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Abstract The activity of a number of 1-[3-(4-arylpi-

perazin-1-yl)propyl]pyrrolidin-2-one antiarrhythmic (AA)

agents was described using the quantitative structure–

activity relationship model by applying it to 33 compounds.

The molecular descriptors of the AA activity were obtained

by quantum chemical calculations combined with molec-

ular modeling calculations. The resulting model explains

up to 91% of the variance and it was successfully validated

by four tests (LOO, LMO, external test, and Y-scrambling

test). Statistical analysis shows that the AA activity of the

studied compounds depends mainly on the PCR and JGI4

descriptors.

Keywords 1-[3-(4-Arylpiperazin-1-yl)propyl]pyrrolidin-

2-one derivatives � Antiarrhythmic activity �
QSAR analysis

Introduction

a1-Adrenergic receptors (a1-AR) are members of the

G-protein coupled superfamily of receptors, which modulate

intercellular biochemical processes in response to changes in

the extracellular concentration of the neurotransmitter nor-

epinephrine and the circulating hormone epinephrine, lead-

ing to widespread physiological actions that make them

attractive targets for drug discovery (Becker et al., 2004;

Golan 2008; He et al., 2008; Zhong and Minneman 1999).

They are responsible for a number of physiological functions

(Abbas et al., 2006; Graham et al., 1996; Piascik et al., 1999)

in:

(a) cardiovascular tissues regarding vascular smooth

contraction and blood pressure regulation,

(b) noncardiovascular tissues regarding the human pros-

tate smooth muscle contraction or the regulation of

cerebral microcirculation.

Thus, a1-AR antagonists can be useful in the treatment

of hypertension, benign prostatic hyperplasia (BPH), lower

urinary track symptoms (LUTS), or cardiac arrhythmia

(Carmeliet and Mubagwa, 1998; Chiu et al., 2008; Jain

et al., 2008; Koshimizu et al., 2007; Nargund and Grey,

2008; Thiyagarajan, 2002).

Now, in the globalization era, determined by speed,

uncertainty and instability people live in increasing stress

leading to a rise in the incidence of cardiovascular diseases.

Cardiac arrhythmia may be caused by abnormal impulse

formation, abnormal impulse propagation, or both (Matyus

et al., 1997) it remains a major source of morbidity and

mortality in developed countries. For example, between 0.5

and 1 million North Americans and Europeans die each

year because of sudden cardiac death, which corresponds to

10–20% of all deaths among adults in the Western world

(Goldberger et al., 2008; Huikuri et al., 2001; Kromhout,

2007). In the past decade, the treatment of arrhythmia has

been dramatically altered by the development of non-

pharmacological therapies, such as targeted ablation of
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arrhythmogenic tissues and implantable cardioverter defi-

brillators (ICDs), as well as the limited efficacy and

proarrhythmic potential of conventional antiarrhythmic

(AA) drugs (Estrada and Darbar, 2008). AA drugs have

been classified by Vaughan Williams mainly based on their

effects on cardiac action potentials into classes I–IV and

later correlated to their effects on Na? channel, b-recep-

tors, and K? and Ca2? channels (Hashimoto, 2007;

Vaughan Williams, 1992).

In the course of our studies directed to search for new

a1-AR antagonists, among which a series of (4-arylpi-

perazin-1-yl)propylpyrrolidin-2-one or 3-alkyl-3-phenyl-

pyrrolidin-2-one derivatives, it was shown that the

compounds obtained also showed marked AA and hyper-

tensive activities. The ED50 values determined for a num-

ber of them was lower than or comparable with the

reference compounds (Kulig et al., 2003, 2004, 2007,

2009; Malawska et al., 2002, 2005). For a large number of

chemometric analyses reported in medical research, there

are relatively few studies on the application of QSAR

analysis to AA species (Debnath et al., 2003; Fumagalli

et al., 2005; Pallavicini et al., 2006; Turabekova et al.,

2008). In this context, the aim of this study, being a part of

our drug design project, is to find a model explaining the

AA activity of a series of 1-[3-(4-arylpiperazin-1-yl)pro-

pyl]pyrrolidin-2-one derivatives applying the quantitative

relationship between structural parameters and AA activity.

