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Emotional memory impairments in a genetic rat model
of depression: involvement of 5-HT/MEK/Arc signaling
in restoration
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1Center of Molecular Medicine, Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden;
2Department of Neuroscience, Karolinska Institute, Stockholm, Sweden; 3Inst De Recherches Servier, Experimental Sciences,
Suresnes, France; 4Center of Neuropharmacology, Department of Pharmacological Sciences, Center of Excellence on
Neurodegenerative Diseases, University of Milan, Milan, Italy and 5Department of Clinical Neuroscience, Karolinska Institute,
Stockholm, Sweden

Cognitive dysfunctions are common in major depressive disorder, but have been difficult to
recapitulate in animal models. This study shows that Flinders sensitive line (FSL) rats, a
genetic rat model of depression, display a pronounced impairment of emotional memory
function in the passive avoidance (PA) task, accompanied by reduced transcription of Arc in
prefrontal cortex and hippocampus. At the cellular level, FSL rats have selective reductions in
levels of NMDA receptor subunits, serotonin 5-HT1A receptors and MEK activity. Treatment
with chronic escitalopram, but not with an antidepressant regimen of nortriptyline, restored
memory performance and increased Arc transcription in FSL rats. Multiple pharmacological
manipulations demonstrated that procognitive effects could also be achieved by either
disinhibition of 5-HT1AR/MEK/Arc or stimulation of 5-HT4R/MEK/Arc signaling cascades. Taken
together, studies of FSL rats in the PA task revealed reversible deficits in emotional memory
processing, providing a potential model with predictive and construct validity for assessments
of procognitive actions of antidepressant drug therapies.
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Introduction

The clinical impact of emotional dysfunction on
cognitive capacity is recognized but difficult to treat.1–3

Besides depressed mood, the DSM-IV criteria of major
depressive disorder (MDD) involve cognitive aspects,
that is, diminished ability to think and concentrate, or
indecisiveness, with devastating effects on executive
functions, short- and long-term learning and memory.2,3

These cognitive impairments appear to involve altera-
tions in the neuronal processing of emotional stimuli,
that is, negative attentional bias including feelings of
worthlessness or excessive guilt and recurrent thoughts
of suicide.4 Multiple brain areas, involved in emotion-
ality and cognition, that is, prefrontal cortex (PFC),
hippocampus (HPC), parahippocampal region (PHR),
amygdala and striatum, show altered functions in
MDD.1,2,5 In particular, volume reduction and impaired
functionality of hippocampus have been repeatedly
reported in MDD.2,6,7

Studies in depressed patients have linked dysfunc-
tion of the central serotonergic system with abnormal
cognitive processing of emotional stimuli, and indi-
cated that an important component in antidepressant
therapy is support of cognitive functions, which can be
separated from elevation of mood.8 The clinical
efficacy of selective serotonin reuptake inhibitors
(SSRIs) in MDD is exerted by several of the 14 cloned
5-HT receptors, with 5-HT1AR being the most studied.9

Several studies have described alteration of 5-HT1AR in
postmortem samples from patients with MDD.10–15

Interestingly, 5-HT1AR antagonists facilitate learning
and counteract memory impairments.9 In addition, 5-
HT4R agonists may have antidepressant16 and procog-
nitive effects in learning and memory tasks.17

The delayed onset of SSRIs and most other anti-
depressants implicate that therapeutic effects are
mediated beyond elevations of monoamines, such as
changes of receptor coupling to intracellular signaling
cascades and cross talk with non-monoaminergic
mechanisms. Several lines of evidence indicate that
brain-derived neurotrophic factor (BDNF)-induced
activation of TrkB mediate actions of antidepres-
sants.18–21 TrkB receptors, in turn, stimulate several
intracellular cascades including the mitogen-activated
protein kinase (MAPK), AKT and phospholipase C
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pathways.21,22 In particular, the MAPK pathway is
involved in behavioral effects of antidepressants and
an important modulator of ionotropic receptor signal-
ing, structural remodeling and consolidation of fear
memories.23–25 Synaptic activation of MAPK induces,
via CREB and Elk-1, expression of activity-related
cytoskeletal-associated protein (Arc/Arg 3.1).23,26–28

Arc expression is induced by long-term potentiation-
inducing stimuli, requiring NMDAR,27,29 involved in
synaptic memory consolidation and enriched in
hippocampal dendritic spines where its activation is
required for acquisition of contextual and spatial
learning.26,30,31 Arc expression is also activated by
several other mechanism(s), including BDNF,28 protein
kinase A,30 and pertussis-induced inhibition of
Gi-mediated signaling.32 Accordingly, blockade of 5-
HT1AR augments the effect of an acute dose of
paroxetine on increasing transcription of Arc mRNA.33

Thus, Arc transcription may be a key nodal point in
integration of monoaminergic antidepressant effects
with glutamate-driven activity-dependent neuronal
adaptations regulating gene transcription associated
with information processing and associative learning.

