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Introduction

A functional nervous system requires the formation and mainte-
nance of synapses. Chemical neurotransmission requires a sensing 
of action potentials by presynaptic voltage-dependent calcium 
channels (VDCCs) and the resultant Ca2+ influx into the presyn-
aptic terminal that induces the fusion of synaptic vesicles to pre-
synaptic membranes.1,2 Chemical neurotransmitters released via 
exocytosis will then bind and open ligand-gated channels in the 
postsynaptic membrane to modify the excitability of the postsyn-
aptic cell.3-5 Thus, synaptic ion channels must be concentrated 
in the pre- and postsynaptic membranes for effective synaptic 
transmission.

The formation and maintenance of synapses require both 
transynaptic organizing signals and the assembly of intracellu-
lar scaffolds. The list of molecules capable of inducing synapses 
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(termed synapse organizers) continues to grow and has been 
reviewed in detail elsewhere.6-15 Interestingly, recent findings 
demonstrate that synaptic channels are also directly involved in 
the formation and maintenance of synapses, in addition to their 
functional role as ion-conducting channels required for synaptic 
transmission. The goal of this review is to explore how the non-
conducting functions of ion-channel subunits contribute to the 
formation and maintenance of synapses in concert with extra-
cellular synapse organizers and presynaptic active-zone-specific 
proteins (Fig. 1).

Presynaptic VDCCs and Cytosolic Proteins  
at the Synapse

Presynaptic localization of VDCCs requires cytosolic domains 
on the VDCCs (Synprint region, C-terminus domain).16-19 
During the early stage of synapse formation, VDCCs and pre-
synaptic active zone proteins are transported to the axon ter-
minals by preassembled protein/vesicle packets.20,21 A unitary 
assembly of a nascent synapse has been modeled based on these 
preassembled transport vesicles.20-22 At the presynaptic terminal, 
VDCCs are strategically located in close proximity to the neu-
rotransmitter release sites, which reduces the delay between Ca2+ 
entry and synaptic vesicle fusion.23-29 The ultrastructural location 
of presynaptic VDCCs has been suggested as the paired double 
rows of 100-Å membrane macromolecules that are identified on 
the protoplasmic fracture face of freeze-fracture electron micro-
graphs.30-32 Electron tomography analysis revealed large protein 
complexes at the presynaptic terminal, including the structure 
called “pegs” that aligned well with the paired double rows of 
membrane macromolecules.33-35 Thus, it is likely that presynaptic 
VDCCs form a complex with proteins required for active zone 
organization and synaptic vesicle fusion.

Few groups have taken a proteomics approach to identify the 
proteins associated with VDCCs.36-39 The extensive lists of pro-
teins in these VDCC complexes coincide with the macromol-
ecules composing active zone material visualized by electron 
tomography.33,34,40 VDCC subunits interact with some of these 
proteins directly, and with other proteins in these lists indirectly. 
Cytosolic interactions of VDCCs and synaptic proteins (SNAP‑25, 
syntaxin, synaptotagmin) that modulate channel functions are 

Recent findings demonstrate that synaptic channels are directly 
involved in the formation and maintenance of synapses by 
interacting with synapse organizers. The synaptic channels on 
the pre- and postsynaptic membranes possess non-conducting 
roles in addition to their functional roles as ion-conducting 
channels required for synaptic transmission. For example, 
presynaptic voltage-dependent calcium channels link the 
target-derived synapse organizer laminin β2 to cytomatrix of 
the active zone and function as scaffolding proteins to organize 
the presynaptic active zones. Furthermore, postsynaptic δ2-
type glutamate receptors organize the synapses by forming 
transsynaptic protein complexes with presynaptic neurexins 
through synapse organizer cerebellin 1 precursor proteins. 
Interestingly, the synaptic clustering of AMPA receptors is 
regulated by neuronal activity-regulated pentraxins, while 
postsynaptic differentiation is induced by the interaction of 
postsynaptic calcium channels and thrombospondins. This 
review will focus on the non-conducting functions of ion-
channels that contribute to the synapse formation in concert 
with synapse organizers and active-zone-specific proteins.
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subunit and the central PDZ domain of Rim.59 The Rim PDZ 
domain is required for maintaining presynaptic Ca2+ channel 
localization, and the Rim N-terminus primes synaptic vesicles.59

Similarly, Ca
v
1.2 (L-type, α1C) VDCCs, but not Ca

v
1.3 

(L-type, α1D), bind directly with the active zone protein Piccolo 
through interactions between the cytoplasmic loop connect-
ing domain II–III of VDCC and the C2A or C2B domains of 
Piccolo.60 These interactions were suggested to play roles in insu-
lin granule exocytosis, which seems to serve a similar function as 
the Rim interaction mentioned above.