The quantitative structure–activity relationship (QSAR)

equation for our compounds is presented and discussed.

Computational methods

1-[3-(4-Arylpiperazin-1-yl)propyl]pyrrolidin-2-one

derivatives

Thirty-three analogs of 1-[3-(4-(aryl)piperazin-1-yl)pro-

pyl]pyrrolidin-2-one were chosen from the reports pub-

lished by us between 2002 and 2009 (Kulig et al., 2003,

2004, 2007, 2009; Malawska et al., 2002, 2005). The

source publications concern the synthesis of over 70 aryl-

piperazine derivatives and their pharmacological test

results. About 20 of these compounds display a lack of

a1-ARs activity and 40 compounds display a lack of AA

activity. These compounds are considered to be irrelevant

for the model formulation and they were excluded from the

current study. Thus, the set of the remaining 33 compounds

displaying both a1-ARs and AA activity are appropriate for

a QSAR analysis and are listed in Table 1. The external set

should include about 10–30% of the entire set and should

represent activities and structures that cover the whole

range of the training set (Gramatica, 2007). Consequently

the initial data set was split into two subsets: a training

subset (NTS = 25) and a external cross-validation subset

included randomly selected compounds number: 1, 3, 8,

17, 21, 23, 25, 30 (NEXT = 8).

Molecular descriptors and methods

In order to identify the effect of the molecular structure on

the AA activity a QSAR analysis of the selected com-

pounds was performed.

(1) The AA activity data expressed as ED50 (mg/kg) are

taken from the source publications and recalculated to

ED50 (mM/kg). Logarithmic values (-log ED50) are

listed in Table 1 as AA observed activity. Each ED50

(mg/kg) value was obtained from independent exper-

iments in adrenaline included arrhythmia in anaes-

thetized rats (Szekeres and Papp, 1975).

(2) For the molecular 3D structure calculations the

Gaussian� 03 (version 6.1) package was used (Frisch

et al., 2004). The three-dimensional structures of the

pyrrolidin-2-one derivatives in their neutral state were

obtained through full optimization based on the AM1

quantum chemical procedure. Harmonic vibrational

analysis was used to ascertain whether the resulting

geometries were the true energy minima structures.

All the molecules were minimized until the root mean

square (RMS) gradient value was smaller than

10-6 a.u. Next, resulting molecular 3D structure

was used for the calculation of the descriptors set

and to visualize the distribution of charge in a

molecule (the map of the electrostatic potential in the

form of a 3D plot). In order to obtain reliable

energetic and accurate data on electronic properties of

molecules the single-point energy calculations were

performed at the DFT/B3LYP level of theory using

the 6-31G** basis set. Suitable maps of the electro-

static potential were plotted based on the electronic

and nuclear charge distribution obtained from the

energy calculations results. The Gaussian suite of

programs calculates the electrostatic potential maps

and surfaces as the distribution of the potential energy

of unit positive charge in a given molecular space,

with a resolution controlled by the grid density. In

Fig. A in the Supplementary file representative plots

for extreme difference in the charge distribution

pattern are shown (Frisch et al., 1998; Leach, 2001).

(3) For the calculation of the descriptors the Talete srl,

DRAGON for Windows Version 5.5-2007 package

was used. Dragon descriptors include 22 different

logical blocks. The total number of calculated

descriptors was 3224. Several criteria were used to

reduce this number while optimizing the information

content of the descriptors set. First, descriptors for
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Table 1 Structures and affinities for AA action of 1-[3-(4-arylpiperazin-1-yl)propyl]pyrrolidin-2-one derivatives used in the current work

