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Abstract

Multiple DNA repair pathways are involved in the orderly development of neural systems at distinct stages. The
homologous recombination (HR) pathway is required to resolve stalled replication forks and critical for the proliferation of
progenitor cells during neural development. BCCIP is a BRCA2 and CDKN1A interacting protein implicated in HR and
inhibition of DNA replication stress. In this study, we determined the role of BCCIP in neural development using a
conditional BCCIP knock-down mouse model. BCCIP deficiency impaired embryonic and postnatal neural development,
causing severe ataxia, cerebral and cerebellar defects, and microcephaly. These development defects are associated with
spontaneous DNA damage and subsequent cell death in the proliferative cell populations of the neural system during
embryogenesis. With in vitro neural spheroid cultures, BCCIP deficiency impaired neural progenitor’s self-renewal capability,
and spontaneously activated p53. These data suggest that BCCIP and its anti-replication stress functions are essential for
normal neural development by maintaining an orderly proliferation of neural progenitors.
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Introduction

Deficiencies of distinct DNA repair pathways affect specific cell

populations at different developmental stages, thus cause various

degrees of neural degeneration and developmental disorders [1–

3]. Early in development, when proliferation of progenitor cells is

critical for neurogenesis, the homologous recombination (HR)

machinery is crucial to ensure proper completion of DNA

replication with high fidelity, thus an orderly development.

Among post-mitotic cell populations, the non-homologous end

joining (NHEJ) pathway may be critical to maintain genome

stability and orderly differentiation. In the mature neural tissues

when there is little cell proliferation or differentiation, accumula-

tion of oxidative damage is a major obstacle for normal function.

In this case, DNA repair pathways relieving oxidative damage

(such as excision repair) are critical to prevent neurodegenerative

syndromes [4,5].

BCCIP was originally known as a BRCA2 and CDKN1A

(Cip1/waf1/p21) interacting protein, and it plays a wide range of

regulatory roles in the HR pathway, cytokinesis, and cell cycle

regulation [6–16]. In addition, BCCIP may have functions in

neurite growth, cell mobility, and nuclear and cytoplasmic

shuttling [17–19]. Because the HR machinery is critical for neural

development, we hypothesized that BCCIP plays a role in neural

development. In this study, we found that BCCIP deficiency

causes proliferation arrest among progenitor cells, leading to

severe neurogenesis defects, including: microcephaly, ataxia,

cerebral and cerebellar development disorders, and growth

retardation. These observations suggest a key role of BCCIP in

neural development.

Results

Establishment of a glial fibrillary acidic protein promoter
driven (GFAP) Cre-mediated conditional BCCIP
knockdown mice

In humans, two major alternative splicing products of BCCIP

(BCCIPa and BCCIPb are expressed, with BCCIPb being the main

isoform. However, it appears that mouse tissues expressed only the

BCCIPb isoform. To investigate the functions of BCCIP in

neurogenesis, we used a conditional BCCIP knockdown transgenic

mouse line [16], designated LoxPshBCCIP. As briefly illustrated in

Figure 1A, in this model, the expression of Cre-recombinase enables

the expression of a short hairpin RNA against mouse BCCIP

(shBCCIP). We crossed the LoxPshBCCIP mice with heterozygous

GFAP-Cre+/2 transgenic mice, which express the Cre recombinase

under the control of the human glial fibrillary acidic protein

promoter (GFAP) [20]. The GFAP promoter becomes active at

around embryonic day 13.5 (E13.5) in multi-potential stem cells in

multiple regions during embryogenesis, including neuron and glial

progenitors [20]. However, in adult mice the GFAP-Cre recombi-

nase is expressed mainly in glial cells [20]. After crossing

LoxPshBCCIP+/+ with GFAP-Cre+/2 transgenic mice, we obtained

67 mice with a 32:35 ratio between LoxPshBCCIP+/2;GFAPCre2/2

and LoxPshBCCIP+/2;GFAPCre+/2 (hereafter referred as BCCIP-

CON and BCCIP-CKD, respectively) among 7 liters. Effective

BCCIP knockdown and Cre-mediated reconstitution of the

functional U6 promoter in BCCIP-CKD mice was verified by

Western blots of brain protein extracts (Figures 1B) and by

genotyping on genomic DNA from brain extracts (Figure 1C).
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Growth retardation, ataxia, and balance disorder of
BCCIP-CKD mice

The BCCIP-CKD mice had similar body weight as their BCCIP-

CON littermates at birth. However, postnatal growth delay of

BCCIP-CKD mice became evident in the first few weeks. By

weaning (age P21), the body weight of BCCIP-CKD mice reduced

to ,70% of the BCCIP-CON mice (Figures 2A). After age P14, all

BCCIP-CKD mice displayed various degrees of walking disorders

and unkempt coats, which are likely caused by poor motor

coordination. All BCCIP-CKD mice show balance disorder,

tremors, and akinesis. About 60% BCCIP-CKD mice had severe

ataxia (see Supplement Movie S1), and could not pass the balance

beam test at age P21. Because those symptoms implicate motor

neuron defects, we assessed motor reflex by the hind-limb

extension test. In this test, an extension reflex of the hind-limbs

(Figure 2B, top panel) can be observed when a normal mouse is

suspended by its tail. When BCCIP-CKD mice were suspended by

its tail, 80% of BCCIP-CKD mice displayed hind-limb retraction in

a crossed posture (Figure 2B, bottom panel).