The interactions of the VDCC and active zone proteins are 
conserved in invertebrate synapses as well. At the Drosophila neu-
romuscular junction, Cacophony (the P/Q-type VDCCα sub-
unit homologue) interacts directly with the active zone-specific 
protein Bruchpilot (Brp: a CAST/ERC family member).61 In Brp 
mutants, reduced levels of VDCCs (Cacophony) accumulated at 
active-zone-like structures at neuromuscular junctions, and spe-
cialized active zone structures called T-bars were missing. Thus, 
some VDCCs can initially accumulate at active zones without 
Brp, but the VDCC-Brp interaction is responsible for effectively 
clustering more VDCCs beneath the active zone density.61

reviewed in Turner et al. in this issue of Channels and elsewhere.41 
Furthermore, the organization of the presynaptic protein complex 
has been reviewed in detail elsewhere.42,43 Thus, the first section of 
this review will focus on the recently identified direct interactions 
of VDCC subunits and presynaptic active-zone-specific proteins. 
Active zones are areas of the presynaptic membrane with electron-
dense material where synaptic vesicles fuse.44-46 The so-called cyto-
matrix of the active zone accumulates specifically at presynaptic 
active zones and includes Bassoon,47 Bruchpilot,48 CAST/Erc2,49 
Munc13,50 Piccolo,51 Rim1,52 and SYD-2.53-56

VDCCα subunits and active zone proteins. Structural interac-
tions of VDCCα subunits during presynaptic differentiation have 
been demonstrated in central and peripheral synapses. The Ca

v
2.2 

(N-type, α1B,) and Ca
v
1.2 (L-type, α1C) VDCCs, but not Ca

v
1.3 

(L-type, α1D), bind directly with the active zone protein Rim 
through interactions between the cytoplasmic loop connecting 
domain II–III of VDCC and the C2A or C2B domains of Rim.57 
Rim also interacts directly with the VDCCβ subunit, which will 
be discussed below.58 Furthermore, the Ca

v
2.2 and Ca

v
2.1 (P/Q-

type, α1A) VDCCα subunits and Rim1/2 bind directly through 
interactions between the C-terminus domain of the VDCCα 

Figure 1. A schematic diagram of a subset of synaptic channels and interacting proteins. Solid arrows represent interactions and the dotted arrows 
indicate a functional link. Horizontal double lines show pre- and post-synaptic membranes. The space between these double lines represents the 
synaptic cleft. The gray triangle depicts the electron dense material of presynaptic active zones detected by electron microscopy. Some protein 
domains involved in protein-protein interactions are color-coded and listed in the top right box. The size of proteins and the synaptic cleft are not in 
scale. Abbreviations: cerebellin 1 precursor proteins (Cbln1), GABAA receptor (GABAA), Glutamate receptor (GluR), leucine-rich repeat transmembrane 
neuronal proteins (LRRTMs), neuronal activity-regulated pentraxin (Narp), neuronal pentraxin1 (NP1), neuronal pentraxin receptor (NPR), NMDA 
receptor subunit GluN1 (NR1), voltage-dependent calcium channels (VDCC).
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synapse organizer secreted by postsynaptic muscle cells.79,80 The 
P/Q‑type VDCC utilizes its 11th extracellular loop domain (46 
amino acids, excluding the lip domain) to interact with laminin 
β2 at its C-terminal 20 kDa domain, which includes a leucine-
arginine-glutamine sequence. This interaction organizes the 
synaptic vesicle release sites or active zones, at motor nerve termi-
nals.63,64 Furthermore, this interaction is linked to active-zone-
specific proteins by VDCCβ subunits, suggesting a mechanism 
to link synapse organizers to the cytosolic presynaptic proteins 
(described in section I).63 Single-knockout mice for P/Q-type 
VDCCs, N-type VDCCs or laminin β2, or double-knockout 
mice for P/Q-type VDCCs and N-type VDCCs show reduced 
numbers of active zones.63,64,79 Laminin β2 induces presynap-
tic differentiation in cultured motor neurons even in the pres-
ence of P/Q- and N-type VDCC blockade by agatoxin-IVA and 
conotoxin-GIVA, providing evidence for the dispensability of 
the Ca2+ influx into nerve terminals for active zone formation.64 
This extracellular interaction of presynaptic VDCCs and syn-
aptogenic molecules organizes the presynaptic differentiation of 
neuromuscular junctions.

