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REVIEW REVIEW

According to the World Health Organization, over 20% of the 
world population has experienced some degree of chronic pain.1 
Pain is the most important symptom in terms of prevalence and 
potential personal/economic consequences; in the USA only, the 
cost of chronic pain exceeds US$210 billion annually.2 Despite 
significant advances in our understanding of the mechanisms 
underlying sensory transduction and nociception, the effi-
cacy of therapeutic approaches remains variable and clinical 
improvements are modest. The discovery and characterization 
of ion channels expressed in primary afferent neurons and their 
involvement in nociception has provided new potential targets 
for the management of clinical pain syndromes.

Nicolas Jancsó was the first to report that the vanilloid cap-
saicin, the chemical responsible for the piquancy of hot pepper, 
acted on nociceptive afferent neurons (nociceptors) to induce 
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Despite significant progress in our understanding of the cellular 
and molecular mechanisms underlying sensory transduction 
and nociception, clinical pain management remains a 
considerable challenge in health care and basic research. 
The identification of the superfamily of transient receptor 
potential (TRP) cation channels, particularly TRPV1 and TRPA1, 
has shed light on the molecular basis of pain signaling during 
inflammatory conditions. TRPV1 and TRPA1 are considered 
as potential targets in the treatment of inflammatory pain 
because of their ability to be activated by nociceptive signals 
and sensitized by pro-inflammatory mediators. Notably, TRPA1 
is expressed in visceral afferent neurons and is known to 
participate in inflammatory responses and the establishment 
of hypersensitivity. This review summarizes the current 
knowledge of the role of TRPA1 in sensory transduction, 
particularly in the context of visceral inflammation and pain in 
the gastrointestinal and urinary tracts.
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pain.3 Almost 40 years after these preliminary observations, the 
ion channel transient receptor potential (TRP) vanilloid 1 was 
identified as the molecular sensor for capsaicin.4 TRPV1 is highly 
expressed in nociceptors and can be activated by a wide range 
of noxious stimuli; while protons (H+), heat, pressure or lipids 
directly activate TRPV1,5,6 pro-inflammatory mediators such as 
serotonin, bradykinin, histamine, proteases, chemokines or nerve 
growth factors indirectly sensitize the channel by lowering its 
activation threshold.7,8 Since the discovery of TRPV1, 28 differ-
ent TRP subunit genes have been identified, and their products 
classified into three TRP subfamilies: vanilloid TRPs (TRPVs), 
melastatin TRPs (TRPMs) and ankyrin TRPs (TRPAs) 
(reviewed in ref. 9). Over the last decade, a growing body of evi-
dence has suggested that TRP channels, particularly TRPV1, 
could play a role in the establishment of inflammation and pain. 
This is supported by the observation that TRPV1 knockout mice 
show impaired response to heat and reduced thermal hyperalgesia 
during inflammation.10,11 More recently, another member of the 
TRP channel family, TRPA1, has also emerged as an important 
player in these neurological processes. The focus of this review is 
to provide a better understanding of the role of TRPA1 in sensory 
transduction, particularly in the context of visceral inflammation 
and pain.

TRPA1: Structure, Distribution and Regulation

TRPA1, formerly referred to as ANKTM1, was originally 
identified and cloned by Jaquemar and colleagues in 1999.12 
In their study, the authors described a transformation-sensitive 
mRNA present in fibroblasts, which encoded a transmembranous 
TRP-like protein supporting several ankyrin-like domains.12 It 
was later established that the mammalian TRPA1 gene is orthol-
ogous to the nociception gene painless in Drosophila melanogaster, 
thus suggesting a conserved role for TRPA1 in sensory functions 
in humans.13,14

TRPA1, is composed of six putative transmembrane regions 
(S1–S6), flanked by cytosolic C- and N-terminal tails with sev-
eral amino-terminal ankyrin repeats (Fig. 1). In its functional 
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extracellular portion of the channel, or by mediating increases 
in intracellular Ca2+, also recognized to desensitize other TRP 
channels.21,32,34,35

During inflammatory conditions, TRPA1 activity is regulated 
by several different mechanisms, including the modulation of its 
trafficking to the membrane (Fig. 2). Indeed, in vitro experiments 
on HEK293T cells and mouse DRGs have demonstrated that 
mustard oil induces TRPA1 activation and translocation to the 
cell membrane, in a protein kinase A (PKA) and phospholipase C 
(PLC)-dependent manner.36 This increase in TRPA1 trafficking 
to the cell surface is believed to be mediated by induction of ves-
icle fusion with the plasma membrane.37-40