The Flinders sensitive line (FSL) is a rat strain
associated with distinct behavioral and neurochem-
ical features of major depression, including face
validity, that is, psychomotor retardation and
increased rapid eye movement sleep. FSL rats display
a genetic vulnerability to environmental stressors
and have been successfully used for validation of
antidepressant effects.34 Interestingly, promotion of
hippocampal neuroplasticity, by means of intra-
cerebroventricular injections of bone marrow me-
senchymal stem cells, reverses the depressive-like
phenotype of FSL rats.35 Long-term potentiation is
also reduced in the cornu ammonis 1 (CA1) area of
hippocampus, shown during in vivo recordings in
anesthetized FSL rats36 paralleled by reduced NR1
subunits of the NMDAR in hippocampal synapto-
somes.36 FSL rats also have reduced hippocampal
volume and dendritic spines, which is reversed by
antidepressants.37 These alterations may affect emo-
tional memory processes that, indeed, are believed to
depend on enduring remodeling of neuronal mor-
phology and activity-dependent structural plasticity,
particularly of glutamatergic dendritic spines, indi-
cating possible cognitive impairments in FSL rats.

In the present study, we performed behavioral,
pharmacological, biochemical and histological
experiments to examine whether FSL rats exhibit
impairments in emotional learning, which may
respond differentially to various antidepressant
therapies and/or selective manipulations of 5-HT
neurotransmission.

Materials and methods

Animals and pharmacological treatments
Adult FSL and Flinders resistant line (FRL) rats were
bred at the Department of Physiology and Pharmacology
at Karolinska Institute, and were tested at 2–4 months of

age. Rats were kept in standard cages (TypeIV Macrolon,
Bayer Material Science, Leverkusen, Germany, 26�
42�15 cm) with sawdust, at room temperature and
relative humidity (45–55%) under a constant light/dark
cycle (lights on at 0700 hours). Water and food pellets
(LactaminR36, Stockholm, Sweden) were available ad
libitum. Experimental procedures were approved by the
local Animal Ethics Committee (Stockholms Norra
Djurförsöksetiska Nämnd).

FRL and FSL rats were randomly assigned to groups
given either escitalopram, nortriptyline or vehicle
administered to standard rat pellets38,39 (Supplemen-
tary Figure S4) (Lactamin AB). Escitalopram was
given at 340 mg kg�1 pellets for 3 weeks, followed by
410 mg kg�1 pellets. Nortriptyline was administered at
330 mg kg�1 pellet.

NAD-299 ((R)-3-N,N-dicyclobutylamino-8-fluoro-
3,4-dihydro-2H-1-benzopyran-5-carboxamide hydro-
gen (2R,3R)tartrate monohydrate; 1 mg kg�1 subcuta-
neous (s.c.); AstraZeneca R&D, Södertälje, Sweden)
and RS67333 (1 mg kg�1 intraperitoneal (i.p.); Tocris,
Bristol, UK) were administered 30 min before test-
ing.40,41 The (±)-8-OH-DPAT (8-hydroxy-2-(di-n-pro-
pylamino)tetralin; 0.3 mg kg�1 s.c.; Sigma, St Louis,
MO, USA) and MK-801 ((þ )-10,11-dihydro-5-methyl-
5H-dibenzo[a,d]-cyclohepten-5,10-imine hydrogen
maleate; 0.05 mg kg�1 s.c.; Sigma) were both adminis-
tered 15 min before training.41 GR125487 (5-fluoro-2-
methoxy-[1-[2-[(methylsulfonyl)amino]ethyl]-4-piperi
dinyl]-1H-indole-3-methylcarboxylate sulfamate;
10 mg kg�1 i.p.; Tocris) was given 60 min before
training.17 Drugs were dissolved in 2 ml kg�1 of 0.9%
NaCl. PD184161(Servier, Suresnes, France) was
administered 60 min before testing at a dose of
30 mg kg�1 i.p. and dissolved in 1% Tween80 in
6 ml kg�1 of 0.9% NaCl.

Passive avoidance, forced-swim test, open field and
elevated plus-maze
The step-through passive avoidance (PA) was per-
formed as described earlier41 (see Supplementary
Figure S1). During PA training, rats were placed in
the bright compartment and allowed to explore for
120 s. Thereafter, the sliding door was opened and
once the rat had entered the dark compartment, the
sliding door was automatically closed and a weak
electrical stimulus (0.4 mA, 2 s scrambled current)
was delivered through the grid floor. After 24 h, the
animal was again gently placed in the light compart-
ment, and the latency to enter the dark compartment
with all four paws was automatically measured
(retention latency) with a cutoff time for testing after
9 min. See Supplementary information regarding
the procedures for forced-swim test, open field and
elevated plus-maze (Supplementary Figure S4).

