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Alphaviruses are small, enveloped viruses,∼70 nm in diameter, containing a single-stranded, positive-sense, RNA genome. Viruses
belonging to this genus are predominantly arthropod-borne viruses, known to cause disease in humans. Their potential threat to
human health was most recently exemplified by the 2005 Chikungunya virus outbreak in La Reunion, highlighting the necessity
to understand events in the life-cycle of these medically important human pathogens. The replication and propagation of viruses
is dependent on entry into permissive cells. Viral entry is initiated by attachment of virions to cells, leading to internalization, and
uncoating to release genetic material for replication and propagation. Studies on alphaviruses have revealed entry via a receptor-
mediated, endocytic pathway. In this paper, the different stages of alphavirus entry are examined, with examples from Semliki
Forest virus, Sindbis virus, Chikungunya virus, and Venezuelan equine encephalitis virus described.

1. Alphaviruses

Alphaviruses are primarily arthropod-borne viruses (arbo-
viruses) within the family Togaviridae. Viruses belonging
to this genus are often classified as either New World
alphaviruses, or Old World alphaviruses, depending on the
geographic location from which they were originally isolated
[1]. New World alphaviruses, including Eastern equine
encephalitis virus (EEEV), Venezuelan equine encephali-
tis virus (VEEV) and Western equine encephalitis virus
(WEEV), typically cause encephalitis in humans and other
mammals, whereas Old World alphaviruses, such as Chikun-
gunya virus (CHIKV), O’Nyong-Nyong virus (ONNV),
Ross River virus (RRV), Semliki Forest virus (SFV), and
Sindbis virus (SINV), cause a fever, rash, and arthralgia
syndrome that rarely causes fatality [2]. While early studies
on alphaviruses focused on the prototypic SFV and SINV
due to their ability to grow to high titres in cell culture while
being nonpathogenic to humans, recent attention has been
directed towards investigating CHIKV. The 2005 outbreak
of CHIKV in La Reunion infected 40% of the 785,000
population, resulting in 250 fatal cases [3]. The reemergence

of CHIKV reiterates the potential threat that alphaviruses
pose to human health, and the necessity to understand
mechanisms involved in alphavirus biology.

2. Genomic Composition and Virion Structure

Alphaviruses are small, icosahedral-shaped, enveloped
viruses, approximately 70 nm in diameter [4–6]. The
alphavirus virion has a host-cell acquired lipid membrane
[6–9]. Embedded within this membrane are 80 spikes,
arranged in a T = 4 icosahedral [6, 9]. The glycoproteins
E1 and E2 associate as heterodimer subunits, which are in
turn assembled into trimers to form the spike protrusions
[9–11]. Both E1 and E2 are transmembrane proteins with
C-terminal cytoplasmic regions that are thought to interact
with the nucleocapsid [12, 13].

The alphavirus genome is a single-stranded, positive-
sense, RNA genome approximately 12 Kb in length [14,
15]. In addition to genomic length RNA, subgenomic RNA
encoding the structural proteins is also generated, with both
species containing a 5′ cap and a poly(A) tail [14–16]. The
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coding sequence consists of two large open reading frames
(ORFs); the N-terminal ORF encodes the nonstructural
polyprotein while the C-terminal ORF encodes the structural
polyprotein (Figure 1). The two polyproteins are cleaved
posttranslationally by viral (cysteine) and host proteases. The
four nonstructural proteins (nsP1 to 4) and their cleavage
intermediates are involved in RNA replication, with the five
structural proteins (C, E3, E2, 6K, E1) and their cleavage
intermediates required for viral encapsidation and budding
(Figure 1) [15, 17, 18].

The alphavirus nsP1 possesses both guanine-7-
methyltransferase and guanylyl transferase activities
required for capping and methylation of newly synthesized
viral genomic and subgenomic RNAs [19, 20]. During RNA
replication, nsP1 is thought to anchor replication complexes
to cellular membranes [21]. The alphavirus nsP2 exhibits
RNA triphosphatase/nucleoside triphosphatase, as well as
helicase activity within the N-terminal half [22–24] while
the C-terminal half encodes the viral (papain-like) cysteine
protease required for processing of the nonstructural
polyprotein [17, 25]. Crystal structures of the CHIKV
and VEEV nsP3 N-terminus indicate ADP-ribose 1-
phosphate phosphatase and RNA-binding activity [26] while
mutagenesis studies also reveal a role for nsP3 in modulating
pathogenicity in mice [27, 28]. The nsP4 protein functions
as the RNA-dependent RNA-polymerase (RdRp), containing
the catalytic GDD motif in the C-terminus [29]. It has also
been hypothesized that nsP4 acts as a scaffold for interaction
with other nsPs or host proteins via its N-terminal [30], with
adenylyl transferase activity also observed [31].