Compounds AA activity R1 R2 R3

Observed Predicted

1a 2.01 2.09 H H H

2 1.79 1.86 H 2-OMe H

3a 1.80 1.79 H 2-Cl H

4 1.54 1.71 H 2-F H

5 2.52 2.24 H 2-OEt H

6 1.45 1.46 H 3-CF3 H

7 1.43 1.43 OH 2-OMe H

8a 1.40 1.44 OH 4-Cl H

9 1.79 1.58 OH 2-F H

10 1.64 1.60 OH 3-OMe H

11 1.97 2.15 OH 2-OEt H

12 1.55 1.56 OH 2-Me H

13 2.23 2.21 OH 2-OH H

14 1.77 1.79 OH 2-OiPr H

15 1.31 1.31 OH 2-CF3 H

16 1.54 1.53 OH 2,4-diF H

17a 1.48 1.32 OH 2-OMe, 5-Cl H

18 2.37 2.54 OH 2-OMe 3,3-diPh

19 2.13 2.17 OH 2-CF3 3,3-diPh

20 2.53 2.37 OH 2-Me 3,3-diPh

21a 2.66 2.55 OH 2-OEt 3,3-diPh

22 2.38 2.33 OH H 3,3-diPh

23a 1.60 1.88 OH H H

24 1.92 1.86 O(CO)NHEt 2-OMe H

25a 2.19 1.99 O(CO)NHiPr 2-OMe H

26 1.52 1.56 O(CO)NHnPr 2-OMe H

27 1.77 1.81 O(CO)nPr 2-OiPr H

28 2.00 2.00 O(CO)NHiPr 2-Cl H

29 1.66 1.75 O(CO)NHEt H H

30a 1.88 1.95 O(CO)iPr H H

31 1.47 1.51 O(CO)NHnB H H

32 1.52 1.42 O(CO)NHnPr H H

33 1.36 1.37 H 2-OH H

The AA expressed as -log ED50 values, in mM/kg
a Compounds excluded in the model generation procedures; external data set, AA observed activity by pharmacological tests, AA predicted

activity by Eq. 1
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which no value was available for all the compounds

were disregarded. Second, descriptors of which the

value is constant (or near-constant) inside each group

of descriptors were excluded. For the remaining

descriptors, if two descriptors showed a correlation

coefficient greater than 0.9, the one showing of the

highest pair correlation with the others descriptors

was removed. After these automatic screening proce-

dures, a set of 385 descriptors was obtained for

further analysis. To reduce the vast number of

descriptors to the 50 that correlated best with the

experimental data, the ‘‘Feature Selection and Vari-

able Screening’’ methods available in Statistica�
(version 8.0) (2008) software were applied. Then, the

chosen descriptors were used as regressors of the

model: they are collected in Table A in the Supple-

mentary file and a detailed description of these

descriptors can be found in the literature (Todeschini

and Consonni, 2002).

Statistical analysis

The Multiple Linear Regression (MLR) (Allison, 1999)

and correlation analyses were carried out using the Statis-

tica� (version 8.0) (2008) software. The forward stepwise

regression analysis yielded a three-parametric model

describing the biological activity as a function of molecular

descriptors. The statistical quality of the regression equa-

tions was evaluated by parameters such as the correlation

coefficient R, the squared correlation coefficient R2, the

adjusted squared correlation coefficient Radj
2 , the Root

Mean Squared Errors (RMSE) and the variance ratio

F. The statistical significance (P level) of a result was

determined as P B 0.01 (Bland, 2000).

The model obtained in this study was validated by cal-

culations of the validated squared correlation coefficient

(Q2) values and prediction error sum of squares (called

SPRES) values. The Q2 values were calculated from the

general internal cross-validation procedures ‘‘leave-one-

out’’ test (LOO) and ‘‘leave-many-out’’ test (LMO) and

external tests (EXT) (Baumann, 2005; Golbraikh and

Tropsha, 2002; Hawkins, et al., 2003; Kubinyi 1997a, b).

Abbreviations QLOO
2 , QLMO

2 , QEXT
2 (and QSLOO, QSLMO,

QSEXT) have been used in their’s usual meaning for the

tests listed above. In addition, the robustness of the pro-

posed model was checked by permutation testing: parallel

models were developed based on a fit to randomly reor-

dered Y-data (Y-scrambling, Y-randomization) (Gramatica,

2007; Tropsha, 2010; Tropsha et al., 2003). According to

the basic approach of Wold and Eriksson (1995) all ran-

domization methods consisted of ten randomization runs

for any data set size.