Histological measurements of Arc and BDNF
transcription and 5-HT receptors
For in situ hybridization experiments, rat brains were
rapidly dissected after decapitation and immediately
frozen at �80 1C. Fresh frozen (12 mm) coronal cryostat
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sections were prepared and hybridized with 35S-
radiolabeled antisense riboprobes against Arc and
BDNF according to a previous protocol.42 For receptor
autoradiography procedure with [3H]8-OH-DPAT,
[125I]cyanopindolol and [3H]GR113808, see Supple-
mentary Figure S2. Densitometric measurements
were obtained from autoradiograms using the NIH
ImageJ 1.40 software (National Institute of Mental
Health, Bethesda, MD, USA) after subtraction of
non-specific binding.

Immunoprecipitation and immunoblotting of total
protein, and their phosphorylation state
The levels of the studied proteins and their phos-
phorylation state were assessed by immunoblotting.
To preserve protein phosphorylation, rats were
sacrificed using focused microwave irradiation
(Muromachi Kikai, Tokyo, Japan), with brain regions
dissected and frozen at �80 1C. Alternatively, rats
were decapitated, their head snap frozen, brain
regions rapidly dissected out and processed to avoid
dephosphorylation events. These procedures have
been described earlier.42,43 For detailed immunopre-
cipitation and immunoblotting protocols, see Supple-
mentary Table S1.

Statistical analysis
The data were analyzed with one-way or two-way
analysis of variances, with drug treatment, rat strain
or brain region as factors in multiple comparisons.
For each significant F-ratio, Newman–Keuls test
was used for post hoc comparison of effects following
one-way analysis of variance, whereas Bonferroni
post hoc test was used after two-way analysis of
variance. When only two groups were compared
(FRL with FSL), a two-tailed unpaired Student’s
t-test was used. P < 0.05 was considered statistically
significant.

Results

Baseline performance in PA and Arc transcription in
FSL and FRL rats
FSL rats of both sexes displayed reduced performance
in the PA task compared with the control FRL rats
(Figure 1a). To determine biochemical measures
corresponding to the deficit in contextual memory,
assessment of Arc mRNA levels was made in several
brain regions. Arc mRNA expression was specifically
reduced in medial PFC and in hippocampal CA1 and
dentate gyrus subterritories, but not in parahippo-
campus, somatosensory cortex, amygdala or thalamus
(Figures 1d–m).

Baseline regulation of glutamate and 5-HT receptors
and signaling molecules
Arc mRNA expression is regulated by glutamate and
serotonin neurotransmission, and, in accordance with
reduced Arc mRNA, western blotting showed lower
levels of NR1 subunits of the NMDAR complex in
PFC, hippocampus and parahippocampus of FSL rats

(Figure 2a). The compositions of the different
NMDAR subunits determine gating and kinetic
properties of the NMDAR, with important conse-
quences for synaptic plasticity and memory.44,45 The
NR2B subunit is specifically involved in NMDAR
interactions with the MAPK cascade.46 In FSL rats,
NR2A and NR2B subunits were specifically lowered
in PFC and hippocampus (Figure 2a). In none of the
studied regions, GluR1 subunits of the AMPAR
complex were different between FSL and FRL rats
(Figure 2a). Serotonin 5-HT1AR, but not 5-HT1BR or
5-HT4R, were reduced in all studied regions in FSL
rats (Figure 2a). Likewise, labeling of 5-HT1AR by
[3H]8-OH-DPAT was reduced in hippocampal sections
from male (Supplementary Figure S2A–C) and female
(Supplementary Figure S2A, D and E) FSL rats,
whereas there were no alterations in 5-HT1BR- or 5-
HT4R-like binding using [125I]cyanopindolol and
[3H]GR113808, respectively (Supplementary Figure
S2F–O).

In contrast to the reduced levels of NMDAR
subunits, their phosphorylation states appeared to
be generally increased in FSL rats, possibly as a
compensatory mechanism(s). Specifically, NR1 sub-
units showed significantly increased phosphorylation
of Ser896, a PKC site, and Ser897, a protein kinase A
site, in the hippocampus (Figure 2b). In prefrontal
cortices, the phosphorylation at the NR1 subunit at
site Ser896 was increased, and the NR2A subunit
exhibited an increased phosphorylation at Ser1232, a
cdk5 site (Figure 2b). The phosphorylation states of
NR2B subunits at Ser1303, a CaMKII site, and Tyr1472, a
SRC tyrosine kinase site, were not altered in FSL rats
(Figure 2b). The phosphorylation levels of GluR1
subunits at Ser831, a PKC/CaMKII site, and Ser845, a
protein kinase A site, were not altered (Figure 2b).
The total levels of MEK, p42-MAPK and p44-MAPK
were increased in PFC and hippocampus of FSL rats
(Figure 2c). No changes in the phosphorylation of
Ser217/221-MEK were found (Figure 2d). However,
reduced phosphorylations at Thr183/Tyr185-p42 and
Thr202/Tyr204-p44 in hippocampus were found, indica-
tive of a reduced MEK activity in FSL rats (Figure 2d).
In contrast, total levels or phosphorylation states of
CaMKII, GSK-3b, AKT or in PSD-95, a postsynapti-
cally enriched protein, were not altered (Figures 2c
and d). These data suggest that MEK/MAPK signaling
is particularly dysregulated in FSL rats and that
decreased MEK activity, perhaps related to reduced
NMDAR and 5-HT receptor-mediated transmission,
parallels with memory impairments and reduced Arc
mRNA expression in FSL rats.