During nucleocapsid formation, the alphavirus capsid
protein (C) binds viral genomic RNA via N-terminal Arg,
Lys, and Pro residues [32, 33]. Mutagenesis studies iden-
tified a leucine zipper located within this region essential
for formation of nucleocapsid-like particles, presumably
mediating dimerization during virus assembly [34]. The
protein C-terminal is the serine-protease domain [18, 35],
which also contains a hydrophobic pocket for glycoprotein
binding adjacent to the substrate-binding site [12]. The role
of the structural protein E3 is currently undefined, and
appears to vary between different alphaviruses. While the
E3 protein of SFV is found associated with virions [36],
the E3 protein is not incorporated into virions of other
alphaviruses including CHIKV, SINV, or WEEV [37]. The
E2 glycoprotein of alphaviruses responsible for receptor
binding is embedded within the membrane courtesy of 30
C-terminal residues [38–40]. Amino acid changes identified
the E2 protein as a determinant of neurovirulence [41–43].
Site-directed mutagenesis identified an Tyr-X-Leu tripeptide
within the endodomain required for interaction with the
capsid protease domain [12, 13, 44], in concert with
conserved Cys residues that are modified by palmitoylation
[45]. 6K is a palmitoylated structural protein essential for
alphavirus particle assembly [46, 47], where it is thought to
influence transport to sites of virion assembly at the plasma
membrane, before being incorporated into virions in small
amounts [46, 48, 49]. The alphavirus 6K protein has also
been classified as a viroporin due to its ability to form cation-
selective ion channels and alter membrane permeability in
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Figure 1: Alphavirus genome. The alphavirus genome is single-
stranded, positive-sense RNA, encoding two open reading frames.
The nonstructural proteins are translated from the genomic RNA
while the structural proteins are translated from subgenomic 26S
RNA (promoter as indicated). The two polyproteins are cleaved by
viral cysteine, and host proteases to generate the individual protein
products. ∗denotes leaky stop codon.

bacterial and mammalian cells [50–52]. The E1 protein is
the alphavirus fusion protein [53, 54], with a fusion peptide
residing within a highly conserved hydrophobic domain
[38].

3. Alphavirus Life-Cycle

Upon entry, alphavirus particles undergo disassembly, releas-
ing genomic RNA into the cytoplasm of infected cells
(Figure 2). The viral genome is then translated from two
ORFs to generate the nonstructural (P1234) and structural
polyproteins [55]. Early in infection P1234 is cleaved in
cis between nsP3 and nsP4 to yield P123 and nsP4 [56,
57]. P123 and nsP4 form an unstable initial replication
complex, which is able to synthesize negative-strand RNA
[1, 58–60]. Cleavage of P123 to nsP1 and P23 can only
occur in trans, and only at a sufficiently high concentration
of the polyprotein. The polyprotein products nsP1, P23,
and nsP4 form a replication complex within virus-induced
cytopathic vacuoles (CPV I) that are active in negative-strand
synthesis, as well as genomic RNA synthesis, but not in
subgenomic RNA synthesis [60–64]. After complete cleavage
to nsP1, nsP2, nsP3, and nsP4, negative-strand synthesis is
inactivated and the now stable replication complex switches
to synthesis of positive-strand genomic and subgenomic
RNA [58, 59]. In most alphaviruses, a leaky termination
codon is present following nsP3 (indicated in Figure 2),
with read-through estimated to occur with only 10–20%
efficiency [65]. This leads to an excess of P123 nonstructural
polyprotein compared to P1234, and a depletion of nsP4
relative to the other nsPs. Further diminishing intracellular
nsP4 is a destabilizing tyrosine residue at the N-terminal
which signals rapid degradation by the N-end rule pathway
[66]. It is worth noting that expression of a small fraction
of nsP4 in cells is relatively stable, presumably in the form
of replication complexes, suggesting nsP4 is only degraded
when in excess [66]. Removal of the destabilizing Tyr residue
leads to poor RNA replication [67].