The BCCIP-CKD mice did not show a significantly shorter

lifespan compared with BCCIP-CON mice. While most of the

ataxic symptoms among BCCIP-CKD mice persist between the

ages of P14 and P28, which is the time period critical for the

development of motor neurons and dendritic growth in the

cerebellum, we noticed a gradual relief of the severe ataxic

symptoms after age P42. By age P56, the severe ataxic symptoms

were not noticeable, although the BCCIP-CKD still failed the

balance beam test throughout their life. Coincidental with the

relief of ataxia symptom around age p28, the BCCIP-CKD mice

began to gain weight. After P56, the BCCIP-CKD mice body

weight was similar to that of the BCCIP-CON mice (Figure 2C).

To elucidate the cause of these abnormalities among BCCIP-

CKD mice, we surveyed gross brain development. At postnatal day

21 (P21), the brain weight of BCCIP-CKD mice was significantly

reduced compared to littermate BCCIP-CON mice, GFAP-Cre mice,

and wild type mice (Figures 3A and 3B). The reduction in brain

size of BCCIP-CKD mice was observed as early as postnatal day 1

(P1), and throughout adulthood it remained at approximately 50%

of the littermate control brain after postnatal day 14 (P14)

(Figure 3C). In contrast, a relatively mild difference was observed

on body weight (Figure 2C). The affected regions in BCCIP-CKD

brain include both cerebrum and cerebellum (Figure 3A).

Widespread defects in neurogenesis among BCCIP
deficient mice

Between embryonic day 10 (E10) to postnatal day 2 (P2),

various regions of the mouse brain, including the cerebral cortex,

the midbrain, and the cerebellum, undergo rapid expansion [21].

The hGFAP promoter actively drives expression of the Cre

recombinase at around E13.5 in multi-potential neural stem cell in

the afore-mentioned regions [20]. To understand the cause of

microcephaly, we performed histological analyses on cerebellum

Figure 1. GFAP-Cre mediated conditional knockdown of BCCIP. (A) shows the strategy of LoxP-Cre mediated conditional expression of
shRNA against mouse BCCIP gene. The U6 promoter is split and inactivated by the insertion of a LoxP-neo-LoxP fragment (upper panel). Upon
expression of Cre-recombinase, the deletion of the Neo cassette between the LoxP sites reconstitutes a functional U6 promoter that drives the
expression of the shRNA. (B) BCCIP protein levels from a representative litter of 7 mice resulting from breeding between LoxPshBCCIP+/+ and GFAP-
Cre+/2. The brain tissues from 4 BCCIP-CON and 3 BCCIP-CKD mice at age P1 were used for DNA and protein extractions. Shown are Western blots of
the brain protein extracts, and b-actin (loading control). (C) genotyping of the same litter of mice as panel B. The upper two panels are results from
tail DNA to verify the presence of the split U6 promoter LoxPshBCCIP and the GFAP-Cre cassettes. The bottom panel is results verifying the
reconstituted U6-shBCCIP cassette using DNA from the brain tissue of the mice. Five lanes (a, b, c, d, and e) of controls are also shown: a - DNA from
the BCCIP-CON mice (LoxPshBCCIP+/2;GFAPCre2/2) ; b – DNA from a BCCIP-CKD mouse (LoxPshBCCIP+/2;GFAP-Cre+/2); c – DNA from a GFAPCre mouse;
d - DNA from wild type mouse; and e - water as a negative PCR control. As shown here, all 7 (No. 1-7) littermates contain the original split U6 cassette
in their tail DNA. But only the littermates (No. 5-7) with the GFAPCre cassette have reconstituted U6-shBCCIP cassette in the DNA extracted from brain
tissues at P1.
doi:10.1371/journal.pone.0030638.g001

BCCIP in Neurogenesis

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e30638



Figure 2. Growth retardation, ataxia, and motor reflex defects in BCCIP-CKD mice. (A) shows a representative pair of littermates at age P21.
(B) shows a typical motor reflex response by control (top panel) and BCCIP knockdown mice (bottom panel) at age P21. (C) The body weight of
control (BCCIP-CON) and knockdown (BCCIP-CKD) mice were measured at various ages. Shown are averages (+/2 standard deviation) of male and
female mice at different ages. The n-values represent the numbers of the mice at each age. *: p,0.05; **: P,0.01; ***: P,0.001.
doi:10.1371/journal.pone.0030638.g002

Figure 3. GFAP-Cre mediated conditional knockdown of BCCIP causes microcephaly. (A) a representative set of brains from wild type (WT),
GFAP-Cre, BCCIP-CON, and BCCIP-CKD mice at P21, illustrating the reduced cerebrum and cerebellum in the BCCIP-CKD mice. (B) the brain weight of
wild type (WT), GFAP-Cre, BCCIP-CON and BCCIP-CKD mice at age P21. (C) brain weight of BCCIP-CON (white bar) and BCCIP-CKD (gray bar) mice at
various ages, ranging from day 1 (1D) to approximately 18 months. Asterisks indicate the statistic significance between BCCIP-CON and BCCIP-CKD of
the same age (*: P,0.05; **: P,0.01; ***: P,0.001). The ‘‘n’’ values indicate the number of mice measured at the time point. D: day; W: week; and M:
month.
doi:10.1371/journal.pone.0030638.g003
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and cerebrum regions. In the cerebellum of BCCIP-CKD mice, we

found an agenesis in foliation and lobule structure (Figure 4A).