All computations were performed on a HP 6200 wx

workstation.

Results and discussion

Table 1 reports the observed AA activity, expressed as

-log ED50 (mM/kg) values in adrenaline included

arrhythmia in anaesthetized rats. All the tested compounds

showed AA stimulation as the –log ED50 values are

between 1.31 and 2.66.

In this study we have limited the number of presented

equations to this of the best regression model of the whole

set. The model is given as follows together with the

statistical and validation parameters:

AA ¼ �60:167 �13:005ð Þ JGI4 þ 12:334 �3:841ð Þ PCR

þ 0:986 �0:213ð Þ Hy� 20:110 �6:072ð Þ
ð1Þ

R ¼ 0:953; R2 ¼ 0:909; R2
adj ¼ 0:844; F ¼ 14:040;RM

SE ¼ 0:141;NTS ¼ 25;NEXT ¼ 8; P\0:01;Q2
LOO ¼ 0:744;

QSLOO ¼ 0:178; Q2
LMO ¼ 0:736; QSLMO ¼ 0:175; Q2

EXT ¼
0:858;QSEXT ¼ 0:168R2

Y ¼ 0:074; Q2
Y ¼ 0:022; where

N is the number of compounds included in the [training

(TS)/external (EXT)] data set, R the correlation coefficient,

R2 the squared correlation coefficient, Radj
2 the adjusted

squared correlation coefficient, RMSE the root mean

squared errors, F the variance ratio, P the significance of

the variables in the model, QLOO
2 , QLMO

2 , QEXT
2 , RY

2, and QY
2

the correlation coefficient of the adequate validation

methodologies.

The presented QSAR analysis yields a model incorpo-

rating three descriptors. Since the Topliss and Costello rule

(1972) allows the use of up to five descriptors for a training

set consisting of 25 compounds and the relation Radj
2 \ R2

is true, the model in not overparametrized. However, for

AA action we did not fit any better correlation using more

descriptors in multi-parameter correlations. The correlation

coefficient R of this relationship is 0.95 and explains up to

91% of all variance data for AA activity. Moreover, the

F test value together with RMSE at the P level of 1 9 10-5

suggests that the equation has a good correlation with the

data and is statistically significant. Every descriptor in the

regression equation must be independent. The correlation

between each descriptor was calculated and is presented in

form of a Pearson correlation matrix in Table 2. As can be

seen from these numbers all predictors have a pair corre-

lation minimal covariance \0.5 which assures that any

collinearity of predictors is not present. Table 1 reports the

AA activity predicted by Eq. 1. A plot of the predicted

activity versus the residual values was prepared to deter-

mine the existence of systematic errors in the model
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development (see Fig. B in the Supplementary file). The

uniform distribution of residues indicates no systematic

error (Belsley et al., 2005). The plots of observed AA

activities versus those predicted by Eq. 1 together with the

corresponding predicted intervals are shown in Fig. C in

the Supplementary file. Compound number 5 is out of 91%

prediction threshold and exhibits high AA activity in

contrast to other compounds of similar structure having

low hydrophobic factor i.e., compounds 2, 4–6. This inci-

dence may be explained by unique structural features. This

plot proves that the model as a good descriptive power.

Summing up the linear model seems to be adequately fit to

the data, all predictors have P \ 0.01 and one can conclude

that all are independently associated with AA activity.

In an attempt to determine the utility of Eq. 1 as model

of AA activity four validation analyses were carried out

i.e., LOO, LMO, Y-scrambling, and external predictivity

(Kiralj and Ferreira, 2009). In the field of statistical tech-

niques the LOO and LMO are used for internal validation.