Cleavage of the structural polyprotein occurs cotransla-
tionally, beginning with the autoproteolytic cleavage of the
capsid protein from the remainder of the polyprotein [18,
68, 69]. C protein is then available to associate with newly
synthesized RNA, recognizing specific packaging signals in
the 5′ half of the genome, such that only full-length genomic
RNA is packaged into nucleocapsid-like particles [32, 33].
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Figure 2: Alphavirus life-cycle. Alphavirus entry into cells is
initiated by receptor-binding, followed by clathrin-mediated endo-
cytosis. Fusion to endosomal membranes transports nucleocapsid
(NC) into the cytoplasm, where RNA is released after disassembly.
Genomic RNA is used for both translation of proteins from
genomic and subgenomic (26S) RNA, and transcription of nascent
(+)RNA via a (−)RNA template. The structural proteins translated
from 26S RNA encapsidate nascent genomic RNA before budding
from cells, and eventual release.

The E3 protein acts as a signal sequence for insertion of
the remaining polyprotein into the endoplasmic reticulum,
where it is processed by host signal peptidase [18, 70].
Similarly, the 6K protein acts as a signal sequence for the
downstream processing of the E1 protein [51].

Upon synthesis, the E2 glycoprotein precursor, PE2
(p62 in SFV), and E1 glycoproteins interact with each
other (preferentially in cis) to form heterodimers [71–73].
These heterodimer complexes are then transported from
the endoplasmic reticulum to the cell surface via the Golgi
complex [74–76]. At a late stage of transport, the PE2
precursor is cleaved in its lumenal domain by host furin-like
protease to generate mature E2 and E3 proteins [74, 76, 77].
This cleavage induces a conformational change that weakens
the E1-E2 interaction in the spike heterodimer [11], priming
the fusion peptide for activation upon exposure to low pH
[78]. Interactions between the C protein and the cytoplasmic
domain of the E2 protein drive the budding process, with E1-
E2 heterodimers forming an envelope around nucleocapsid-
like particles [12, 79, 80]. Upon release from cells, virions
acquire a membrane bilayer derived from the host cell plasma
membrane [6–9].

4. Receptor-Mediated Endocytosis

Viruses enter cells at the plasma membrane, either by
fusion with membrane components at the cell surface,
or by receptor attachment and internalization, followed
by fusion with intracellular membranes of endocytic vesi-
cles. Receptor-mediated endocytosis is the predominant
mode of entry, most often mediated by the formation of
clathrin-coated pits, and the subsequent transport to early
endosomes, where the low-pH environment triggers fusion
[81]. Alternatively, some viruses utilise clathrin-independent
pathways to gain entry into cells. The caveolar/raft pathway
transports internalised virus to neutral-pH caveosomes,
before redistribution to the ER. There are also a number of

clathrin-independent, caveolin-independent pathways that
viruses use for cellular entry that rely on small GTPases,
although these are not well understood [81].

The entry of alphaviruses into cells is facilitated by
interaction of the spike E2 component with protein receptors
on the surface of target cells (Figure 2) [40, 82]. A 63 KDa
protein on the surface of avian cells was the first alphavirus
receptor observed, although its identity was not determined
[83]. Antibodies generated against BHK membrane proteins
were screened to identify the 67 KDa laminin receptor as
a high-affinity attachment receptor for SINV infection in
mammalian cells [84]. Subsequent binding experiments of
SINV to dendritic cells was shown to be SIGN dependent,
with DC-SIGN and L-SIGN acting as receptor molecules
[85]. Heparan sulfate, a cell surface glycosaminoglycan, may
also act as an attachment receptor for alphaviruses [86–88].
However, the affinity of alphavirus binding to heparan sulfate
seems to be acquired after serial passaging in cell culture,
with field isolates displaying much lower affinity for heparan
sulfate than laboratory-adapted strains [86–88].