Similar to the neuromuscular junction, laminin β2 is 
concentrated in the synaptic cleft at the photoreceptor synapses 
and aid the differentiation of retinal neurons.81,82 Instead of P/Q-
type VDCCs, the Ca

v
1.4 (L-type, α1F) VDCC is preferentially 

expressed in the retina and is concentrated at photoreceptor syn-
apses.83-85 Genetic deletions of these genes in mice causes a disso-
ciation of the ribbons, an active zone structure, from presynaptic 
membranes at the photoreceptor synapses.83,86 This active zone 
phenotype suggests that the interaction of presynaptic VDCCs 
and laminin β2 plays an essential role in organizing active zones 
at the photoreceptor synapse, similar to the neuromuscular 
junction.87,88

N-type VDCCs and α-neurexin. A functional link between 
N-type VDCCs and presynaptic neurexin has been suggested.89 
Accumulation of VDCCs at brainstem synapses was impaired 
in the triple-knockout mice for synapse organizer α-neurexins.89 
Interestingly, this phenotype is specific to N-type VDCCs and 
P/Q-type VDCCs are not affected. However, a direct physical 
interaction between N-type VDCCs and neurexins awaits con-
firmation. The presynaptic proteins CASK and Mint/X11 can 
link between VDCCs and α-neurexins.90,91 However, the possi-
bility of this interaction is decreased by the fact that knockout 
mice for CASK demonstrated normal active zones and functional 
presynaptic VDCCs. Similarly, cultured triple-knockout neu-
rons for Mint1/2/3 showed normal synaptic ultrastructure and a 
defect of presynaptic function that seems to be attributable to the 
upregulated Munc18-1.92

In a similar manner, a functional link between postsynaptic 
L-type VDCCs and the extracellular matrix glycoprotein tenas-
cin-C has been suggested for hippocampal long-term potentia-
tion,88 but the evidence for a direct physical interaction between 
VDCCs and tenascin-C awaits confirmation.

VDCC α
2
δ subunit. The VDCC α

2
δ subunits play roles in 

presynaptic differentiation at the Drosophila neuromuscular 
junction.93,94 Mutant embryos lacking the α

2
δ-3 subunit have 

malformed synaptic boutons. This role of the α
2
δ-3 subunit 

VDCCβ subunits and active zone proteins. Like the α 
subunits, VDCCβ subunits interact directly with active zone 
proteins. VDCCβ subunits bind directly with Rim1 through 
interactions between the center domain of the VDCCβ subunit 
(containing the Src homology 3 domain, α1-interacting domain 
and guanylate kinase domain) and the C-terminus domain of 
Rim1 (including the C2B domain).58,62 Protein complexes con-
sisting of the P/Q-type VDCCα subunit, VDCCβ subunits and 
Rim1 can be co-sedimented from mouse brain homogenates, 
demonstrating the formation of triad in vivo. This interac-
tion suppresses the voltage-dependent inactivation of neuronal 
VDCCs. Together with the enhanced synaptic vesicle docking 
in the vicinity of VDCCs that is caused by Rim1, this inter-
action potentiates neurotransmitter release at the presynaptic 
active zone.

VDCCβ subunits also interact with the active zone proteins 
Bassoon and CAST/Erc2.63 These active zone proteins are co-
immunoprecipitated as triad of the P/Q-type VDCCα subunit, 
β1b or β4 subunits, and Bassoon or CAST/Erc2.63 This interac-
tion is essential to structurally organize the presynaptic active 
zones at neuromuscular junctions.63,64 In the absence of func-
tional Bassoon, whole-cell Ca2+ current and Ca2+ influx at the 
presynaptic microdomain of inner hair cells (primarily reflecting 
Ca2+ influx at active zones) are reduced.65 These findings suggest 
that the role of the VDCCβ subunit-Bassoon interaction may 
be similar to the role of the interaction between the VDCCβ 
subunit and Rim1.

