
A New Pivoting and Iterative Text Detection Algorithm for
Biomedical Images

Songhua Xua,b and Michael Krauthammera

aDepartment of Pathology & Yale Center for Medical Informatics, 300 Cedar Street, New Haven,
CT 06510
bOak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA

Abstract
There is interest to expand the reach of literature mining to include the analysis of biomedical
images, which often contain a paper’s key findings. Examples include recent studies that use
Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical
image retrieval and classification. Such studies rely on the robust identification of text elements in
biomedical images, which is a non-trivial task. In this work, we introduce a new text detection
algorithm for biomedical images based on iterative projection histograms. We study the
effectiveness of our algorithm by evaluating the performance on a set of manually labeled random
biomedical images, and compare the performance against other state-of-the-art text detection
algorithms. In this paper, we demonstrate that a projection histogram-based text detection
approach is well suited for text detection in biomedical images, with a performance of F score of .
60. The approach performs better than comparable approaches for text detection. Further, we show
that the iterative application of the algorithm is boosting overall detection performance. A C++
implementation of our algorithm is freely available through email request for academic use.
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1. Background
1.1. Introduction

Biomedical literature mining is concerned with transforming free text into a structured,
machine-readable format, to improve tasks such as information retrieval and extraction.
Recent work indicates that there is much interest to also consider image information when
mining research articles, as images often depict the results of experiments, and sum up a
paper’s key findings. There are several obstacles when mining image information. First,
there are many different types of images, such as graphs, gel electrophoresis and microscopy
images, diagrams or heat maps. There exists no image publication standard, neither with
regard to image resolution, or image file format (images are stored at different resolutions,
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and in a variety of file formats, such as jpeg, tiff etc). Also, there are no explicit image
design guidelines, even though authors seem to follow some universally accepted norms
when creating figures such as box plots, heatmaps or gel electrophoresis images.

A unifying element across all biomedical images is image text, i.e. text characters that are
embedded in images. Text in images serves several purposes, such as labeling a graph,
representing genes in a heat map images, or proteins in a pathway diagram. We have
previously shown that extracting image text, and making it available to image search,
improves biomedical image retrieval [1]. In this work, we are concerned with optimizing the
performance of a critical step in image text extraction — locating text regions in images,
which is known as text detection in studies on image processing and Optical Character
Recognition (OCR).

Generally speaking, text detection is a crucial step in processing textual information in
biomedical images. For example, properly finding the text regions is the first stage of a
standard OCR pipeline for extracting image text. Determining the location of text is also
important for high-level image content understanding, as it is the text location that indicates
the meaning of certain image text element, such as the label of the x-versus y-axis in a
graph. Practical applications aside, in this paper, we are exclusively concerned with
optimizing the performance of text detection, which is a fundamental research problem in
image text processing.

In this paper, we introduce a new text detection algorithm suited for biomedical images. We
also discuss the methodological details in creating a gold standard biomedical image text
detection corpus, and the use of the corpus for evaluating the performance of our algorithm.
During the development of the corpus, we laid down clear guidelines on what exactly
constitutes an image text region (or element) and how to manually mark the image region
linked to the string. We then compared our algorithm against three existing state-of-the-art
text detection methods. The evaluation results suggest the advantages of our algorithm for
detecting text regions in biomedical images.

1.2. Related Work
1.2.1. Image Text Detection Algorithms—First, we are going to briefly look at prior
work on image processing algorithms for image text detection, which is concerned with
separating image text elements from other elements in an image. [2] presented an algorithm
for text detection from scene images. In their work, they first detect character components
according to gray-level differences and then match the results to standard character patterns
captured in a database. Their method is very robust to the font, size and intensity variation in
the image texts, but is not able to deal with color and orientation changes. To address the
text detection problem for color images, [3] introduced a connected component-based
method for locating texts in a complex color image. Their method analyzes the color
histogram of the RGB space to detect text regions. [4] introduced a neural network based
approach for identifying text in color images. To attack the text detection problem for texts
with different orientations and other distortions, [5] describe the use of low level image
features such as density and contrast to detect image texts, with the ability to deal with skew
in the image text. [6] also proposed a morphological approach for image text detection,
which is robust to the presence of noise, text orientation, skew and curvature.

There is a body of work using advanced texture and graph segmentation methods to detect
text in images. For example, [7] introduce a method for learning texture discrimination
masks for image text detection. [8] used a learning based approach to detect image text
through image texture analysis. [9] introduced a system for image text detection and
recognition, which adopts a multi-scale texture segmentation scheme. In their method, a
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collection of second-order Gaussian derivatives are used to detect candidate text regions,
followed by a K-means clustering process and a multi-resolutional stroke generation,
filtering and aggregation process to further refine the detected text region. [10] proposed a
graph-based image segmentation algorithm for efficiently separating textual elements from
graphical elements in an image. Their algorithm can automatically adapt itself to the image
structure variation. [11] proposed a novel method for text detection and segmentation
through using stroke filters for text polarity assessment in analyzing features in local image
regions.