Finally, TRP channels can also be regulated downstream of 
G protein-coupled receptor activation. TRPV1 activation has 
been reported following stimulation of sensory neurons with the 
pro-inflammatory mediator bradykinin, which results in thermal 
hyperalgesia and acute pain.41 Interestingly, this effect was main-
tained in TRPV1-deficient mice, suggesting the involvement of 
another channel in the cellular events evoked by bradykinin.41 
Using TRPA1-deficient animals, independent studies have dem-
onstrated that TRPA1 is required for bradykinin-evoked sensory 
neuron excitation ex vivo and hyperalgesia in vivo.19,42 These 
observations indicate that TRPV1 and TRPA1 are interdepen-
dently regulated downstream of B

2
 bradykinin receptor (B

2
R) 

activation, and act in concert to induce hyperalgesia. Further 
research is warranted in order to determine if this crosslink 
requires physical association of the two channels, or is dependent 
on a regulatory partnership. In addition to its effect on TRPA1/
TRPV1 interaction, bradykinin has also been shown to sensitize 
TRPA1 via activation of PLC (Fig. 2).43 PIP

2
 has been suggested 

as an endogenous inhibitor of TRPA1;44 by breaking down 

configuration, TRPA1 forms tetramers via the interaction of the 
cation-permeable pore regions located between the fifth and sixth 
transmembrane domains of the channel subunits.

TRPA1 is mainly expressed in small-diameter peptidergic 
nociceptors of the dorsal root (DRG), nodose and trigeminal 
ganglia, along with TRPV1.15,16 Recently, TRPA1 expression was 
also observed in colonic myenteric neurons, where it is believed 
to modulate spontaneous colonic functions.17 Although TRPA1 
has been characterized and studied mainly in the nervous system, 
its expression was also reported in non-neuronal tissues such as 
skeletal muscle, lung, small intestine, colon and pancreas.18

TRPA1 is activated by a wide spectrum of chemical and 
mechanical stimuli; TRPA1 is known to respond to dietary 
irritants such as isothyocyanates (mustard oil, wasabi, horse-
radish) and allycin (garlic), to name only a few.19-22 Several 
endogenous pro-inflammatory mediators, including cyclo-
pentane prostaglandins and byproducts of oxidative stress 
(4-hydroxynonenal [4-HNE], 4-oxononenal), have been shown 
to directly activate TRPA1 by covalent modification of cysteine 
residues on the channel.23-27 Subsequent to TRPA1 activation, 
increases in intracellular Ca2+ induce the peripheral release of 
neuropeptides (substance P and calcitonin gene-related peptide 
(CGRP)), purines, and other transmitters from sensitized nerve 
fiber endings, which ultimately results in neurogenic inflam-
mation and hypersensitivity.28-31 It is interesting to note that 
Ca2+ does not only represent an intermediate player in TRPA1-
mediated events, but also acts as a direct modulator of TRPA1 
activity. Indeed, electrophysiological recordings have demon-
strated an increase in TRPA1 activity during Ca2+ perfusion 
in vitro.21,32-34 Furthermore, extracellular Ca2+ is also known to 
induce TRPA1 desensitization, either by direct binding to the 

Figure 1. Schematic representation of human TRPA1. Each subunit is composed of six membrane-spanning domains (S1–S6) flanked by cytosolic C- and 
N-terminal domains. The amino-terminal tail supports several ankyrin repeat domains (blue circles). The pore region is located between the fifth and 
sixth transmembrane domains of each channel subunit. Green ovals represent cysteine residues identified as essential for covalent activation of TRPA1.
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protein 1 (MIP-1α), all of which are implicated in leukocyte 
recruitment and activation.28 This inflammatory response, 
along with the release of substance P and CGRP from sensitized 
nerve fiber endings, contributes to the development of visceral 
hypersensitivity.28-31