From a theoretically acceptable model the R2 cannot have

smaller values than QLOO
2 and QLMO

2 or QEXT
2 . Overall, the

best model is achieved when QLOO
2 B R2 C QLMO

2 and

QLOO
2 & QLMO

2 . Commonly, QLOO
2 [ 0.5 is considered as

proof of the reasonably predictive capability of the equa-

tion. QLOO
2 [ 0.7 indicates the stable and predictive

potential of the equation. Nevertheless a high QLOO
2 value

does not indicate a high predictive power of the model. On

the other hand if R2 \ QLOO
2 the model is overfitted. As can

be seen from the statistics presented next to Eq. 1 in our

case R2 [ QLOO
2 , which means that our model is not

overfitted. The LMO test is usually used to verify results

obtained from the LOO test. In the QLMO
2 procedure ten

iterations were performed with five molecules left out in

each iteration (e.g., tenfold, 80/20 cross validation) (Kiralj

and Ferreira, 2009; Tropsha, 2010). The results of the LMO

test are collected in Table 3. On average, the overall test

steps R2 [ QLMO
2 and QLOO

2 & QLMO
2 which is another

proof that the model is not underdetermined. In order to

ascertain whether the good results of the model described

by Eq. 1 are not due to chance correlation or structural

dependency of the training set, the Y-scrambling tests were

performed. The results of ten runs of Y-randomization tests

are shown in the Table 4. The average values are smaller

than 0.2, which, according to Wold and Eriksson (1995),

points to the absence of chance correlation (Kiralj and

Ferreira, 2009; Tropsha, 2010). The low RY
2 and QY

2 values

prove that our model is valid. To validate the predictive

power of the mathematical model more explicitly one

needs to conduct validation on the external set of data

(Gramatica, 2007; Kiralj and Ferreira, 2009). Therefore,

the EXT test was carried out on the groups of compounds

including 30% of the data set. As mentioned above, a

subset of eight randomly selected compounds was removed

from the entire set to be used in the validation procedure.

For external compounds (1, 3, 8, 17, 21, 23, 25, and 30)

QEXT
2 = 0.86 combined with the fact that there are no

outliers which exhibit a systematic error, conclusively

prove the good predictive potency of the quantitative

relationship constructed on the basis of the AA activity.

Thus, in our opinion, the derived models can be used for

the prediction of the AA commotion for new compounds in

a series of analogs. The 3-parametric equation defines the

best model for this subset of data. Molecular descriptors

incorporated in the equation are: JG4I, PCR, and Hy. All

Table 3 The results of the

LMO test
Number of runs Number of excluded

compounds in the LMO test

QLMO
2 QSLMO

1 26, 22, 33, 11, 20 0.76 0.18

2 13, 9, 33, 29, 22 0.82 0.12

3 20, 7, 32, 14, 24 0.71 0.21

4 24, 20, 9, 19, 16 0.74 0.17

5 29, 28, 32, 20, 33 0.66 0.21

6 24, 6, 18, 14, 19 0.73 0.16

7 24, 9, 13, 20, 16 0.67 0.20

8 16, 27, 20, 22, 13 0.69 0.21

9 22, 19, 14, 27, 9 0.87 0.09

10 14, 5, 32, 2, 13 0.71 0.19

Average values 0.74 0.17

Table 2 Pearson correlation matrix of the parameters used in this

study

JGI4 PCR Hy

JGI4 1.00

PCR 0.47 1.00

Hy 0.39 -0.22 1.00

JGI4 Mean topological charge index of order 4, PCR ratio of multiple

path count over path count, Hy hydrophilic factor
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the obtained descriptors belong to different logical blocks

of descriptors such as the Topological charge indices (TCI)

(JGI4), (Gálvez et al., 1996, 1995, 1994; Rios-Santamarina

et al., 1998). The Walk and path counts (PCR) (Diudea

et al., 1994; Randic, 1980; Razinger, 1986; Rücker and

Rücker, 1993, 2000), and the Molecular properties (Hy)

(Todeschini et al., 1997). Brief detailed descriptions of

these descriptors can be found in the literature (Todeschini

and Consonni, 2002). The obtained model incorporates

descriptors of rather structural nature due to the regression

coefficient value (see Eq. 1). As can be easily noticed, the

descriptors influencing the investigated properties the most

are JG4I and PCR. All descriptors related to physico-

chemical properties of the molecule (except two) were

excluded during the statistical analysis (Table A in the

Supplementary file). This means that the structure and

geometry of the molecule affect the AA activity, rather

than its physico-chemical properties. Looking more closely

at the chosen descriptors and their statistics in Table 5 JGI4

and PCR have |BETA| [ 1 (Achen, 1982).