Impairing effect on PA performance by NMDAR
blockade in both FSL and FRL rats
NMDAR are critically implicated in the acquisition
and consolidation of several types of memories
including the PA task.9 In agreement with previous
reports, treatment with an amnesic dose of MK-801, a
non-competitive NMDAR antagonist, of FRL rats
severely disrupted retention performance, mimicking
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the memory impairments seen in FSL rats (Supple-
mentary Figure S3 and summary Supplementary
Figure S7A–C).

Effects of escitalopram and nortriptyline on behavioral
performance in PA, forced-swim test, open field,
elevated plus-maze and transcription of Arc
To test whether the impairment in memory perfor-
mance in FSL rats could be reversed by antidepres-
sants, FSL and FRL rats were treated chronically with
vehicle, escitalopram or nortriptyline.38,39 In FSL rats,
escitalopram, but not nortriptyline, reversed the im-
pairment of memory performance in the PA test (Figure
3a). In contrast, escitalopram was without effect on
memory performance in FRL rats, comparable to lack of
effects of paroxetine in Sprague–Dawley rats,47 whereas
nortriptyline impaired performance (Figure 3a). Escita-
lopram, but not nortriptyline, specifically increased
expression of Arc mRNA in the CA1 and dentate gyrus
subregions of hippocampus of FSL rats (Figures 3b–e).

Escitalopram reduced immobility in the forced-swim
test in FSL rats.38 Similarly, nortriptyline decreased
immobility of FSL rats in the forced-swim test
(Supplementary Figure S4A) via mechanisms unrelated
to alterations in locomotion (Supplementary Figure
S4B and C). Notably, the differential effect of escitalo-
pram and nortriptyline in the PA test could not be
correlated to elevated plus-maze performance, as both
agents induced anxiolytic-like effects in control FRL
rats (Supplementary Figure S4D and E). FSL rats
displayed a basal anxiolytic phenotype and nortripty-
line was without effect, whereas escitalopram further
reduced anxiety-like behavior (Supplementary Figure
S4D and E).

Measurements of BDNF mRNA and protein, and
phosphorylated TrkB under baseline conditions and
following escitalopram and nortriptyline
Several antidepressant actions are mediated via
BDNF and its predominant receptor TrkB, and BDNF
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Figure 1 Male and female Flinders sensitive line (FSL) rats display emotional memory impairments and reduction of Arc
mRNA expression specifically in brain regions implicated in cognitive processing. Passive avoidance (PA) emotional
memory performance under baseline conditions in male (n = 6–8 per group) and female (n = 11 per group) Flinders resistant
line (FRL) and FSL rats (a). Effects on step-through latency at the retention test performed 24 h after PA training. Atlas
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male (d) and five female (e) FRL and FSL rats per group. Autoradiograms from in situ hybridization experiments against Arc
mRNA in male FRL (f, g) and FSL (h, i) rats or female FRL (j, k) and FSL (l, m) rats. AMY, amygdaloid nuclei; CA1, cornu
ammonis 1 of hippocampus; DG, dentate gyrus of hippocampus; mPFC, medial prefrontal cortex; PHR, parahippocampal
region; SCX, primary sensory cortex; TH, thalamic nuclei. Data represent mean±s.e.m. *P < 0.05; **P < 0.01; and
***P < 0.001 versus corresponding FRL control group.
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signaling is reflected by the phosphorylation state of
TrkB.18–22 BDNF signaling increases Arc mRNA and
protein expression in neurons,28 and could poten-
tially act upstream of Arc under baseline conditions
and/or following escitalopram treatment in FSL rats.

Immunoblotting revealed regional-specific differences
of basal proBDNF, with reduced levels in the hippo-
campus of FSL rats when compared with FRL rats, but
increased levels in the parahippocampal region and
unaltered levels in the PFC (Supplementary Figure
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S5A). However, basal levels of mature BDNF, as well as
total and phosphorylated TrkB, did not differ between
the genotypes in the examined regions (Supplementary
Figure S5A and B).