The BCCIP-CKD cerebellum displayed reduced granule cell

number, disrupted granule cell layers, and abnormal lining pattern

of Purkinje cells (Figure 4A). Furthermore, reduced number of

Bergmann glial cells was also observed in BCCIP-CKD cerebellum

(Figure 4A). In the cerebrum of BCCIP-CKD mice, despite that the

cortical laminar structure and the gross structures of hippocampus

were largely preserved, there was a significant reduction of neuron

cell density in BCCIP-CKD cortex (Figure 4B). These observations

suggest that BCCIP defect impairs the development of both

cerebellum and the cerebrum.

Increased apoptosis and reduced proliferation in the
progenitor rich embryonic external germinal layer of
cerebellum and ventricular zone of cortex of the
BCCIP-CKD mice

The gross evaluation of the brains BCCIP deficient mice

(Figure 3A) revealed a smaller size in both the cerebellum and the

cerebrum regions. Reduced neurogenesis and microcephaly may

be a consequence of an increased rate of apoptosis or reduced

neural progenitor proliferative capacity. We investigated the effect

of BCCIP deficiency on the progenitor cell populations that

contribute to the development of cerebellum and cerebrum.

Mouse cortical neurogenesis occurs mostly from embryonic

days 11 to 19 (E11–E19). It derives from a germinal layer of the

dorsal telencephalon at E11 and begins to form during mouse mid-

embryogenesis [21,22]. To determine the cell type affected by

BCCIP down-regulation in neocortices, we stained Ki67 and bIII-

tubulin to label proliferating neural progenitor cells and newly

differentiated neurons at embryonic day 14.5 (E14.5). At this stage

the cortical neural progenitors including radial glial cells and short

neural precursors proliferate in the ventricular zone (VZ), while

intermediate progenitor cells (derived from radial glial cells) divide

in the subventricular zone (SVZ). As shown in Figure 5, these

progenitor layers displayed a decreased breadth on the BCCIP

deficient mice. By contrast, the width of bIII-tubulin-positive zone

(corresponding to the differentiated region) was not affected in

BCCIP deficient mice (Figure 5A). The boundary of differentiated

bIII-tubulin-positive zone in BCCIP-CKD mice was not as well

defined as in BCCIP-CON mice (Figure 5A). Increased apoptosis in

both VZ and SVZ occur mainly in Ki67 positive region but âIII-

negative layer (Figure 5B) as seen in immunoflourescent co-

Figure 4. Histological analysis of cerebellum and sagittal brain sections of BCCIP-CON and BCCIP-CKD mice. (A) Histology of cerebellum
of BCCIP-CON (top row) and BCCIP-CKD (bottom row) mice at age P56. Column 1 shows Hematoxylin and Eosin (H&E) staining of cerebellum at
magnification of 406. Columns 2–4 show the immuno-histochemical staining for Calbindin (D-28K) that is specific for Purkinje cells (brown color in
column 2), NeuN that is specific for neurons (brown color in column 3), and for GFAP is specific for glial cells (brown color in column 4). ML: molecular
layers; GCL: granule cell layer; PC: Purkinje cells. (B) Histology of cerebrum of BCCIP-CON and BCCIP-CKD mice at age P56. Column 1 shows the H&E
staining at 406magnification. Columns 2 and 3 show the reduced neuron density in BCCIP-CKD mice as visualized by anti-NeuN staining. Columns 4
shows reduced density of glial cells (stained with anti-GFAP) in the BCCIP-CKD mice. Hippo: hippocampus; DG: dentate gyrus; CA1, CA2 and CA3:
pyramidal cell layer of the hippocampus; Cx: cortex; SGZ: subgranular zone.
doi:10.1371/journal.pone.0030638.g004
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staining for cleaved Caspase-3 (a marker for apoptosis) with bIII-

tubulin (Figure 5A) and Ki67 (Figures 5B and 5E), and TUNEL

assay (Figure 5C and 5D). Little apoptosis was observed in bIII-

tubulin-positive postmitotic region (Figure 5A). These observations

indicate that defects in neocortical development in BCCIP-CKD

embryos likely resulted from reduction of proliferative capacity

and increased apoptosis of progenitors.

To further investigate the cause of cerebrum defects, we

examined BCCIP-CON and BCCIP-CKD neocortices at E15.5. As

shown in Figure 6A and 6B, about two days after the activation of

Cre (E15.5), there was a reduction of cell density in the cortical

layer in the BCCIP-CKD embryos. We observed clusters of

pyknotic nuclei in BCCIP-CKD embryos (Figure 6A and 6B). This

is associated with increase of TUNEL positive cells in the same

region (Figure 6C and 6D). During the same period of time, there

was reduced cell proliferation capability in BCCIP-CKD mice based

on in vivo bromodeoxyuridine (BrdU) incorporation assay and anti-

Ki67 staining (Figure 6E). We observed much less BrdU-positive

and Ki67 cells in ventricular zone (VZ) of forebrain at E15.5 than

in their littermates BCCIP-CON (Figures 6F and 6G). These data

clearly suggest a widespread proliferation defect and apoptotic

activities in the progenitor cell population that later would be

developed into the cerebrum structure. It further supports the

essential requirement for BCCIP in progenitor viability and

function during neurogenesis.