Upon attachment to cellular receptors, alphaviruses are
rapidly internalized and delivered to endosomes (Figure 2)
[89–91]. The formation of clathrin-coated vesicles requires
dynamin, a ∼100 KDa protein that facilitates the budding
of clathrin-coated pits, leading to the formation of coated
vesicles, in a GTP-dependent manner [92]. When dominant-
negative dynamin mutants specifically blocking the forma-
tion of clathrin-coated pits and vesicles were expressed [93,
94], entry of the alphaviruses CHIKV, SFV, and SINV were
prevented [89, 95]. Similarly, a dominant-negative mutant of
Eps15, another mediator of clathrin-dependent endocytosis,
prevents entry of VEEV into cells [96]. Investigations
performed using dominant-negative mutant forms of Rab5
and Rab7, genes important in endocytic trafficking to the
early and late endosomes, respectively [97, 98], indicate that
both SFV and VEEV are transported to early endosomes
whereas only VEEV is transported to late endosomes, before
fusion with target membranes [96, 99].

While the entry of alphaviruses is widely accepted to
be dependent on clathrin-mediated endocytosis and fusion
with endosomal membranes, the ability of alphaviruses to
enter host cells via alternative mechanisms has also been
reported. Supporting this hypothesis is an early study on
SINV entry that showed the translation of viral RNA in the
cytosol of cells, even when infected cells were treated with the
weak bases chloroquine and ammonium chloride, suggesting
infection involving acidic endosomes can be circumvented
[100, 101]. More recently, the infection of various cell lines
by SINV was shown to proceed in the absence of low-
pH-induced endocytosis, indicative of entry via a clathrin-
independent pathway [102–104]. Similarly, SFV infection of
BHK and CHO cells following either normal virus fusion
in endosomes, or experimentally induced fusion at the cell
surface, highlighted the ability of alphaviruses to infect
cells by an alternative pathway. Although CHO cells could
only be infected following the endocytic pathway, BHK
cells were able to be infected efficiently following fusion in
either endosomes or at the plasma membrane, as evidenced
by viral RNA and protein synthesis [105]. In agreement
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with this was the finding that SFV could be found inside
noncoated pits and vesicles [106]. When siRNA was used to
knock-down clathrin heavy chain, CHIKV infection of both
HEK293 and HeLa cells was unaffected [107]. Interestingly,
experiments using anti-clathrin antibodies showed only a
∼60% block in SFV infection [90]. This partial block in
infection could mean that either the antibodies do not
inhibit the clathrin pathway completely, or that SFV can
also enter through an alternative pathway that does not
require clathrin. Such a scenario may also be true for
CHIKV, where dominant-negative mutants of Eps15, Rab5,
and drug inhibitors of endocytosis, showed only partial block
in infection, supporting the hypothesis that several pathways
are hijacked by CHIKV to penetrate into target cells [107].

5. Fusion

Early studies revealed the E1 protein of alphaviruses to
be the fusion protein [38, 53, 54, 108–110]. Furthermore,
removal of the E2 protein by protease digestion suggested
that the E1 protein alone is sufficient for membrane fusion
to occur [111]. However, fusogenic activity of the E1 protein
is suppressed by interaction with the E2 protein [11]. Within
endosomal vesicles, the E1-E2 heterodimer undergoes irre-
versible conformational changes upon exposure to pH of
∼6 or below [91, 109, 112–115]. This low-pH environment
liberates the E1 subunit from association with the E2 subunit,
allowing the rearrangement to a homotrimeric complex
active for fusion [108, 109, 116, 117]. E1 homotrimers
associate with the target membrane via membrane insertion
of the hydrophobic fusion peptide to form pores in both
cellular and viral membranes for release of nucleocapsid
into the cytoplasm (Figure 2) [111, 118, 119]. The fusion
process occurs very rapidly, before alphaviruses are at
risk of lysosomal degradation [115]. Treatment of cells
with lysosomotropic weak bases chloroquine, concanamycin,
ammonium chloride, bafilomycin, or monensin neutralizes
the pH in endosomes, preventing fusion with membranes
[91, 96, 99, 107, 120, 121].