A few years ago, Yang et al. demonstrated that reduction of 
TRPA1 expression by antisense oligodeoxynucleotide significantly 
reduced colonic hypersensitivity induced by trinitrobenzene-sul-
phonic acid (TNBS)-mediated colitis in mice.48 These results were 
further supported and expanded by a recent study showing that 
TRPA1 agonists allyl isothiocyanate and trans-cinnamaldehyde 
induced mechanosensory responses in vagal and pelvic serosal 
afferents of TRPA1+/+ mice, but not in TRPA1-deficient ani-
mals.49 These observations were corroborated by in vivo recording 
of visceromotor responses to colorectal distention, which showed a 
significant reduction in mechanical hyperalgesia in TRPA-/- mice, 
therefore directly implicating TRPA1 in colonic pain.49 Similar 
results were obtained in the rat stomach using intrathecal injec-
tion of TRPA1 antisense.50 In the colon, it is interesting to note 
that mechanical hypersensitivity evoked by TRPA1 agonists was 
further amplified in afferents from mice with chemically induced 
colitis, suggesting a role for TRPA1 in mechanosensory function 
and sensitization during inflammatory conditions.49

phosphatidylinositides (PIP
2
), PLC would block its inhibitory 

effect on TRPA1, and thus sensitize the channel.43 Diacylglycerol 
(DAG), a byproduct of PIP

2
 hydrolysis by PLC, could also be 

involved in this process, either by directly activating TRPA1 or 
by mediating PKC-dependent phosphorylation of TRPA1.19,45 
Finally, PKA has also been suggested as a signaling intermedi-
ate molecule in bradykinin-mediated TRPA1 sensitization, by 
directly phosphorylating the channel (Fig. 2).43,45

TRPA1 and Visceral Pain

Gastrointestinal tract. Abdominal pain is a hallmark of several 
inflammatory diseases of the gastrointestinal (GI) tract, includ-
ing irritable bowel syndrome, inflammatory bowel disease and 
functional dyspepsia.46,47 The GI tract is certainly the most stud-
ied among the internal organs with regards to the role of TRPA1 
in visceral inflammation and nociception. Indeed, several 
experimental models of colitis have demonstrated the efficacy of 
mustard oil in inducing colitis.28-31 Mustard oil-induced colitis 
is characterized by the upregulation of several pro inflamma-
tory mediators including interleukin (IL)-1β, IL-6, granulocyte 
macrophage colony stimulating factor (GM-CSF), macrophage 
chemotactic protein 1 (MCP-1) and macrophage inflammatory 

Figure 2. Modulation of TRPA1 activity and trafficking. (1) Activation of PKA and PLC by PAR-2 or B2R induces trafficking of TRPA1 to the plasma 
membrane. (2) PKA and PKC-dependent phosphorylation potentiate TRPA1 activation. (3) Activation of PLC downstream of PAR-2 or B2R enhances 
TRPA1 activity by releasing the channel from PIP2-mediated inhibition. (4) DAG modulates TRPA1 activity either directly, by activation of the channel 
itself, or in a PKC-dependent manner. 4-hydroxynonenal, 4-HNE; B2 Bradykine receptor, B2R; Diacylglycerol, DAG; protease-activated receptor-2, PAR-2; 
protein kinase A, PKA; protein kinase C, PKC; phosphatidylinositide, PIP2; phospholipase C, PLC.
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to play an important role in sensory transduction in the urinary 
tract.58 TRPA1 expression has been reported in the human and 
rat urothelium, and is believed to modulate bladder function 
in pathological conditions.59,60 Notably, TRPA1 upregulation 
has been observed in the urothelium of patients with blad-
der outlet obstruction, when compared to healthy controls.59 
Furthermore, activation of TRPA1 by intravesical administra-
tion of trans-cinnamaldehyde has been shown to induce hyper-
reflexia through C-fiber-mediated afferent pathway in rats.60 
These results are supported by another study demonstrating 
altered urodynamic functions, including increase micturition 
frequency and reduced voiding volume, in response to other 
TRPA1 agonists such as allyl isothiocyanate and hydrogen sul-
fide.61 Taken together, these observations suggest that TRPA1 
is involved in the regulation of bladder sensory function and 
micturition reflex.