There also exists a growing collection of work on text detection from videos or motion
images, which are closely related to the image text detection problem studied in this paper.
For example, [12] used a hybrid neural network and projection profile analysis based
approach to detect and track text regions in a video. [13] applied a variety of text detection
methods and then fused the individual text detection results together to achieve a robust text
detection for videos. [14] introduced a support vector machine based approach for image
text detection in videos. [15] proposed a coarse-to-fine localization scheme for detecting
texts in multilingual videos. Recently, [16] proposed a discrete cosines transform
coefficients based method for text detection in compressed videos. Despite the many
commonalities between the video text and image text detection problems, one of the main
differences between them is that frame images in a video demonstrate temporal coherence,
which offer much useful information for text detection. Such clues are not present in still
images, and hence make the image text detection problem more challenging than its
counterpart in videos.

1.2.2. Biomedical Image Processing Algorithms and Systems—Our study is
related to other projects in biomedical image processing. For example, [17] used image
features for text categorization. [18] studied the use of natural language processing to index
and retrieve molecular images. [19] described an algorithmic system for accessing
fluorescence microscopy images via image classification and segmentation.

In our own prior work [1], we discussed a novel approach for biomedical image search
based on OCR. We have shown that the approach offers additional advantages compared to
searching over image captions alone, notably the retrieval of additional and relevant images.
The current study is closely linked to that project, discussing the algorithmic details for
detecting image text regions.

2. Approach
2.1. Overview

An overview of our method is shown in Figure 1. An input image (i.e. an image from a
biomedical publication) undergoes detection of layout lines and panel boundaries, which are
excluded from the image to increase text detection robustness. We implement the algorithm
proposed by [20] for detecting these layout elements. The image is then converted to black
and white, and subjected to an edge detection algorithm. The resulting edge image is then
subjected to a pivoting text region detection (PTD) algorithm for extraction of text regions.
PTD is repeated several times, in order to divide detected text regions into text subregions. If
no more text regions are detected, the algorithm exits. Our algorithm is based on traditional
histogram analysis-based text region detection, which takes edge images as input. We
extend the traditional approach as follows: We perform a pivoting procedure while applying
the histogram analysis, and repeat the procedure until no more text (sub)regions are
detected.
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2.2. Traditional Histogram Analysis-based Text Region Detection
One of the most popular and well known text region detection methods is through analyzing
the vertical and horizontal projection histograms of an image. More concretely, given an
input image, we first detect the edge pixels in the image. Then a vertical and a horizontal
projection histogram are derived. It is assumed that text regions generally exhibit higher
density of edge pixels than non-text regions. The vertical and horizontal histograms will thus
show the highest density of edge pixels in text areas. A density threshold defines the exact
dimensions of the text area along the vertical and horizontal histogram. The elements of this
basic procedure are discussed in more detail in the next section.

One distinct feature of many biomedical images is that they often employ a distributed and
nested text layout. Figure 3.(a) and Figure 4.(a) show two typical examples, where text is
distributed across many different image regions. Also, text regions often display some
degree off nestedness. For example, the numbers along the x axis in Figure 4.(b) can be
grouped in one large text area, or -more correctly-into separate (inner) text areas
surrounding each individual number (Figure 4.(d)). The traditional histogram-based analysis
technique does not cope well with distributed and nested text layout. To address this
problem, we introduce a new iterative pivoting histogram analysis procedure for text region
detection.

2.3. Pivoting Text Region Detection (PTD)
We introduce a pivoting step into the classical histogram-based text detection algorithm in
order to account for the distributed nature of biomedical image text. The pivoting procedures
subdivides image regions into its text subcomponents, instead of identifying large text
blocks. Our procedure is realized through analyzing the histograms of the input image
region following the vertical and horizontal directions alternatively, hence the name
“pivoting”. Figure 2 illustrates the key steps, and Figure 1 in Appendix B (Supplementary
Files) shows the working of the algorithm on a sample image. An input image is converted
into black and white and subjected to edges detection (Figure 1.d, Appendix B). For a
specified region  (the whole image in the first iteration of the procedure), to detect text
areas in , we first vertically project all the edge pixels to derive the image region’s
horizontal histogram  (Figure 1.e, Appendix B). We then segment the horizontal
histogram into several segments, each corresponding to a horizontal region in the input
image, denoted as Seg1, Seg2, ···. The segments are defined by a threshold on the histogram
densities. We then derive for each horizontal segment a vertical histogram through
horizontally projection of all the edge pixels in the region. (This step is different from the
traditional approach, where the horizontal projection is performed on the whole image). The
resultant vertical histogram corresponding to the horizontal segment Segi of the image is

denoted as  (Figure 1.g, Appendix B). We then segment the vertical histogram  the
vertical segments , ··· using a threshold on the densities (Figure 1.g1–3, Appendix
B). Each such segment corresponds to a vertical region in the input image. Through pairing

of a vertical segment  with its corresponding horizontal segment Segi, we are able to

specify a rectangular region (bounding box)  in  (Figure 1.h1–3, Appendix B),
corresponding to text regions.