These interactions between VDCC subunits and active‑zone-
specific proteins allow for anchoring of the active zone 
cytomatrix to the presynaptic membrane. Active zone proteins 
are also known to interact between themselves.66-68 Consistently, 
Bassoon, Piccolo and Rim are found in protein complexes con-
taining VDCCs in vivo.36,37 Double-knockout mice for P/Q 
VDCCs and N-type VDCCs have synapses specifically lacking 
active zones.63 Taken together, these interactions suggest a forma-
tion of a macromolecular protein complex on the cytosolic side 
of the presynaptic VDCC, which is likely to be the active zones 
visualized as an electron dense projection in the ultrastructural 
analysis by electron tomography.27,28

Presynaptic VDCCs and Extracellular Synapse 
Organizers

Two types of VDCCs, the P/Q- and N-types, are concentrated 
at many presynaptic terminals in the central and peripheral ner-
vous system and play essential roles for synaptic transmission.69-78 
A growing number of reports demonstrate that VDCC subunits 
are involved in organizing presynaptic differentiation jointly with 
synapse organizers. The second section of this review will focus 
on the extracellular interaction between presynaptic VDCC 
subunits and synaptic molecules that is necessary for synapse 
formation.

P/Q-type VDCCs and laminin β2. VDCC α subunits are 
known to have non-conducting functions for presynaptic dif-
ferentiation at the neuromuscular junction. Presynaptic P/Q- 
and N-type VDCCs bind directly to laminin β2,64 which is a 
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NPR is a transmembrane protein.118 Of the neuronal pentraxin 
family members, Narp is the only immediately early gene regu-
lated by synaptic activity.117

The N-terminal domain of the AMPA receptor GluR4 subunit 
interacts with the pentraxin domain of NP1.117,120 Axonal NP1 
and NPR in presynaptic neurons are required to recruit GluR4 to 
synapses.120 The N-terminal domain of GluR4 is necessary and 
sufficient for its recruitment to the synapses.120 The Narp knock-
out mouse shows Narp’s requirement for activity-dependent 
changes in the strength of excitatory inputs onto parvalbumin-
expressing interneurons of the hippocampus.121 Triple-knockout 
mice for neuronal pentraxins indicate that the pentraxins are 
necessary for early synaptic refinements in the retina and dorsal 
lateral geniculate nucleus.122

AMPA receptors are rapidly endocytosed in an mGluR1/5 
dependent manner.123-125 This endocytosis of the GluR1 subunit 
requires NRP, which is cleaved by the MMP tumor necrosis fac-
tor-alpha converting enzyme (TACE) in an mGluR1/5-depen-
dent fashion.126 The analysis using knockout mice for NRP 
and TACE blockers showed that NRP and TACE-activity are 
required for mGluR1/5-dependent LTD in hippocampal and 
cerebellar synapses.126

Similarly, the N-terminal domain of AMPA receptor subunit 
GluR2 (GluA2) interacts directly with N-Cadherin and pro-
motes formation and growth of dendritic spines in vitro127 and 
regulates hippocampal LTD.128 The extracellular domain of the 
NMDA receptor subunit NR1 (GluN1) interacts directly with 
tyrosine kinase EphB2 and regulates synapse development.129,130

GABA
A
 receptor and neurexin. Postsynaptic GABA

A
 recep-

tors interact directly with presynaptic neurexins.131 GABA
A
 

receptors can be purified from brain homogenates using 
immobilized neurexin-2β in a neuroligin-independent man-
ner. A recombinant protein of the extracellular domain of the 
GABA

A
α1 receptor binds the extracellular domain of neurexin. 

Overexpression of neurexins in cultured neurons selectively sup-
presses GABAergic synaptic transmission without decreasing the 
number of GABAergic synapses, and this effect is independent 
of neuroligin. This extracellular interaction suggests a potential 
mechanism to control the inhibitory synaptic transmissions in the 
brain. It is interesting to note that an increasing number of syn-
apse organizers and synaptic proteins (Cbln1, α-Dystroglycan, 
GABA

A
 receptor, LRRTMs, neuroligins) are found to interact 

directly with neurexins and contribute to the organization of 
synapses.97,131-137

VDCC α
2
δ subunit and thrombospondin. The auxiliary 

subunit of the VDCC, α
2
δ subunit, is a receptor for the glial-

derived synaptogenic molecule thrombospondin.138 These two 
proteins bind directly through the interaction between the von 
Willebrand factor type A domain of the α

