, and therefore, we
discard it.

Case (C): We finally consider the case for which some
polarization is transferred to nearby nuclei that act as a polar-
ization sink, and some polarization is transferred directly to
the bulk nuclei. Again, not all of the parameters are experi-
mentally determined; however, we can group the parameters
from Eq. (27) as keff

DNP and P eff
S,eq/PI,eq, and calculate these di-

rectly from T obs
1I , TB, and ε∞, as shown in Eq. (29),

keff
DNP = k

(b)
DNP

1 + N
(b)
I

NS
k

(b)
DNPT

eff
1S

= 1

TB

− 1

T obs
1I

,

P eff
S,eq

PI,eq
= 1

keff
DNP

(
ε∞
TB

− 1

T
(b)

1I

)
.

(29)

Calculated values for keff
DNP and P eff

S,eq/PI,eq are plotted in
Figure 8 for each of the four microwave powers for which
buildup curves were recorded, and also for the value of the
parameters at zero microwave power.

As seen in Figure 4, the enhancement increases and the
buildup time decreases with an increase in the microwave

0.06

40
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0 1 2 3

200

600

ε ∞

ω1S/2π [MHz]

(a)

(b)

(c)

X
/ P

I,e
q

k D
N

P
 [s

-1
]

ef
f

0

FIG. 8. Fit parameters for spin-diffusion barrier model. (a) Enhancement at
infinite time from the four buildup curves shown in Figure 4, and also for
buildup with no microwave power. (b) Values calculated for keff

DNP from ex-
periment. (c) Values calculated for P eff

S,eq (solid line) from experiment and
P ∗

S,eq (dashed line) from Bloch equations.

field strength, ω1S. This is consistent with an increasing value
of k

(b)
DNP, as one would expect. Furthermore, we see that the

calculation of keff
DNP yields a rate constant that does not in-

crease linearly, but in fact is accelerating upwards as the
microwave strength is increased. This additional gain in the
magnitude of the rate constant will lead to shorter buildup
times; however, we note that it is accompanied by a decreas-
ing value of P eff

S,eq, thus the actual enhancement may be at-
tenuated. We also calculate P eff

S,eqfrom the experiments, which
we show in Figure 8, and see that it is decreasing as we
increase the microwave field strength towards a minimum
value. Again, this is what we would expect to see, as k

(n)
DNP

increases with the microwave field strength, where eventu-
ally the polarization transfer to nearby nuclei becomes sat-
urated. Because all parameters calculated from the experi-
mental data behave as expected when the microwave field
strength is changed, we believe this model is presently the
optimal description of the polarization transfer in the solid
effect.

By comparing three different models to experimental
data, we have shown evidence that the primary mechanism
for enhancement of bulk nuclear polarization transfer is di-
rect transfer of electron polarization to bulk nuclei, rather
than transfer through the nearby nuclei via a slow spin-
diffusion step. However, we note that this does not ex-
clude slow diffusion from the nearby nuclei to the bulk, but
does suggest that there is no major contribution from this
process.

Our results have implications both on the consequence
of the spin-diffusion barrier, and the distance for which it
is possible to perform direct solid effect DNP transfers. We
first point out that we do not expect there to be a sharp drop
off in the rate of spin-diffusion; rather, the rate of diffusion
varies continuously. This means that to define a spin-diffusion
barrier, we must assign some cutoff for the rate. The nat-
ural choice for this would be that the diffusion rate from
a particular spin to the bulk is equal to that of the spin’s
rate of polarization transfer to the lattice; therefore, spins
in the barrier would contribute more towards polarization
loss than towards polarization of the bulk. This is essentially
the definition which Wolfe proposed.49 With this definition,
Wolfe showed that only about 12 protons or 19F nuclei near
a paramagnetic impurity were actually out of contact with
the bulk via spin-diffusion in a paramagnetically doped crys-
tal (Y(C2H5SO4)3 · 9H2O:Yb3+) or in CaF2, respectively.49–51

However, in the latter case, one proton at a distance of 5.2 Å
was on the border of the barrier, where the transfer rates
to the bulk and lattice were about the same. This is an im-
portant result, as it shows definitively that a spin-diffusion
barrier exists, albeit much smaller than in many previous
treatments.