In response to both escitalopram and nortriptyline,
FSL rats showed increased expression of BDNF
mRNA in the dentate gyrus, but not in the CA1, of
hippocampus (Supplementary Figure S5C–F). In
comparison, no significant alterations of proBDNF
or BDNF proteins were found in total hippocampal or
parahippocampal homogenates from antidepressant-
treated animals (Supplementary Figure S5G). Nor-
triptyline and escitalopram induced treatment-,
region- and site-specific changes of TrkB phoshoryla-
tion, without affecting total TrkB. Specifically, both
nortriptyline and escitalopram increased phosphor-
ylation of TrkB at Tyr816, whereas nortriptyline, but
not escitalopram, increased phoshorylation at Tyr705-

TrkB, and none of these treatments regulated Tyr515-
TrkB in hippocampus (Supplementary Figure S5H).
No corresponding alterations were found in the
parahippocampal region (Supplementary Figure
S5H). It should be noted that the antisera toward
phosphorylated TrkB can also detect phosphorylated
TrkA, and both TrkB and TrkA are found in
hippocampal extracts (Supplementary Figure S6A
and B). In view of this, immunoprecipitations of TrkB
were done from hippocampal brain tissue and,
subsequently, analyzed for total TrkA and TrkB
receptors as well as phosphorylated TrkB (Supple-
mentary Figure S6C–E). No TrkA was found in TrkB
immunoprecipitates (Supplementary Figure S6E).
However, immunoreactivity of the antidepressant-
responsive Tyr816-TrkB site was readily detected in
TrkB immunoprecipitates (Supplementary Figure
S6D). In response to treatment with escitalopram
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and nortriptyline, levels of Tyr816-TrkB were increased
in hippocampal TrkB immunoprecipitates (Supple-
mentary Figure S6D, F). Vice versa, in a confirmatory
experiment, immunoprecipitation of Tyr816-TrkB
resulted in higher levels of TrkB immunoreactivity
in antidepressant-treated rats (Supplementary Figure
S6C). Notably, no TrkA was found in Tyr816-TrkB
immunoprecipitates (Supplementary Figure S6E),
indicating that phosphorylation at this site in hippo-
campus occurs mainly at TrkB.

Effects of selective 5-HT1AR and 5-HT4R ligands, with
and without a MEK inhibitor, on PA performance and
transcription of Arc

Based on the procognitive effects of escitalopram in
the PA test in FSL rats and reduced 5-HT1AR levels,
we studied 5-HT receptor subtypes in modulating
memory performance in FSL rats. The 5-HT1AR
agonist 8-OH-DPAT impaired performance in the PA
test in FRL rats (Figure 4a). On the other hand, NAD-
299, a 5-HT1AR antagonist, enhanced performance in
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8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin)—5-HT1AR agonist. Histograms of quantification of the effects on Arc
mRNA transcription in six male FSL rats per group (h). AMY, amygdaloid nuclei; CA1, cornu ammonis 1 of hippocampus;
DG, dentate gyrus of hippocampus; PHR, parahippocampal region; SCX, primary sensory cortex. Data represent
mean±s.e.m. *P < 0.05; **P < 0.01; ***P < 0.001 versus corresponding FRL control group; ##P < 0.01; ###P < 0.01 versus FSL
NAD-299; and X P < 0.05 versus FSL RS67333.
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the PA test in FRL rats and reversed the memory
dysfunction in the FSL rats, reminiscent of the action
of escitalopram (Figure 4a). Inhibition of presynaptic
5-HT1AR causes an increase in the firing rate of
serotonin neurons, whereas inhibition of postsynap-
tic 5-HT1AR causes a decrease of inhibitory serotonin
transmission in specific circuits.9 Next, we pretreated
the rats with a 5-HT4R antagonist, known to mediate
its actions at the postsynaptic site. GR125487 at a
concentration where it had no intrinsic effect blocked
the effect of NAD-299, indicating that NAD-299
exerts, at least, some of its effects via stimulation of
5-HT4R (Figure 4a). The 5-HT4R agonist, RS67333,
also restored memory performance in the PA test
(Figure 4a). Both 5-HT1AR9,48 and 5-HT4R

49,50 have
been shown to regulate the MEK/MAPK cascade, and
as the biochemical data indicated that MEK/MAPK
signaling is altered in FSL rats (Figures 2c and d), we
investigated whether the MEK/MAPK signaling cas-
cade is mediating procognitive actions of NAD-299
and/or RS67333. Rats were pretreated with a MEK
inhibitor, PD184161,24 at a dose where it had no
intrinsic effect, before treatment with either NAD-299
or RS67333. PD184161 completely blocked the
enhancing effects of NAD-299 or RS67333 in the PA
test (Figure 4a).