In addition to a dependence on low pH, the fusion
of alphaviruses to membranes requires the presence of
cholesterol [107, 108, 114, 115, 122–125]. Small amounts
of sphingolipid are also required in target membranes for
an as yet unidentified role during the fusion reaction itself
[114, 123, 126]. Cholesterol appears to be necessary for the
hydrophobic interaction of the alphavirus E1 ectodomain
with the target membrane leading up to fusion [113, 127].
However, this cholesterol-dependence differs amongst the
alphaviruses; while the entry of CHIKV, SFV, and SINV
is inhibited by the depletion of cholesterol, VEEV is still
able to enter cells under similar conditions [96, 107]. It
was proposed that variations between the envelope proteins
of VEEV compared to other alphaviruses may account for
these observed differences [125]. As predicted, cholesterol
dependence of SFV and SINV were attributed to a specific
residue within the E1 protein at position 226 [125]. Viruses
containing an E1-P226S mutation are more efficient at fusion
in the absence of cholesterol compared to wild-type, with

the E1 protein converting to the active fusion homotrimer
more readily [128, 129]. Sequence analysis of the VEEV E1
protein shows that this mutation is already present [96]. It
has been shown that the membranes of early endosomes are
enriched in cholesterol whereas late endosomes are depleted
of membrane cholesterol [130, 131]. This has been used to
explain the differences in cholesterol requirement, since SFV
appears to undergo fusion in early endosomes while VEEV
traffics to late endosomes, for fusion [96].

6. Nucleocapsid Disassembly

Due to steric hindrance, only a small fraction of the E1 fusion
protein molecules present on the surface of an individual
virus particle would be able to participate in fusion reactions
within the endosomal membrane [132]. It has been proposed
that the remaining fusion proteins that have not reacted
with the target membrane may fold back and react with
the viral membrane in which they are anchored, leading
to the formation of ion-permeable pores [132]. Together,
these processes allow the delivery of nucleocapsid into the
cytoplasm (Figure 2), and a flow of ions through the target
membrane.

The formation of ion-permeable pores by viral proteins
during entry has been found with other viruses such as
influenza virus, with the M2 protein implicated in the flow
of protons from the endosome at low pH [133]. A similar
function for the alphavirus E1 protein has been proposed
[111, 119]. Indeed, the accumulation of viral structural
proteins in the cell membrane during virus multiplication
alters the permeability of the membrane at low pH late
in infection [118, 134]. When membrane permeability of
cells incubated with SINV and SFV at low pH was assessed,
voltage measurements confirmed the formation of ion-
permeable pores [135]. The resulting flow of protons from
the endosome into the cytoplasm through this pore would
lead to a region of low pH, consistent with the discovery
that a low-pH environment strongly stimulates disassembly
of alphavirus nucleocapsid [136].

Fusion of the viral envelope with the endosomal
membrane releases nucleocapsid into the cell cytoplasm
(Figure 2). Uncoating of alphavirus nucleocapsids occurs
almost immediately (∼1 minute) after their penetration into
the cytoplasm [137]. 60S ribosomal RNA interacts with
the C protein, facilitating uncoating of the nucleocapsid
and release of viral RNA for initiation of protein synthesis
(Figure 2) [55, 137–139].

7. Conclusion

The study of alphaviruses has provided a number of insights
relating to virus entry. In fact, reports on SFV were the
first to demonstrate entry of viruses via receptor-mediated
endocytosis, and the use of clathrin-coated vesicles [91]. The
entry pathway of alphaviruses has been further elucidated,
providing a greater understanding of events such as virus
trafficking, fusion, and the release of genomic material into
cells. However, there remain a number of questions that
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are yet to be resolved. One area for investigation is the
identification of receptors used in alphavirus attachment to
cells. So far, receptors have only been identified for SFV
and SINV entry into cells. Isolating receptors could lead
to the development of novel antivirals targeting alphavirus
entry. Another topic for exploration is the use of alternative
pathways for alphavirus entry into cells. There is growing
evidence that alphaviruses are able to infect cells independent
of clathrin-mediated endocytosis, either by employing a
different entry pathway altogether, or being able to enter cells
using several pathways. In the case of CHIKV, entry has also
been shown to occur in the absence of cav-1 (required for
caveolar vesicle formation) [140]. It may be possible that
alphaviruses such as CHIKV are able to utilize a dynamin-
dependent pathway reliant on the small GTPase RhoA [141].
This pathway does not involve clathrin, caveolae, or Eps15,
yet is strongly inhibited by knock-out of dynamin, RhoA,
or the depletion of cholesterol or sphingolipids, concurring
with previous work. It is hoped that the continued study of
alphaviruses will shed new light on the processes involved in
entry.
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processing of Semliki Forest virus-specific non-structural
polyprotein,” Journal of General Virology, vol. 72, no. 7, pp.
1627–1633, 1991.
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