The mouse cerebellum development normally initiates from the

dorsal region of the posterior neural tube around age E10–E12. A

pool of neural progenitor cells migrates from the rhombic lip to

form the external germinal layer (EGL) and give rise to the

granular neuron precursor cells. Those granule neuron precursor

cells are required to develop a well-structured cerebellum which

undergoes over 1000-fold increase in volume during postnatal

maturation [23]. We initially investigated the proliferation and cell

death status at day E15.5, when the EGL structures can be readily

Figure 5. BCCIP knock-down increased apoptosis in the mitotic proliferating region of BCCIP-CKD neocortices. (A) bIII-tubulin staining
identifies the differentiating neural cell populations. Analysis of apoptosis was done by cleaved-caspase 3 (c-C3) staining in E14.5 using BCCIP-CON
and BCCIP-CKD embryos. The merged composites are overlay of bIII-tubulin and DPAI staining. (B) Ki67 staining identifies the proliferating mitotic
region. Analysis of apoptosis was done by cleaved-caspase 3 (c-C3) staining in E14.5 using BCCIP-CON and BCCIP-CKD embryos. (C) Apoptosis was
analyzed by TUNEL assay in E14.5 using BCCIP-CON and BCCIP-CKD embryos. (D) Quantification of TUNEL staining. The amount of apoptosis was
quantified in the VZ/SVZ of E14.5 embryos. (E) Quantification of cleaved-caspase 3 staining. The amount of apoptosis was quantified in the VZ/SVZ of
E14.5 embryos. CP: cortical plate. VZ/SVZ: ventricular zone/subventricular zone. White bars: BCCIP-CON; Gray bars: BCCIP-CKD. The merged composites
are overlay of Ki67 and DAPI staining. CP: cortical plate. VZ/SVZ: ventricular zone/subventricular zone. *: P,0.05; **: P,0.01; ***: P,0.001.
doi:10.1371/journal.pone.0030638.g005
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identified. At this time, there was significantly reduced cell

proliferation based on anti- Ki67 staining in EGL (Figures 7A–

B), while there were significant increases of apoptotic cells in EGL

(Figures 7C–D). These changes can also be observed postnatal at

age P1 and P7 (Figures 7A–B). The reduced proliferation and

increased apoptosis were more evident in the EGL of the

cerebellum corresponding to the proliferating granule neuron

progenitors.

In vitro cell proliferation and self-renewal defects in
BCCIP deficient neural progenitors

The previous data (Figures 5, 6, 7) suggest that BCCIP

knockdown causes proliferation defects and massive apoptotic cell

death in the progenitor cell population early in embryogenesis. To

confirm that BCCIP defect impairs the proliferation of neural

progenitor cells, we generated neurosphere cultures from BCCIP-

CKD and BCCIP-CON mice. We plated the dissociated neural cells

derived from E15.5 mice (see Material and Methods). After 7 days,

cultures from BCCIP- CKD brains formed a significantly lower

number of neurospheres and of smaller size than those of BCCIP-

CON mice (Figures 8A–8C). Accordingly, the total number of cells

grown in neurospheres was significantly lower in BCCIP-CKD mice

than BCCIP-CON mice (Figure 8D). To access the self-renewal

capacity from primary neurospheres, we re-dissociated the collected

spheroids from the primary culture, re-plated in fresh medium, and

cultured for additional 7 days. As shown in Figure 8E, the re-

suspended cells from BCCIP-CON primary neurospheres retained

their ability to form secondary spheroids, but the cells from the

BCCIP-CKD mice failed to do so. This suggests that although

BCCIP-CKD neuron progenitor cells formed a few viable neurop-

sheroids, these cells had reduced ability to maintain the self-renewal

potential. We further evaluated DNA synthesis by BrdU-labeling

and apoptosis by TUNEL assay (Figure 9A). BCCIP knockdown

decreased cell proliferation and increased the percentage of

apoptotic cells (Figures 9A–9C). These data suggest that lack of

BCCIP significantly impairs the proliferation of neural progenitor

cells. Consistent with the in situ observations (Figures 5, 6, 7), they

suggest that BCCIP function is essential for proliferative cells.

Figure 6. BCCIP knock-down causes apoptotic cell death and reduction of cell proliferation capacity in the neocortices progenitor
cells. The brain tissues form E15.5 embryos were subjected to IHC and H&E staining analyses. In all panels: CP - cortical plate; IZ - intermediate zone;
VZ - ventricular zone. (A) illustrates the magnified views of H&E staining of littermate BCCIP-CON and BCCIP-CKD brain sections. Representative of
clusters of pyknotic cell nuclei in the BCCIP-CKD ventricular zone are indicated by arrows. The right panels of 6A show the enlarged images of selected
areas of the middle panels. (B) Quantification of clusters of pyknotic nuclei. (C) The apoptotic cells from the same were detected by TUNEL staining.
(D) Quantification of TUNEL staining. (E) Proliferative cells were detected by anti-Ki67 staining (column 1), and BrdU incorporation (column 2) at E15.5
(about 2 days after the GFAP-Cre is expressed). (F) Quantification of Ki67 staining. (G) Quantification of BrdU staining. Error bars are standard
deviation. White bars: BCCIP-CON; Gray bars: BCCIP-CKD. The asterisks indicate the statistic significance between the BCCIP-CON and BCCIP-CKD,
*: P,0.05; **: P,0.01; ***: P,0.001.
doi:10.1371/journal.pone.0030638.g006
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BCCIP knockdown results in DNA-damage induced
p53-dependent apoptosis