2
δ-1 subunit and the 

type 2 EGF-like repeats of thrombospondin1-5.138 This interaction 
promotes the formation of excitatory synapses with postsynapti-
cally silent synapses lacking AMPA receptors in the mammalian 
central nervous system.138,139 This α

2
δ-thrombospondin-mediated 

synapse formation does not require the ion-conducting func-
tion of L-, N- or P/Q-type VDCCs.138 Eroglu and colleagues 
concluded that α

2
δ is necessary and sufficient postsynaptically 

is independent of the ion-conducting function of the calcium 
channel complex, and is separate from its role of properly localiz-
ing VDCCα subunits at the neuromuscular junctions.93 Any role 
of synapse organizer for these phenotypes is currently unknown.

Postsynaptic Channels  
and Extracellular Synapse Organizers

A primary function of postsynaptic ligand-gated ion chan-
nels at chemical synapses is to bind neurotransmitters and 
then open to modify the excitability of the postsynaptic cells. 
The cytosolic domains of these ligand-gated channels interact 
with postsynaptic scaffolding proteins to organize the synapse 
and modify the channel functions, which is detailed in other 
reviews.95,96 In addition to these interactions, the subunits of 
postsynaptic channels also show synaptogenic activities or 
interact with synapse organizers. The third section of this 
review will focus on extracellular interactions of postsynaptic 
channel subunits and synapse organizers.

Glutamate receptor δ2 and cerebellin1. Postsynaptic δ-type 
glutamate receptors (GluRδ2, GluD2) form transsynaptic pro-
tein complexes with presynaptic neurexins through synapse 
organizer cerebellin 1 precursor proteins (Cbln1).97 GluRδ2 
is selectively expressed in Purkinje cells of the cerebellum98,99 
and is exclusively localized at parallel fiber-Purkinje cell syn-
apses.100,101 GluRδ2 forms heteromeric channels with AMPA or 
kainate receptors in vitro, but can exist as a homomeric receptor 
in vivo.102,103 Importantly, GluRδ2 demonstrates synaptogenic 
activity in vivo, as demonstrated by knockout mouse stud-
ies.104-106 The N-terminal domain of GluRδ2 induces presynaptic 
differentiation in vitro and in vivo.107,108 Finally, a GluRδ2-null 
cerebellum shows impaired long-term depression (LTD) of paral-
lel fiber-Purkinje cell synaptic transmission.104

The N-terminal domain of GluRδ2 binds directly to 
Cbln1,97,107 and Cbln1 also binds directly to neurexins 1β/2β/3β 
and 1α, containing the S4 splice site.97,109 The Cbln1 knockout 
mouse shows ataxia and a severe reduction in the number of syn-
apses between Purkinje cells and parallel fibers,97,110 which closely 
resembles the GluRδ2-null mouse. Strikingly, the synaptic defect 
in the Cbln1 knockout mouse can be rescued within a day by a 
single injection of recombinant Cbln1.111 This triad interaction 
of GluRδ2, Cbln1 and neurexin is essential for synapse forma-
tion between parallel fiber and Purkinje cells in cerebellum. 
This interaction can align postsynaptic channels to the synapse 
organizer located at the presynaptic terminal.97,109 Cbln1 belongs 
to the C1q family of proteins; C1q plays a role in synapse elimi-
nation,112,113 and its non-channel receptor has been identified 
recently.114

Glutamate receptors and the neuronal pentraxin family, 
N-Cadherin, and EphB. The synaptic clustering of AMPA 
receptors (GluR1-4 subunits, GluA1-4) is regulated by neuronal 
activity-regulated pentraxin (Narp).115-118 Narp is a member of the 
neuronal pentraxin family of calcium-dependent lectins, which 
includes neuronal pentraxin1 (NP1) and neuronal pentraxin 
receptor (NPR).118,119 Narp and NP1 are secreted proteins that 
form heteromeric complexes on the extracellular surface,117 and 
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protein MEC-9, or with collagen unc-105 have been suggested, 
but these await confirmation of direct physical interactions.154-157 
These examples show that extracellular interactions of ion chan-
nel subunits can be quite diverse and extensive.