We also found that NAD-299 and/or RS67333 could
mimic the region-specific stimulatory effects of
escitalopram on Arc mRNA in the CA1 and dentate
gyrus subregions of hippocampus (Figures 4d, f and h).
Moreover, although PD184161 had no effects by itself
on Arc transcription in FSL rats (Figures 4c and h), it
significantly counteracted the actions of both NAD-
299 and RS67333 on Arc mRNA (Figures 4e, g and h).
It seems that MEK/MAPK signaling is a nodal point in
mediating some behavioral and biochemical postsy-
naptic serotonergic effects that are critically involved
in procognitive effects in the PA paradigm.

Discussion

A substantial proportion of depressed patients ex-
hibits deficits in several memory tasks, including
declarative verbal and recollection memory, executive
functions and emotional word processing.2,6,8,14,21,51,52

Improvement of cognitive processing and emotional
memory function in depression is believed to be
important for the treatment outcome in MDD.2,4 In the
present study, we provide data indicating that the
genetic FSL rat line of depression may be utilized as a
model for studies of reversible impairments in
emotional processing and memory, displaying pre-
dictive validity for assessment of drugs supporting
cognitive performance.4,53 The impairments of mem-
ory performance are in accordance with the findings
of reduced Arc mRNA specifically in cortical and
hippocampal subregions of FSL rats (Figures 1d–m),
consistent with accumulating data indicating that
Arc transcription is activated by neuronal stimuli
particularly important for encoding of one-trial
hippocampal-dependent learning and long-term

neuroplasticity involved in consolidation of
memories.26,27,31,54

The marked alterations of glutamatergic receptors
in the FSL rat line (Figure 2a, b) agree with a number
of neuroimaging and postmortem histological studies
showing glutamatergic abnormalities in MDD,55,56 for
example, magnetic resonance spectroscopy studies in
patients with MDD demonstrated altered glutamate
levels in several cortical subregions.57–59 Accordingly,
NMDAR binding and subunits are decreased in
cortical regions in depressed patients.60–64 Similarly,
the core NR1 subunit of the NMDAR was markedly
reduced in FSL rats in the PFC, PHR and HPC
extracts, accompanied with reductions also of the
NR2A and NR2B subunits in the PFC and hippocam-
pus (Figure 2a). Selective reductions of several
NMDAR subunits in corticolimbic brain regions in
FSL rats further indicate that these alterations have
severe consequences for synaptic plasticity and
account for the impairments of long-term potentiation
in FSL rats.36 Consistent with findings reported from
MDD patients,55,56 we observed only modest altera-
tions of GluR1 levels. The phosphorylation state of
NMDAR and AMPAR correlates with changes in
synaptic strength.65 Despite the lower levels of
NMDAR subunits found in FSL rats, phosphorylation
levels were upregulated in several cases. Taken
together, rather than subtype-specific alterations,
regional-specific overall reductions of NMDAR par-
tially compensated by hyperphosphorylation were
found in FSL rats.

The specific reductions of 5-HT1AR-, but not 5-
HT1BR- or 5-HT4R-like binding, using immunoblotting
(Figure 2a) and autoradiography receptor binding in
FSL rats (Supplementary Figure S2A–O) agree with a
previous study66 The reduction of 5-HT1AR are
consistent with several neuroimaging studies and
postmortem data from patients with MDD.10–14 It has,
however, been difficult to distinguish primary effects
and confounders in view of variations of 5-HT1AR
binding during onset and remission of depression,
responses to antidepressants, differences in agonist
versus antagonist labeling, with the mixed results
most likely also reflecting the clinical heterogeneity of
depressed patients, drug treatment and/or aging.12,14,15

After chronic antidepressant treatments, a discre-
pancy was found between escitalopram and nortripty-
line on both behavioral outputs and on Arc mRNA
expression (Figures 3a–e). The restoring effects on
Arc transcription and emotional memory perfor-
mance of FSL rats are consistent with clinical
findings supporting a serotonergic component in
recovery of cognitive aspects.4,8,67 Indeed, these
results in FSL rats show predictive and face validity
with data on clinical efficacy for escitalopram and
nortriptyline, antidepressants that have been reported
to be similar on three conventional depression-rating
scales, but differentiate in a superior improvement of
cognitive symptoms by escitalopram, whereas
nortriptyline rather improved neurovegetative symp-
toms.68 Calculation of a proportional impairment ratio
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in humans were found to be three- to ninefold higher
for tricyclic antidepressants, than those reported for
escitalopram, on a range of different psychometric
tests for cognitive symptoms. The varying drug-
induced cognitive impairment caused by tricyclic
agents is attributed to their anticholinergic and
antihistaminergic properties, decreasing cognitive
performance and arousal, respectively.67

Consistent with previous reports on antidepressant
regimens, both escitalopram and nortriptyline
increased BDNF mRNA in the dentate gyrus, but not
CA1, of hippocampus (Supplementary Figure S5C–
F).20,21,69 We could not detect any corresponding
effects on protein levels of proBDNF and mature
BDNF (Supplementary Figure S5G). As discussed
previously (for reviews, see Martinowich et al.,20

Pittenger and Duman,21 and Castrén and Rantamäki69),
a discrepancy between mRNA and protein expression
of BDNF as found here may be due to several factors,
including the omission of subregional analysis of
hippocampal BDNF protein, retrograde/anterograde
transport of BDNF protein transcribed in the dentate
gyrus and the lack of distinct measures of intra- and
extracellular BDNF protein.