The experiments of Bowman et al. show that the nearest
proton to the trityl center is at least 4.8 Å away.53 It seems
unlikely that between radii of 4.8 Å and 5.2 Å, there are suf-
ficiently many protons to account for the depletion of elec-
tron polarization seen in our experiments. There are some im-
portant differences, however, that could allow the barrier to
be larger in our experiments. The first difference is tempera-
ture. Wolfe actually shows that the proton found at 5.2 Å goes
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from being in strong contact with the bulk at 1.4 K to being in
strong contact with the lattice at 4 K, suggesting the diffusion
barrier is getting larger with higher temperature. This increase
ceases at 4 K; however, the reason for this is that both 1/T1I

and the diffusion rate constant to the bulk are linearly depen-
dent on the relaxation rate constant of the electron, 1/T1S .49

At higher temperature, where there is significantly more mo-
tion in the system, fluctuations in the dipolar field due to that
motion will contribute to nuclear spin-lattice relaxation. Near
the electron, these fluctuations in the field will be stronger,
but will not depend on the electron T1. As a result, the nu-
clear relaxation rate becomes faster. If the spin-diffusion rate
does not have as large of an increase, which is possible since
the rates no longer only depend on the electron T1, then the
spin-diffusion barrier will expand.

The second difference is that the number of bulk spins
in Wolfe’s experiment was large enough, and the T1 of these
spins was long enough that the polarization of the bulk could
be treated as fixed. In our experiments, the bulk spins become
polarized, and as a result the rate of transfer from nearby to
bulk decreases. Additionally, the polarization of a nucleus un-
der DNP conditions will be far from equilibrium, accelerating
its T1 relaxation. Using the definition that the barrier occurs
where the rate of diffusion to the bulk equals the spin-lattice
relaxation rate implies that with a decrease in the diffusion
rate and increase in T1 relaxation, the diffusion barrier will
also get larger. Because of the large depletion of available
polarization we observe and the differences between exper-
iments, we expect that our barrier is larger than the barrier
observed by Wolfe.

To gain insight into how many “near neighbor” nuclei
there are, we consider the value of P eff

S,eq in the case that

k
(n)
DNPT

(n)
1I � 1, which is shown in Eq. (30),

P eff
S,eq = P ∗

S,eq

(
1 + T1S

T
(n)

1I

N
(n)
I

NS

)
+ PI,eq

(
1 + T

(n)
1I

TS

NS

N
(n)
I

)
.

(30)

To obtain P eff
S,eq = 211, which is the case for

ω1S/2π = 3.5 MHz in Figure 8(c), one needs
(T1S/T

(n)
1I )(N (n)

I /NS) ≈ 1.2. This implies that if there
are ∼10 nuclei within the barrier, then T

(n)
1I must be ∼12 ms,

whereas if there are ∼100 nuclei within the barrier, then
T

(n)
1I is ∼120 ms; in other words, if the T

(n)
1I is longer,

more spins must be inside the diffusion barrier to account
for our observations. Since it is not clear what the rate of
paramagnetic relaxation is, though, it is difficult to determine
the “diffusion barrier” radius and the number of nuclei within
this radius with these experiments.

Our results also highlight the ability of the solid effect to
transfer polarization over large distances. Afeworki and co-
workers had shown that it is possible to transfer polarization
over 30–60 Å distances in 15.1 MHz 13C-DNP experiments.71

Our results support this finding since our model requires di-
rect transfer of polarization to bulk nuclei, and further demon-
strate that distant transfers are also possible at much higher
nuclear Larmor frequencies.

V. CONCLUSIONS

We demonstrate through fitting several models to exper-
imental data that polarization is primarily transported from
the electron directly to bulk nuclei. This is opposed to the po-
larization being transferred to nearby nuclei and then to the
bulk via a slow spin-diffusion step. Also shown is that the
polarization available from the electron is decreased because
of the polarization transferred to nearby nuclei that is then
rapidly relaxed away, which is described by P eff

S,eq. Finally, we
see that it is necessary to take into account experimental con-
ditions when considering the spin-diffusion barrier, as its ef-
fective size depends on relative rates that vary under different
conditions.

Additionally, DNP via the solid-effect, using the narrow
line trityl radical, has shown a gain in sensitivity of 128. En-
hancements are still increasing with microwave field strength
at our peak available power, suggesting that where higher field
strengths available, the solid effect can be a very useful DNP
mechanism because it both leads to large enhancements and
further boosts sensitivity by decreasing the buildup time.

ACKNOWLEDGMENTS

This research was supported by the National Institutes
of Health through Grants Nos. EB002804 and EB002026.
A.B.B. was partially supported by graduate research fellow-
ships from the National Science Foundation. B.C. was sup-
ported in part by the Deutsche Forschungsgemeinschaft (DFG
research fellowship CO802/1-1). We thank Loren Andreas for
valuable discussions.