To further define the mechanisms by which BCCIP deficiency

impairs progenitor cell proliferation, we analyzed the protein

extracts from the in vitro neurospheres of BCCIP-CON and BCCIP-

CKD mice (Figure 10). We found a higher level of serine-15

phosphorylation on p53 proteins in BCCIP-CKD neurospheres

than that of the BCCIP-CON mice. In contrast, the total level of

p53 protein was unaffected after BCCIP knockdown. The

downstream effector of p53, p21 that mediates the p53-dependent

cell cycle G1 phase arrest, was significantly increased in BCCIP-

CKD neurospheres (Figure 10A). We also observed an elevated

cH2AX level on immunoblots from neurosphere extract

(Figure 10A), and a higher frequency of cH2AX-positive staining

of the VZ and SVZ in situ (Figures 10B and 10C). These data

further suggest that BCCIP deficiency causes spontaneous

accumulation of DNA damage in the proliferative progenitor

cells, which may trigger the activation of p53 and expression of

p21 to impair proliferation of the progenitor cells.

Discussion

Our data revealed a critical role of BCCIP in both cerebrum

and cerebellum development (Figure 3). Because a reduction in

proliferation was found in the VZ and EGL but not in the regions

of postmitotic neurons of BCCIP-CKD mice (Figure 5), and an

increase of apoptosis was detected in highly proliferating regions of

the neocortices and EGL of BCCIP-CKD mice (Figures 5C, 6, 7),

we suggest that BCCIP plays its roles in neural-development by

supporting proliferation of neural progenitors. This conclusion is

further supported by the in vitro neural progenitor spheroid culture

studies (Figure 8), and the fact that the cH2AX foci were

predominantly found in the proliferative VZ of neocortices in

BCCIP deficient mice (Figure 10).

Although defective DNA damage response leads to general

neurogenesis disorders, due to the preferential involvement of the

each repair pathway in distinct cell population and developmental

stages, deficiency on a particular DNA repair pathway often

causes unique consequences [1–3]. Early in development and

among the progenitor cell population, when cell proliferation is

critical, the HR and replication related mechanisms are crucial to

ensure replication fidelity and orderly development. It has been

reported that conditional knockout of genes involved in HR, such

as BRCA2 and Xrcc2, causes abnormalities predominantly in

proliferative progenitor cells [3,24]. In contrast, disruptions of

genes involved in NHEJ, such as Ku70, DNA ligase IV, and

Xrcc4, result in apoptosis of differentiating cells at later

developmental stages [3,25,26]. The role of BCCIP in the

proliferation of neural progenitor cells is consistent with a function

of BCCIP in DNA replication and recombination.

In an earlier report, Frappart et al showed that conditional

homozygous BRCA2 deletion in Brca2Nestin-cre mice resulted in

neural development defects [24]. As a BRCA2 interacting protein,

BCCIP has been shown to play a role in HR, cell cycle regulation,

Figure 7. proliferation defects and excessive cell death in the external germinal layer (EGL) granule cell progenitors. Ki67 IHC staining
was used to identify the proliferative cells (Green in panel A) and TUNEL assay was performed to identify the apoptotic cells (Green in panel C). DAPI
staining (Blue) was used to identify the nuclei of the cells. (A) Ki67 staining positive proliferative cells. (B) Quantification of Ki67 staining. (C)
Apoptotic cells in the EGL at age E15.5, P1, and P7. (D) Quantification of TUNEL staining. The ‘‘n’’ values indicate the pairs of littermate matched mice
used in the assay. Data are averages and standard errors from the indicated number of mice. *: P,0.05; **: P,0.01; ***: P,0.001.
doi:10.1371/journal.pone.0030638.g007
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and chromosome stability [8,11,14,16]. Although certain features,

such as viable mice with no tumor formation, are common to

conditional deletion of BRCA2 or BCCIP knockdown in neural

cells, some features of the BCCIP-CKD mice are distinguishable

from the BRCA2 knockout mice. It was noted that while the body

weight of the BCCIP-CKD mice catches up with the littermate

BCCIP-CON controls in adulthood, the brain size of the BCCIP-

CKD mice remained to be at ,50% of the controls (Figure 1F).

The severity of the microcephaly is distinct from BRCA2

homozygous deletion mice, where a milder microcephaly

phenotype was observed. In addition, severe ataxia was not

reported in the BRCA2 deficient mice, while BCCIP-CKD mice

displayed severe ataxia. Thus, it seems that BCCIP deficiency has

a more profound effect on neurogenesis than BRCA2 deficiency.

In BRCA2, XRCC1 and NBS1 brain conditional knockout

mouse models using Nestin-Cre [24,27,28], the Nestin promoter

becomes active at around embryonic day 11 (E11), primarily in the

central and peripheral nervous system during embryogenesis [29].

In our study, we crossed FVB-LoxPshBCCIP+/+ mice with FVB-

Tg(GFAP-Cre) transgenic mice that expresses Cre recombinase

under the control of the human GFAP promoter. It is known that

the onset of GFAP-mediated transgene expression occurs in the

dorsal and medial regions of the telencephalon around embryonic

day 13.5 (E13.5) [20]. Although only glial cells are immune-reactive

for GFAP in adult brain, embryonic GFAP-promoter activity is not

restricted to glial progenitor cells. Much like Nestin-Cre, GFAP-

promoter is active in multi-potential stem cells including neuron

progenitor cells during embryogenesis [20]. However, there is a

difference between the two transgenic mouse strains. Nestin-Cre mice

express Cre recombinase in common neural progenitors mostly

during embryogenesis, while GFAP-Cre transgenic mice express Cre

recombinase in both embryonic common progenitor cells as well as

in adult glial cells. Thus, development defects observed in our

mouse model may be attributed by defects of both neuron-

progenitors and glial progenitors during the embryogenesis.