BDNF-mediated signaling can be studied by mea-
sures of the phosphorylation state of the TrkB
receptor. Binding of BDNF to the TrkB receptor
induces its autophosphorylation at Tyr705-TrkB in
the catalytic domain, which subsequently regulates
the phosphorylation state at other tyrosine residues
including Tyr515-TrkB, a Shc-binding site, and Tyr816-
TrkB, a phospholipase Cg1-binding site.69 The latter
phosphorylation site of TrkB is also regulated via
transactivation by G-protein-coupled receptors, inde-
pendent of BDNF.70 In agreement with Rantamäki
et al.18 and Saarelainen et al.19 we found that both a
tricyclic antidepressant, nortriptyline, and a SSRI,
escitalopram, increased phosphorylation at the phos-
pholipase Cg1-binding site Tyr816-TrkB, but not at the
Shc-binding site Tyr515-TrkB in hippocampus (Sup-
plementary Figure S5H). It is interesting that studies
with phosphomutant TrkB mice have shown that the
phospholipase Cg1-binding site is more important for
synaptic plasticity than the Shc-binding site,71 sug-
gesting that the observed activation of Tyr816-TrkB by
nortriptyline and escitalopram may be of functional
significance in mediating long-term antidepressant
actions. As the antisera toward phosphorylated TrkB
can also detect phosphorylated TrkA and both these
receptors are found in hippocampus (Supplementary
Figure S6A and B), we performed additional experi-
ments to confirm that antidepressants specifically
increase phosphorylation at Tyr816 of TrkB. Indeed, in
reciprocal immunoprecipitation experiments with
antisera toward either TrkB or Tyr816-TrkB, both
nortriptyline and escitalopram increased Tyr816 spe-
cifically at TrkB, without regulating TrkA (Supple-
mentary Figure S6C–F). Using direct immunoblotting
from snap frozen hippocampi, we also found that
nortriptyline, but not escitalopram, increased Tyr705-
TrkB at the studied time point, suggesting a more

sustained and/or stronger activation of TrkB by
nortriptyline (Supplementary Figure S5H). However,
it should be noted that we sacrificed the rats during
daytime when they consumed less drug-containing
pellets, and previous work has demonstrated that the
autophosphorylation at Tyr705-TrkB is transient and
most pronounced within 1 h after an injection of a
tricyclic or a SSRI antidepressant.18,19

Taken together, the increased BDNF transcription
and Tyr816-TrkB phosphorylation by both nortripty-
line and escitalopram in FSL rats correlate well with
the antidepressant and anxiolytic effects of these
agents, but not with the differential effects on
recovery of emotional memory in the PA paradigm.
On the other hand, the discrepancy of nortriptyline
and escitalopram on Arc transcription corresponds
better with their effects on PA memory performance.
Arc, rather than BDNF, transcription was therefore
chosen as a biochemical correlate in the mechanistic
studies on serotonin-mediated modulation of PA
using selective ligands. However, it should be noted
that a contribution of BDNF/TrkB signaling to the
effects of escitalopram on Arc transcription and PA
performance cannot be excluded.

Given the restoring effects of escitalopram on PA in
FSL rats and the alterations of 5-HT1AR levels, we
went on to investigate the effects of pharmacological
modulation of specific 5-HT receptor subtypes.
Stimulation of 5-HT1AR impairs learning and memory
functions in a range of rodent cognitive tasks.9 This
agrees with the pharmacological response to the
5-HT1AR agonist 8-OH-DPAT in FRL rats (Figure 4a
and Supplementary Figure S7D), resembling the
impaired memory performance of untreated FSL rats
compared with control FRL rats (Figures 4a, 5a and b).
The blunted response of FSL rats to 8-OH-DPAT is
consistent with the findings of reduced postsynaptic
5-HT1AR density (Figure 2a). Conversely, the 5-HT1AR
antagonist NAD-299 facilitates several types of learn-
ing in rodents, attributed to alleviation of 5-HT1A