APPENDIX A: SOLVING ONE-STEP TRANSFER
EQUATIONS WITHOUT FAST EQUILIBRIUM

Here, we present a solution of a general pair of differen-
tial equations at long times without assuming a fast equilib-
rium. We will solve the following two equations:

dPa

dt
= k(Pb − Pa) + 1

T1a

(Pa,eq − Pa),

dPb

dt
= nk(Pa − Pb) + 1

T1b

(Pb,eq − Pb).

(A1)

We begin by assuming that the first and second derivatives are
proportional for Pa and Pb, and have proportionality, α, that
is constant in time. We can solve for the necessary value of
α for time independence by requiring the second derivatives
have the same proportionality as the first derivatives – a con-
sequence of time independence of α,

dPb

dt
= α

dPa

dt
,

d2Pb

dt2
= α

d2Pa

dt2
.

(A2)

One can then take the second derivatives and, using the pro-
portionality constant of the first derivatives, solve for the value
of α by satisfying the second part of Eq. (A2),
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α
d2Pa

dt2
= α

(
k

(
dPb

dt
− dPa

dt

)
− 1

T1a

dPa

dt

)
= −

(
k(α − α2) + α

T1a

)
dPa

dt
,

(A3)
d2Pb

dt2
= nk

(
dPa

dt
− dPb

dt

)
− 1

T1b

dPb

dt
= −

(
nk (α − 1) + α

T1b

)
dPa

dt
.

Setting these two results equal, we obtain the following:

k(α − α2) + α

T1a

= nk (α − 1) + α

T1b

,

0 = kα2 +
(

k (n − 1) +
(

1

T1b

− 1

T1a

))
α − nk,

α =
−
(

(n − 1) k +
(

1
T1b

− 1
T1a

))
+
√(

(n − 1) k +
(

1
T1b

− 1
T1a

))2
+ 4nk2

2k
. (A4)

Given α, we may now solve for the buildup time, TB. Since
we know the proportionality of the first derivatives, we can
say the following:

Pb (t) = (P 0
b − αP 0

a

)+ αPa. (A5)

We do not offer analytic solutions to P 0
a and P 0

b , but note that
these are not necessary to solve to determine the buildup time,
TB. Plugging this equation into Eq. (A1), we can obtain the
buildup rate,

dPa

dt
= −

(
k (1 − α) + 1

T1a

)
Pa + k

(
P 0

b − αP 0
a

)
+ 1

T1a

Pa,eq. (A6)

Thus, the buildup rate is given by the coefficient of Pa,

1

Tb

= k (1 − α) + 1

T1a

. (A7)

We point out that once the time derivative of α goes to zero,
it forces all derivatives to have the same proportionality. Once
this condition is met for one time, it will continue to be met
for all times.

Now that we know how to solve a case where fast equi-
librium (dPa/dt = 0) is not a valid assumption, we apply this
technique to a system of three equations.

APPENDIX B: TWO-STEP DNP TRANSFER

For the two step transfer, it should be possible to ap-
proach both steps by assuming proportionality of the deriva-
tives; however, the solutions to the proportionality constants
will involve quartic equations, which do not have general so-
lutions as do quadratic equations. As an alternative, we take
the fast equilibrium solution of the electrons, and apply the
assumption of proportionality of derivatives for the second
(nearby to bulk nuclei) transfer step. We note that assumption
of fast equilibrium of the electrons in the one-step transfer is
in fact a very good solution, and we present the alternative

here only as example before presenting it in the more difficult
case of a two-step transfer.

To begin, we present the rate equations governing the
two-step transfer,

dP
(b)
I

dt
= kSD

(
P

(n)
I − P

(b)
I

)+ 1

T
(b)

1I

(
PI,eq − P

(b)
I

)
,

dP
(n)
I

dt
= kDNP

(
PS − P

(n)
I

)+ N
(b)
I

N
(n)
I

kSD
(
P

(b)
I − P

(n)
I

)
+ 1

T
(n)

1I

(
PI,eq − P

(n)
I

)
,

dPS

dt
= N

(n)
I

NS

kDNP
(
P

(n)
I − PS

)+ 1

T ∗
1S

(
P ∗

S,eq − PS

)
.

(B1)

In this case, we assume the electron reaches a fast equilibrium,
so that dPS/dt = 0; thus, PS(t) can be written as shown in
Eq. (B2),

Ps =
N

(n)
I

NS
kDNPT

∗
1S

1 + N
(n)
I

NS
kDNPT

∗
1S︸ ︷︷ ︸

A

P
(n)
I + P ∗

S,eq

1 + N
(n)
I

NS
kDNPT

∗
1S

.