Summary and Perspectives

The studies summarized in this review clearly establish 
non-conducting roles for ion-channel subunits in the formation 
and maintenance of synapses, in addition to their important role 
as ion-permeable channels for chemical neurotransmission. Both 
presynaptic and postsynaptic channel subunits interact with 
extracellular synapse organizers. Such structural interactions are 
extended into the cytosolic region by using the ion-channel sub-
units as scaffolding proteins. These trans-synaptic protein inter-
actions allow alignment of pre- and postsynaptic specialization to 
achieve effective neurotransmission.

Important questions still remain to elucidate the role of trans-
synaptic molecular mechanisms involving ion channel subunits for 
organizing synapses. First, the initial interaction or the essential 
interaction to precisely position these synaptic channels at the pre- 
and postsynaptic sites remains unknown. Recent findings described 
in this review suggest that the location of these synaptic channels 
can be modified either from cytosolic side or extracellular side. 
Second, when or how much is ion-conducting function of channels 
required for the formation/maturation/maintenance of synapses? 
The molecular mechanism responsible for the initial phase of syn-
apse formation does not seem to require synaptic activity. Even 
in the absence of synaptic transmission, morphologically normal 
synapses can be formed with active zones in knockout mice for 
choline acetyltransferase or munc18-1, or double-knockout mice 
for munc13-1/2 or P/Q-, N-type VDCCs.63,158-160 However, activ-
ity becomes important later for synaptic elimination and P/Q-type 
VDCCs plays an essential role at the climbing fiber-Purkinje cell 
synapse.161 Third, the timing of the synapse transmission control/
modification by these transsynaptic interactions is unknown. The 
extracellular interactions reviewed here can modify both excitatory 
and inhibitory synapses, but the control of these actions remains 
unknown. These are just few examples of questions that await fur-
ther investigation to elucidate synapse formation and maintenance.
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for this synaptogenic activity based on their analysis of α
2
δ-1 

overexpression and knockdown in the postsynaptic cells. 
Thrombospondin induces ultrastructurally normal synapses that 
are presynaptically active,139 but the involvement of presynap-
tic α

2
δ subunits or the identity of the presynaptic receptor for 

the thrombospondin-induced presynaptic differentiation awaits 
further study. Interestingly, thrombospondin has been shown 
to also interact in vitro with the synapse organizer neuroligin, 
which localizes at the postsynaptic membrane.140 These interac-
tions may cooperate for postsynaptic differentiation.

Knockout mice for the α
2
δ-2 subunit exhibit morphological 

abnormalities of Purkinje cell dendrites in the cerebellum.141 Mice 
lacking the α

2
δ-4 subunit exhibit a significantly reduced outer 

plexiform layer, and their intraretinal circuitry and functions are 
perturbed.142 The phenotypes in these mutant mice suggest roles 
of the VDCC α

2
δ subunit in synapse formation, but ultrastruc-

tural or immunohistochemical analyses of the synapse in these 
mutants mice awaits further study. Whether thrombospondin (or 
other synapse organizers) contributes to the phenotypes in these 
α

2
δ mutants remains unclear.

Are there More Extracellular Interactions  
of Ion Channels at Synapses?

Potentially, additional interactions of synaptic ion channel-
synapse organizer remain to be identified. This possibility is 
supported by several examples of extracellular interactions of ion 
channel subunits identified outside the synapse. For instance, 
G-protein-activated inward rectifier K (GIRK) channels interact 
directly with integrins.143 The arginine-glycine-asparatate (RGD) 
sequence located in the extracellular domain of GIRK channel 
binds to integrins. This interaction increases the plasma mem-
brane localization of GIRK channels. Also, the voltage-depen-
dent sodium channel α subunit interacts with the extracellular 
carbonic anhydrase domain of receptor protein tyrosine phos-
phatase β (RPTPβ).144 RPTPβ also interacts with the cytosolic 
domains of the voltage-dependent sodium channel α subunit 
and β1 subunit. These interactions modulate channel function 
by the phosphatase activity of RPTPβ. The β1/2 subunits of 
voltage-dependent sodium channels also interact directly with 
cell adhesion molecules (connexin-43, contactin, N-cadherin, 
NrCAM, neurofascin-155, -186, tenascin-C/R) on axons and glia 
cells.145-150 The diverse functional roles of these homophilic and 
heterophilic cell adhesions of voltage-dependent sodium chan-
nels are reviewed in detail elsewhere.151-153 Genetic interactions 
of the mechanotransduction channel MEC-4/10 and the extra-
cellular anchor protein MEC-5 through the extracellular link 
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