The molecular charge distribution plays an important

role in many biological and pharmacological activities.

Kier and Hall (1999) developed the concept of E-states, an

electrotopological-state index for atoms in a molecule. For

calculating TCI descriptors, H-depleted molecular structure

is represented as a graph G. TCI are calculated using the

‘‘inverse square topological distance matrix’’ where the

charge influence decreases with the square of the distance.

Gálvez et al. (1996, 1995) introduced the ‘‘inverse square

topological distance matrix’’ denoted by D* in which

matrix elements are the inverse square of the corresponding

element in the topological distance matrix D. The diagonal

entries of the topological distance matrix remain the same,

so diagonal entries of D* are 0. Finally,

JGIk ¼ GGIk

N � 1ð Þ and GGIk ¼
Xi¼N�1; j¼N

i¼1; j¼iþ1

CTi;j

�� ��dðk; Di;jÞ;

ð2Þ

where, d is where d is Kronecker’s delta and CTij = mij-

mji [m stands for the elements of the M matrix

M = A 9 D*; A is the adjacency (N 9 N) matrix of the

molecular graph G, where N is the number of vertices

(atoms different to hydrogen)]. Thus, GGIk represents the

sum of all the CTij terms, with Dij = k, being Dij the entries

of the topological distance matrix (D) and k ranging from 1

up to 10. These indexes represent a strictly topological

quantity plausibly correlating with the charge distribution

inside the molecule.

In other words, the TCI estimates the charge transfer

between pair of atoms, and hence the global charge transfer

in the molecule. The JGI4 parameter varies within the

investigated set from 0.040 (compound 1, unsubstituent) to

0.016 (compound 17, for which R1-OH, R2-2-OMe, 5-Cl,

Table 4 RY
2 and QY

2 values after ten Y-scrambling tests

Number of runs Order of compounds in observed y vector in the Y-scrambling test RY
2 QY

2

1 9, 4, 32, 24, 19, 27, 12, 33, 29, 11, 22, 26, 15, 6, 20, 14, 28, 5, 31, 16, 13, 10, 2, 18, 7 0.07 0.01

2 12, 19, 14, 9, 26, 20, 33, 16, 32, 28, 24, 22, 27, 29, 5, 10, 4, 6, 18, 7, 2, 31, 11, 15, 13 0.12 0.05

3 16, 19, 22, 33, 11, 6, 2, 7, 26, 4, 5, 24, 31, 15, 10, 20, 29, 14, 27, 13, 28, 12, 32, 18, 9 0.06 0.02

4 28, 12, 4, 20, 15, 11, 24, 2, 9, 7, 31, 6, 29, 18, 16, 26, 19, 22, 14, 33, 5, 27, 10, 32, 13 0.06 0.01

5 32, 2, 16, 20, 6, 22, 19, 15, 14, 5, 26, 29, 7, 4, 18, 12, 28, 11, 10, 33, 31, 27, 9, 24, 13 0.09 0.01

6 32, 19, 13, 12, 6, 20, 28, 10, 27, 31, 33, 16, 7, 14, 11, 29, 24, 15, 26, 4, 5, 9, 2, 22, 18 0.08 0.05

7 15, 31, 2, 20, 27, 9, 28, 13, 19, 12, 33, 24, 7, 14, 11, 29, 5, 16, 22, 32, 18, 26, 10, 6, 4 0.04 0.00

8 7, 28, 10, 31, 11, 22, 19, 29, 33, 12, 27, 18, 32, 20, 6, 13, 2, 9, 5, 15, 26, 4, 24, 14, 16 0.03 0.00