Deletion of p53 can rescue the neurogenesis defects conferred

by BRCA2 deficiency, but this leads to rapid formation of

medulloblastoma[24]. Nbs1 is another gene involved in DNA

Figure 8. BCCIP knockdown leads to neural progenitor cell proliferation and self-renewal defects. Neural stem and progenitor cells from
E15.5 brains of BCCIP-CON and BCCIP-CKD were isolated and cultured in serum-free media to allow neurosphere formation at two seeding
concentrations (0.056106 cells/ml or 0.256106 cells/ml) . After 7 days in culture, and the cells were counted and re-plated to assess self-renewal ability
by culturing for another 7 days. (A) and (B) shows the morphology of neurospheres originated from E15.5 BCCIP-CON and BCCIP-CKD mice. Scale
bar = 200 mm.(C) shows the number of neurospheres and (D) shows the total cell numbers grown from the primary culture, panel (E) shows the
number of neurospheres formed from re-suspended primary neurospheres to assess the self-renewal capability. The initial concentrations of cells
plated are indicated in the figures. *: P,0.05; **: P,0.01; ***: P,0.001. Asterisks indicate significant differences and n indicates the number of
individual neuroprogenitor cell lines analyzed.
doi:10.1371/journal.pone.0030638.g008
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damage response. The Nbs1Nestin-Cre conditional knockout mice had

severe neural degeneration, ataxia, and microcephaly, to a similar

extent as our BCCIP-CKD mice [27]. The p53 deletion remarkably

rescued the microcephaly and neural degeneration phenotype of

Nbs1Nestin-Cre knockout mice [27]. Coincidentally, BCCIP deficien-

cy resulted in activation of p53 (Figure 10), suggesting that p53

activation may be required for BCCIP deficiency induced neural

development defects (Figure 11). It would be interesting to

determine whether concurrent deletion of p53 in BCCIP deficient

mice can rescue the neural development defects.

It is worthwhile to point out that we adapted a conditional BCCIP

knockdown approach, in contrast to the conventionally used

knockout approach. The knockdown approach enabled us to observe

the phenotype of down-regulation of BCCIP gene rather than null

BCCIP mutation. This may more naturally mimic the consequence

of down-regulation of gene expression in development. Interestingly,

in an independent transgenic line (LoxPshBCCIP+/+-13) that has a

lower BCCIP knockdown efficiency than the LoxPshBCCIP+/+-4 used

in this report, a milder microcephaly phenotype can be observed

(Supplement Figure S1). This suggests that there is a dosage-effect

relationship between the degree of BCCIP down-regulation and the

severity of neural development defects. An intriguing observation is

that while the severe ataxia phenotype among the BCCIP deficient

mice gradually improved when the mice grow into adults, we

observed consistent microcephaly throughout the life span, and the

majority of adult BCCIP deficient mice failed balance beam test. In

addition, the reconstituted U6 promoter resulted from Cre-mediated

recombination and the down regulation of BCCIP were detectable in

adult BCCIP deficient mice. These observations imply that the

BCCIP deficient mice may be able to make adjustment to the

cerebellum defects resulted from embryogenesis.

In summary, our study suggests that BCCIP down-regulation

causes severe neural development retardation due to proliferation

defects of the neural progenitors. This defect is associated with a

spontaneous activation of p53 and accumulation of spontaneous

DNA damage in the progenitor cells. These data illustrate the

critical roles of BCCIP in neural development and progenitor cell

proliferation.

Materials and Methods

Ethics statement
The animal works presented in this study were approved by

Institutional Animal Use and Care Committee of Robert Wood

Figure 9. BCCIP knockdown leads to reduced BrdU incorporation and increased apoptosis in neural progenitor cells. BrdU
incorporation and TUNEL assays on single cell suspension of the primary spheroid cultures were performed to assess the proliferation and apoptosis
(see Materials and Methods for details). (A) shows representative images of BrdU and TUNEL staining. (C) and (B) show the quantification of BrdU
staining and TUNEL staining. We scored 500 cells for each cell line after 7 days culture. In all panels, white bars: BCCIP-CON; gray bars: BCCIP-CKD.
*: P,0.05; **: P,0.01; ***: P,0.001. Asterisks indicate significant differences and n indicates the number of individual neuroprogenitor cell lines
analyzed.
doi:10.1371/journal.pone.0030638.g009
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Johnson Medical School, University of Medicine and Dentistry of

New Jersey. We follow our institutional guideline regarding to

animal welfare issues.

Mouse strains and PCR genotyping
The generation of FVB-LoxPshBCCIP+/+ (founder line 4) has

been described previously [16]. The GFAP-Cre transgenic mice

(FVB-Tg(GFAP-Cre)25Mes/J) were obtained from the Jackson

Laboratory (stock number: 004600). These mice were interbred

to obtain LoxPshBCCIP+/2;GFAP-Cre2/2 and LoxPshBCCIP+/2;

GFAP-Cre+/2 (referred to as BCCIP-CON and BCCIP-CKD) mice.