TRPA1 is also implicated in the pathology of overactive 
bladder, a chronic condition often linked to spinal cord injury 
and associated with spontaneous and involuntary bladder con-
tractions.62 Andrade and colleagues reported an upregulation of 
TRPA1 channels in the bladder and bladder-innervating DRG 
neurons of rats subjected to spinal cord injury.62 Importantly, the 
inhibition of TRPA1 by either selective antagonists or targeted 
gene deletion was shown to normalize bladder contractions in 
this model, thus identifying TRPA1 as an important player in 
overactive bladder syndrome.62

Conclusion

Although we have gained significant insights into the mechanisms 
underlying sensory transduction and nociception, efficient pain 
management remains a considerable challenge in health care 
and basic research. One of the most important breakthroughs 
with regards to inflammatory pain has been the discovery of the 
sensory and nociceptive role of TRP channels. After TRPV1, 
TRPA1 has recently emerged as another potential therapeutic 
target in the treatment of chronic visceral pain. Indeed, the role 
of TRPA1 in GI inflammatory disorders is becoming increasingly 
clear and, although causal implication remains to be established, 
TRPA1 upregulation has been observed in several disease model 
systems. In-depth research is warranted to determine the exact 
role of TRPA1 in visceral pain and neurogenic inflammation, but 
our new understanding of its homeostatic and pathophysiological 
functions certainly offers bright perspectives for the development 
of novel therapeutic approaches in the treatment of chronic pain 
associated with visceral inflammation.
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Activation of the G protein-coupled receptor protease‑activated 
receptor-2 (PAR-2) can induce colitis and visceral hypersensitiv-
ity. Interestingly, PAR-2 is also involved in the modulation of 
TRPA1 activity (Fig. 2). TRPA1 and PAR-2 have been observed 
in a co-localization pattern in rat DRG neurons.43 The same 
study also demonstrated TRPA1 sensitization downstream of 
PAR-2 activation. Similar to what has been observed upon bra-
dykinin treatment, this mechanism appears to be dependent on 
the cleavage of PIP

2
 by PLC, which releases the inhibition of 

TRPA1.43 PAR-2 has also been shown to modulate TRPA1 in a 
PKA-dependent manner, either via TRPA1 phosphorylation or 
induction of its trafficking to the membrane (Fig. 2).36,45 The 
interaction between PAR-2 and TRPA1 is suggested to play a role 
in different experimental models of GI disorders. Notably, PAR-
2-mediated sensitization of TRPA1 represent a key mechanism 
in mast cell-mediated mechanical hyperalgesia in the guinea 
pig esophagus.45,51 Furthermore, Cattaruza and colleagues have 
reported that TRPA1 deletion significantly reduced mechanical 
colonic hyperalgesia induced by PAR-2 activating peptide.52

The expression of TRPA1 has also been demonstrated in DRG 
neurons innervating the pancreas, and is believed to participate in 
inflammation and pain related to acute pancreatitis in mice.53,54 
TRPA1 agonists have been shown to induce pancreatic inflam-
mation and hyperexcitability of spinal nociceptors.53 Furthermore, 
cerulein-evoked pancreatic inflammation induced a significant 
increase in the expression and activation of both TRPA1 and 
TRPV1, as well as overall excitability of pancreatic sensory neu-
rons.54 Interestingly, while the inhibition of both TRPA1 and 
TRPV1 individually reduced the severity of pancreatitis, the 
combined treatment appeared to be more effective. Importantly, 
these observations were corroborated in pain-related behavior 
experiments; combined treatment with TRPA1 and TRPV1 
antagonists prevented the reduction of exploratory behaviors 
observed in mice treated with cerulean alone.54 These observa-
tions, similar to what was found in thermal hyperalgesia-induced 
by bradykinin, suggest a functional crosstalk between TRPA1 and 
TRPV1 in the modulation of pain signaling during pancreatitis.

Urinary tract. Alteration in afferent activity is believed to be a 
key factor in urinary tract dysfunction; hyperexcitablity of affer-
ent neurons innervating the urinary tract has been proposed as a 
possible mechanism behind idiopathic detrusor over activity and 
painful bladder symptoms (reviewed in ref. 55 and 56).

In mice, TRPA1 expression has been reported in small afferent 
fibers innervating the trigone of the bladder,16 where it appears to 
modulate bladder contraction under physiological conditions.33 
Subsequent studies also demonstrated that the majority of DRG 
neurons innervating the mouse bladder expressed TRPA1, often 
in a co-localization pattern with TRPV1.57

The urothelium, the epithelial layer lining the bladder, inter-
acts closely with underlying afferent nerve fibers and is believed 
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