R-activated Gi/o-mediated signaling cascades in post-
synaptic neurons (Figure 4a).9,41 Thus, the effects of
blockade of pre- and postsynaptic 5-HT1AR resembled
the effects of increased 5-HT function by escitalopram
(Figures 3a and 5c). Despite an important role of
5-HT1ARs in modulation of SSRI efficacy, chronic
fluoxetine still has antidepressant-like effects in 5-
HT1AR KO mice, emphasizing an involvement of
other 5-HT receptor subtypes.72 Intriguingly, the 5-
HT4R antagonist GR125487 blocked the facilitatory
effects of NAD-299 on PA performance (Figure 4a),
indicating that activation of postsynaptic 5-HT4Rs is
necessary for the restoring effect of 5-HT1AR antagon-
ism on PA performance in FSL rats. Likewise, direct
agonist stimulation of 5-HT4R with RS67333 also
restored PA performance (Figure 4a). Thus, these data
indicate that not only does 5-HT1AR antagonism
disinhibit postsynaptic neurons by alleviating a tonic
inhibition mediated by 5-HT, but also enables a shift
in endogenous 5-HT transmission toward activation
of the 5-HT4R and downstream signaling cascades
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(Figure 5c). The effects of chronic SSRI administra-
tion on PA performance and Arc mRNA were thus
replicated by either 5-HT1AR antagonism or 5-HT4R
agonism (Figures 4a, d, f and h), further supporting
that central 5-HT4R stimulation offers a potential
target for improvement of emotional16 and cognitive
processing.17

Systemic pretreatment with the MEK inhibitor
PD184161 fully blocked the ability of both NAD-299
and RS67333 to restore memory function (Figure 4a)
and induce Arc mRNA expression (Figures 4e, g and h).
These data implicate an involvement of the MAPK
signaling pathway as a nodal point in restoration of
emotional memory consolidation. There is support for
Gi/o-protein- and Gs-protein-mediated receptor modula-
tion of the MEK/MAPK cascade.9,23,48–50,73 Local
increase of cyclic adenosine monophosphate (cAMP)
may trigger events that are involved in induction of
short-term plasticity and early stages of memory
formation, whereas activation of MAPK signaling path-
ways may result in more long-lasting effects requiring
nuclear gene transcription.21,23 Besides, fear condition-
ing and long-term potentiation-mediated increase of
Arc expression in the lateral amygdala is dependent on
activation of the MAPK cascade,74 and hippocampal
cAMP/MAPK signaling is involved in long-term con-
solidation of contextual fear conditioning.75 Collec-
tively, these findings emphasize a crucial involvement
of the MEK/MAPK cascade as a nodal point in 5-
HT1AR/5-HT4R-mediated effects on emotional memory
and expression of Arc mRNA (Figure 5d).

In conclusion, emotional memory impairments and
baseline reductions of Arc transcription were found
in the FSL rat line of depression. Memory functions
and enhancement of Arc transcription were specifi-
cally induced by escitalopram and pharmacological
treatments, increasing postsynaptic 5-HT function via
stimulation of cAMP/MAPK signaling cascades. The
FSL rat line provides a preclinical model recapitulat-
ing reversible deficits of cognitive processing that is
disrupted in depression.
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consequences of early maternal separation are alleviated by
escitalopram treatment in a rat model of depression. Prog
Neuropsychopharmacol Biol Psychiatry 2006; 30: 535–540.
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Reduced hippocampal volume correlates with executive
dysfunctioning in major depression. J Psychiatry Neurosci 2006;
31: 316–323.

52 Pfennig A, Littmann E, Bauer M. Neurocognitive impairment and
dementia in mood disorders. J Neuropsychiatry Clin Neurosci
2007; 4: 373–382.

53 Maya Vetencourt JF, Sale A, Viegi A, Baroncelli L, De Pasquale R,
O’Leary OF et al. The antidepressant fluoxetine restores plasticity
in the adult visual cortex. Science 2008; 320: 385–388.

54 Miyashita T, Kubik S, Haghighi N, Steward O, Guzowski JF. Rapid
activation of plasticity-associated gene transcription in hippocam-
pal neurons provides a mechanism for encoding of one-trial
experience. J Neurosci 2009; 29: 898–906.

55 Hashimoto K. Emerging role of glutamate in the pathophysiology
of major depressive disorder. Brain Res Rev 2009; 61: 105–123.

56 Sanacora G, Zarate CA, Krystal JH, Manji HK. Targeting the
glutamatergic system to develop novel, improved therapeutics for
mood disorders. Nat Rev Drug Discov 2008; 7: 426–437.

57 Sanacora G, Gueorguieva R, Epperson CN, Wu YT, Appel M,
Rothman DL et al. Subtype-specific alterations of g-aminobutyric
acid and glutamate in patients with major depression. Arch Gen
Psychiatry 2004; 61: 705–713.

58 Hasler G, van der Veen JW, Tumonis T, Meyers N, Shen J, Drevets
WC. Reduced prefrontal glutamate/glutamine and g-aminobutyric
acid levels in major depression determined using proton magnetic
resonance spectroscopy. Arch Gen Psychiatry 2007; 64: 193–200.
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