During breeding, the GFAP-Cre transgene was routinely carried by

the male to avoid germ-line BCCIP disruption due to spurious Cre

expression in the ovary. The genotypes were identified by PCR of

DNA prepared from tail snips. Primer sets used for genotyping are

listed in the Table 1. Routine handling of mice was approved by

and performed according to the guidelines for the institutional

animal care committee. Balance beam test was conducted with a

beam consisted of a piece of hardwood (1.5 cm wide660 cm long)

suspended 35 cm above bedding. The time that mice used to pass

the beam was recorded as described by others [30].

Histological and immune-histochemical (IHC) analysis
Embryonic brains were fixed in 4% paraformaldehyde for

24 hr, cryoprotected in 30% sucrose/PBS, and frozen for

cryostatsection. All cryostatsections were cut at 8 mm. Postnatal

brains were fixed in 10% buffered formalin for 24–48 hr before

paraffin embedding. All paraffin embedding sections were cut at

5 mm. These sections were stained with hematoxylin and eosin

(H&E) according to standard procedures. IHC analysis of tissue

were performed by permeablizing with 0.1% Triton X-100 in PBS

for 10 mins, quenching endogenous peroxides with 3% hydrogen

Figure 10. BCCIP down-regulation shows activation of phosphorylation of p53 at ser15. (A) Western blot from E15.5 neurospheres
showed down-regulation of BCCIP expression with CRE expression. Three independent cell populations of BCCIP-CON and BCCIP-CKD were indicated
on the top. Higher level of phosphorylation of H2AX (cH2AX) was shown in BCCIP-CKD neurospheres. All BCCIP-CKD neurospheres showed higher
level of phosphorylation of p53 at Ser15 and p21 (a p53 downstream effector). Apoptosis was also detected of BCCIP-CKD mice by active caspase 3
(cleaved-caspase 3) blotting. (B) Immunostaining analysis of cH2AX in E14.5 BCCIP-CKD and BCCIP-CON embryos. Insets show higher magnification of
cH2AX staining (magnification: 400). (C) Quantification of cH2AX staining. The amount of cH2AX was quantified in the VZ/SVZ of E14.5 embryos. CP:
cortical plate. VZ/SVZ: ventricular zone/subventricular zone. White bars: BCCIP-CON; Gray bars: BCCIP-CKD. CP: cortical plate. VZ/SVZ: ventricular zone/
subventricular zone. *: P,0.05; **: P,0.01; ***: P,0.001.
doi:10.1371/journal.pone.0030638.g010

Figure 11. Mechanisms by which BCCIP deficiency lead to
proliferation defect of the progenitor cells during brain
development.
doi:10.1371/journal.pone.0030638.g011
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peroxide for 10 mins, followed by blocking, primary and

secondary antibody incubation. Immunoreactivity was visualized

with 3,39- diaminobenzidine (DAB) (D5637, Sigma). Positive

staining appears as brown nuclear staining, whereas nuclei

counterstained with hematoxylin appear as blue color. For

fluorescence signals, Fluorescein isothiocyanate (FITC) or Rho-

damine conjugated secondary antibodies were used. DAPI (49,6-

diamidino-2-phenylindole) (H-1200, VECTOR) staining was used

for counterstaining. All cryosection immunofluorescence staining

was performed after antigen retrieval by boiling in 0.01 M Citric

acid buffer (pH 6.0). The following primary antibodies were used:

calbindin D-28K (1:500, C9848, Sigma), NeuN (1:100, MAB377,

Millipore), GFAP (1:400, ab360, Abcam), Ki67 (1:300, ab15580,

Abcam), cleaved-caspase3 (1:200, #9661, Cell Signaling),

cH2AX(ser-139) (1:200, #2577, Cell Signaling), BrdU (1:100,

B2531, Sigma), p53-Ser15 phosphorylated (1:200, #9284, Cell

Signaling), bIII-tubulin (1:200, T8578, Sigma), and p21 (1:100, sc-

6246, Santa Cruz). Apoptosis was measured on cryosections after

proteinase K treatment using DeadEnd Fluorometric TUNEL

system (G3250, Promega).

In vivo BrdU labeling
BrdU (B5002, Sigma) labeling was carried out by intraperito-

neal injection of 50 mg/kg (in PBS) five times with a 2-hour

interval. Mice were sacrificed 24 hours after injection and

embryonic brains were processed for cryosectioning. Then, the

cryosections were subjected to a 30-minute 2 M HCl treatment at

37uC, followed by routine IHC.

Neurosphere cultures, in vitro progenitor cell
proliferation and TUNEL assays

Embryonic day 15.5 brains were dissected in a serum-free

culture medium (Dulbecco’s modified Eagle medium DMEM/F-

12 (1:1). The isolated brain tissues were mechanically dissociated

with a fire-polished pasture pipette and digested using an enzyme

mix solution containing 30 U/ml papain (P4762, Sigma), 240 mg/

ml D,L-cysteine (C7477, Sigma) and 400 mg/ml DNase I (D4527,

Sigma) in DMEM/F-12 (Invitrogen). After 1 h incubation at

37uC, the enzyme mix solution was neutralized with an inhibitor

solution: 0.1125% ovomucoid trypsin inhibitor (T9253, Sigma),

0.0525% BSA (A30075, Research Products International Corp.),

400 mg/ml DNase I (D4527, sigma) in L-15 medium (21083,

Invitrogen). Primary cells were grown in DMEM/F-12 medium

with B27 (17504-044, Invitrogen), 20 ng/ml of epidermal growth

factor (EGF; E4127, Sigma) and 20 ng/ml basic fibroblast growth

factor (bFGF; F0291, Sigma).