︸ ︷︷ ︸
B

(B2)

We may now substitute this into dP
(n)
I /dt ,

dP
(n)
I

dt
= − kDNP

1 + N
(n)
I

NS
kDNPT

∗
1S

P
(n)
I + N

(b)
I

N
(n)
I

kSD
(
P

(b)
I − P

(n)
I

)

+ 1

T
(n)

1I

(
PI,eq − P

(n)
I

)+ kDNPB. (B3)

We now assume that dP
(n)
I /dt = αdP

(b)
I /dt where α is con-

stant in time. If we take the second derivatives of P
(n)
I and

αP
(b)
I , and substitute dP

(n)
I /dt = αdP

(b)
I /dt , we obtain the

following equations:
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d2P
(n)
I

dt2
= −

⎛
⎝ kDNP

1 + N
(n)
I

NS
kDNPT

∗
1S

α − N
(b)
I

N
(n)
I

kSD (1 − α) + α

T
(n)

1I

⎞
⎠ dP

(b)
I

dt
,

(B4)

α
d2P

(b)
I

dt2
= −

(
kSD (1 − α) α + α

T
(b)

1I

)
dP

(b)
I

dt
.

Setting these equal, we obtain Eq. (B5),

kDNP

1 + N
(n)
I

NS
kDNPT

∗
1S

α − N
(b)
I

N
(n)
I

kSD (1 − α) + α

T
(n)

1I

= kSD (1 − α) α + α

T
(b)

1I

α = 1

2kSD

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
⎡
⎣ kDNP

1 + N
(n)
I

NS
kDNPT

∗
1S

+ kSD

(
N

(b)
I

N
(n)
I

− 1

)
+
(

1

T
(n)

1I

− 1

T
(b)

1I

)⎤⎦

+

√√√√√
⎡
⎣ kDNP

1 + N
(n)
I

NS
kDNPT

∗
1S

+ kSD

(
N

(b)
I

N
(n)
I

− 1

)
+
(

1

T
(n)

1I

− 1

T
(b)

1I

)⎤⎦2

+ 4
N

(b)
I

N
(n)
I

k2
SD

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (B5)

Now that we have obtained α, we can calculate the buildup
rate, TB, by substituting P

(n)
I into dP

(b)
I /dt ,

dP
(b)
I

dt
=
(

kSD (1 − α) + 1

T
(b)

1I

)
P

(b)
I

+kSD
(
P

(n)
I,0 − αP

(b)
I,0

)+ PI,eq

T
(b)

1I

. (B6)

Again we can obtain the buildup time from the coefficient to
P

(b)
I ,

1

TB

= kSD (1 − α) + 1

T
(b)

1I

. (B7)

Another important point here is that due to the spin-diffusion,
the observed T1I will not be equal to T

(b)
1I . Rather, it is a func-

tion of the spin-diffusion, T
(b)

1I , and T
(n)

1I . We can obtain this
easily by setting kDNP = 0 in the above formulas, causing A
= 0 as well,

αT1 =
−
(
kSD

(
N

(b)
I

N
(n)
I

− 1
)

+
(

1
T

(n)
1I

− 1
T

(b)
1I

))
+
√(

kSD

(
N

(b)
I

N
(n)
I

− 1
)

+
(

1
T

(n)
1I

− 1
T

(b)
1I

))2
+ 4 N

(b)
I

N
(n)
I

k2
SD

2kSD
, (B8)

1

T obs
1I

= kSD
(
1 − αT1

)+ 1

T
(b)

1I

.

Finally, we calculate the equilibrium nuclear polarization, which is a trivial calculation, as it only requires setting all derivatives
to zero. We already have set dPS/dt = 0 in Eq. (B2). Here, we show the result of setting dP

(n)
I /dt = 0,

P
(n)
I =

N
(b)
I

N
(n)
I

kSDT
(n)

1I

1 + N
(b)
I

N
(n)
I

kSDT
(n)

1I + kDNP (1 − A) T
(n)

1I︸ ︷︷ ︸
C

P
(b)
I + kDNPBT

(b)
1I + PI,eq

1 + N
(b)
I

N
(n)
I

kSDT
(n)

1I + kDNP (1 − A) T
(n)

1I︸ ︷︷ ︸
D

. (B9)

Finally, we set dP
(b)
I /dt = 0 to obtain the nuclear enhancement,

ε = P
(b)
I (t = ∞) = kSDDT

(b)
1I + PI,eq

1 + kSD (1 − C) T
(b)

1I

. (B10)

Thus, we have obtained formulas for the observed buildup
time, TB, the enhancement, ε, and the observed nuclear re-
laxation time, T obs

1I .
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