9 27, 29, 24, 33, 28, 4, 19, 31, 32, 12, 9, 14, 13, 7, 18, 22, 26, 5, 20, 11, 16, 10, 15, 6, 2 0.05 0.00

10 27, 6, 10, 2, 14, 31, 19, 29, 32, 4, 26, 11, 18, 12, 9, 13, 15, 24, 28, 33, 16, 5, 22, 7, 20 0.13 0.07

Average values 0.07 0.02

Table 5 Multiple regression results

BETA Standard error B Standard error t(14) P level

Intercept -20.1101 6.07174 -3.31209 0.005137

JGI4 -0.870898 0.188244 -60.1674 13.00513 -4.62644 0.000392

PCR 1.026828 0.319750 12.3345 3.84092 3.21134 0.006277

Hy 0.604621 0.130843 0.9856 0.21329 4.62095 0.000396
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and R3-H). In Fig. A in the Supplementary file, the dif-

ferences in the distribution of the electrostatic charge in

compounds 1 and 17 are visualized. Because the sign of the

regression coefficient is negative, an increase of this pre-

dictor values will result in a decrease in AA activity. This

suggests that some unique charge distribution is needed for

increase AA activity.

The PCR descriptor is related to the molecular com-

plexity of the graph (Trinajstic, 1992) i.e., to molecular

branching and size as derived from the ratio of multiple

path count over path count and it is sensitive to the sub-

stituent position within the investigated set as it varies from

1.182 (compound 31, for which O(CO)NHnB substituent

R1 and H substituted R2 and R3) to 1.309 (complex

derivative 21, for which of R1-OH, R2-2-OEt and R3-3,

3-diPh). Because the sign of the regression coefficient is

positive, a decrease of this predictor will result in a

decrease in AA stimulation. Our earlier qualitative inves-

tigations (SAR) led us to similar conclusions (Kulig et al.,

2007; Nowaczyk et al., 2009, 2010). The remaining

parameter of the model (Hy) is the hydrophilic factor. It is

a simple empirical index related to the hydrophilicity of

compounds. In our data set the Hy index varies between

-0.8 and 0.4. According to the sign of the BETA coeffi-

cient (Table 5), an increase in the hydrophilicity of the

compounds will result in an increase in the predicted fea-

ture, although the relatively low absolute BETA values

indicate that their significance in the model is not crucial.

Conclusions

In this study we have developed a mathematical model

for the prediction of the AA activity of a series of 1-[3-

(4-arylpiperazin-1-yl)propyl]pyrrolidin-2-ones containing

various substituents on the aryl, propyl, and pyrrolidin-

2-one moieties. The resulting model displays a good fit

with the experimental data, with a correlation coefficient of

0.95 and explains up to 91% of the variance. In addition,

the cross-validation coefficients reflecting the predictive

power of the regression, QLOO
2 is 0.74, and QLMO

2 is 0.74.

The Y-scrambling test proved that the good statistics

obtained for Eq. 1 are not due to chance correlation or

structural dependency of the training set. In addition, the

external test showed a QEXT
2 of 0.86 which proves a good

predictability of the AA by the model (Eq. 1). The main

purpose of this investigation was to determine the param-

eters which best describe the biological activity of a

number of arylpiperazines derivatives. The results obtained

here show that the activity of these compounds is mainly

determined by the JGI4-, PCR- , and Hy-values. The model

provides important information on the structure–activity

relationships of these types of compounds at the molecular

level relevant for the design of new AA derivatives. The

JGI4 of a potent agent should be as low as possible while

PCR- and Hy-values should be high. On the basis of these

results in combination with previous evidences we can

conclude that the interaction of the 1-[3-(4-arylpiperazin-1-

yl)propyl]pyrrolidin-2-one moiety with the arrhythmic

species is greatly increased by the structure and the

geometry of the molecule rather than its physico-chemical

properties. More extensive in silico studies are in progress

and will be reported in due course.
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