The neurosphere were grown in suspension for 6 days and in

the presence of 30 mM BrdU (B5002, Sigma) for 24 hr. These

spheres were collected and digested into single cell suspension,

then plated on poly-L-lysine (P4832, Sigma) coated coverslips for

30 min at 37uC to allow neurosphere cells adhesion but not

differentiation. Cells were fixed by 4% paraformaldehyde (P6148,

Sigma) solution in PBS for 30 min at room temperature. The fixed

cells were then processed for BrdU staining.

Single neurosphere cells were prepared and adhered to

coverslips as described above. The fixed cells were then processed

for TUNEL staining using DeadEnd Fluorometric TUNEL system

(G3250, Promega). Briefly, the fixed cells were permeabilized by

immersing the slides in PBS containing 0.2% Triton X-100

solution for 5 mins. Cells were incubated for 10 min in terminal-

deoxynucleotidyl-transferase (TdT) buffer (Promega) before incu-

bation with TdT and fluorescein-12-dUTP for 1 hr at 37uC. The

coverslips were mounted with DAPI for nuclear stain. Localized

green fluorescence of apoptotic cells were detected by fluorescence

microscopy.

Western blot
Western blots were performed with procedures as described

previously [16]. Primary antibodies used were mBCCIP [16], Cre

(1:2000, 69050-3, Novagen), p53 (1:2000, sc-6243, Santa Cruz),

p53-Ser15 phosphorylated (1:1000, #9284, Cell Signaling), p21

(1:200, sc-6246, Santa Cruz), cleaved-caspase3 (1:500, #9661,

Cell Signaling) and cH2AX(ser-139) (1:500, #2577, Cell Signal-

ing).

Statistic analyses
Data in the graphs are represented as Mean 6 S.D. of replicate

experiments, with the number of mice as indicated in the figures.

IHC estimates were made on 3 sections per mouse, and the

number of mice analyzed is indicated in each figure legend. Data

obtained from BCCIP-CKD mice were compared with those from

BCCIP-CON littermate controls using two-tailed Student’s t-test. P-

value is indicated in the graphs (*P,0.05; **P,0.01; ***P,0.001).

The level of statistical significance was set at P,0.05.

Supporting Information

Figure S1 Conditional knockdown of mouse BCCIP in
brain tissues using an independent founder line F13.
Panel A shows the genotyping of a representative litter of 8 mice

resulting from breeding between LoxPshBCCIP+/+ (founder F13)

and GFAP-Cre+/2. The brain tissues from a litter of four BCCIP-

CON (lanes 1–4) and four BCCIP-CKD (lanes 5–8) mice at age P1

were used for DNA and protein extractions. The upper two panels

are genotyping results from tail DNA for the presence of the split

U6 promoter LoxPshBCCIP and the GFAP-Cre cassettes. The

bottom panel is results of PCR genotying for the reconstituted U6-

shBCCIP cassette using DNA from the brain tissue of mice. Five

(lanes a, b, c, d, and e) PCR controls are: a: DNA from a

(LoxPshBCCIP+/2;GFAPCre2/2) mouse derived from founder line

F13. b: DNA from a (LoxPshBCCIP+/2;GFAP-Cre+/2) mouse

derived from founder line F13. c: DNA from a GFAPCre mouse

d: DNA from a wild type mouse e: water as a negative PCR

control All 8 (No. 1-8) littermates contain the original split U6

Table 1. Primer sets used for genotyping.

Transgenes
Forward primer sequence
(59-39)

Reverse primer sequence
(59-39) Product (bp)

U6-pLoxPneo-BCCIP TCTAGAACTGGATCCGAC TCGTATAGCATACATTATACG 235

GFAP-Cre ACTCCTTCATAAAGCCCTCG ATCACTCGTTGCATCGACCG 190

Recombined U6-BCCIP TCTAGAACTGGATCCGAC AGGCTTTTCTCCAAGGGATATT 317

doi:10.1371/journal.pone.0030638.t001
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cassette in their tail DNA. But only the littermates (No. 5-8) with

the GFAPCre cassette have reconstituted U6-shBCCIP cassette in

the DNA extracted from brain tissues at P1. Panel B shows the

levels of mouse BCCIP and b-actin (loading control) protein levels

from the same mice as panel A, based on Western blot analysis on

the brain protein extracts. As shown here, there was a modest

reduction of BCCIP protein level in BCCIP-CKD mice obtained

from founder F13. The knockdown efficiency from F13 appears

not as strong as founder line F4, which are shown in Figure 1 and

the main text of the manuscript. Panel C shows the reduced brain

size at p21 of F13-BCCIP-CKD compared with F4-BCCIP-CKD

(the same images of the control and F4-BCCIP-CKD brains as in

Figure 3 are used for comparison). Panel D shows the brain weight

of F13-BCCIP-CON (white bar) and F13-BCCIP-CKD (gray bar)

mice at various ages, ranging from day 1 (1D) to approximately 24

months. Asterisks indicate the statistic significance between

BCCIP-CON and BCCIP-CKD of the same age (*: P,0.05;

**: P,0.01; ***: P,0.001). The ‘‘n’’ values indicate the number of

mice measured at the time point. D: day; W: week; and M: month.

(TIF)

Movie S1 Ataxia of BCCIP deficient mice. Shown in the

video is the movement behavior of representative BCCIP-CON and

BCCIP-CKD (tail tagged with the blue tape) littermates at age P21.

As shown here, the BCCIP-CKD littermate has severe walk

disability and balance disorders.

(MPEG)
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