In Appendix A (Supplementary Files), we formally describe this procedure mathematically.

2.4. Iterative PTD Procedure
Our algorithm iteratively constructs vertical and horizontal histograms to find nested text
regions. As can be seen in Figure 1.h2, Appendix B, the first round of the PTD algorithm
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could not resolve the true text areas of the image region. In the image, region 1 groups
distinct image text elements, and we propose to repeat the PTD step for separating these
elements.

More concretely, our algorithm maintains an active local image region collection (ALIRC)
during its running time (Figure 1, main paper). Initially, the collection contains a single
image region, which is the full image area of the input image. The algorithm then constructs
pivoting vertical and horizontal histograms (see previous section) and detects text regions.
Each detected text region is regarded as a new target region and added into ALIRC. The
input image region is removed from ALIRC, with one exception: if, after subtracting the text
regions from the input image, the input image is nonempty, we populate ALIRC with an
updated version of the input image, with the text areas subtracted. We iteratively apply our
histogram-based text region segmentation procedure on all the image regions in the ALIRC
until no more finer separation between text and non-text regions can be achieved. We will
then output all the image regions maintained in the ALIRC. A final heuristic removes
regions that are maintained in ALIRC but do not correspond to text regions. The heuristic
evaluates the overall edge density, removing regions that exhibit a density that is too low or
too high.

2.5. Formal Description of the Iterative PTD Procedure
1. Assuming the height and width of the input image is h and w respectively, we apply

our pivoting text detection algorithm introduced in Sec. 2.3 to detect all the text
regions in the full area of the input image. That is, we apply the PTD procedure
onto  with the text detection scope being  = (0, w, 0, h). We further assume the
set of regions segmented from the input image are φ= { , , ···, } where each

 specifies the scope of a rectangular image region resulting from the PTD
process. We call φ the current active local image region collection.

2. For each image region  in φ(i = 1, ···, n), we apply the PTD procedure onto  to
further separate the text and non-text areas inside the region on a finer granularity.
Assume this new round of text region detection produces k sub image regions,
which are denoted as  respectively. Given such text and non-text
region segmentation result, we first remove from φ the input region . And then
we add all the resultant sub image regions  into φ. Lastly, we also
add into φ the smallest rectangular region that covers all the edge pixels belonging
to the original input region  but falling outside all the newly detected image
regions .

We repeat the above process to recursively refine every image region maintained in
the current active local image region collection φ until φ can be no longer changed
through additional calls of our PTD procedure. We then output all the image
regions in the final stage of the image region collection φ which are determined as
text regions by our PTD process. These image regions constitute our final text
region detection result for the input image .

In Appendix B (Supplementary Files), we show a step-by-step example of text region
detection using our iterative and pivoting text detection algorithm for a biomedical image.

Appendices C and D (Supplementary Files) contain further examples of text detection
results after applying our iterative PTD algorithm on biomedical images.
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3. Evaluation Method
In this section, we will first discuss the creation of a gold standard biomedical image text
detection corpus. We will then discuss our evaluation strategy to measure the performance
of our iterative PTD algorithm for detecting text regions in biomedical images.

3.1. Creation of a Gold Standard Biomedical Image Text Detection Corpus
To objectively evaluate the performance of our algorithm, and to quantitatively compare the
performance of our method top other peer methods, we created a gold standard corpus of
biomedical images with manual markup of text regions. In order to create this corpus, we
selected a two step approach. The first step dealt with the identification of the text regions in
the image. We set up guidelines for manual identification of text regions (image text) in
biomedical images, which are listed in Table 1. The guidelines define the nature of an image
text region in a biomedical image, what to do about Greek letters and other special
characters, and strings in super or subscript. After selecting 161 random images from
biomedical articles indexed in PubMed Central, we used the guidelines to identify the image
text regions. In the second step, we identified a minimum rectangular region (bounding box)
for each detected text region. Such a bounding box is defined as the smallest rectangular
region covering all character pixels of the text region. These image bounding boxes
represent the gold standard image text regions.

3.2. Evaluation Strategy
To evaluate the performance of our PTD text detection algorithm, we can proceed as
follows: We compare the predicted text region bounding boxes with the bounding boxes of
the gold standard corpus. In our study, we employ two approaches for measuring the degree
of overlap between the predicted and gold standard text regions, looking at both the pixel
overlap and the percentage of shared region.

3.2.1. Measuring Recall, Precision and F-rate from Shared Pixels—One approach
for measuring the overlap of two text detection results is to measure the recall, precision and
F-rate as determined by shared pixels. More concretely, recall is defined as the fraction of
pixels in the gold standard text area that are contained in the (algorithmically) detected text
region. Precision is defined as the fraction of pixels in the detected text region that are also
contained in the groundtruth text area. And F-rate is defined as the harmonic mean of
precision and recall, i.e. F-rate = 2 Precision Recall=(Precision + Recall).

3.2.2. Measuring Modulated Overlapping Area—Another intuitive measure of
overlap between two text detection results is to calculate the overlapping area modulated by
the reciprocal of the area of the union of the two text detection results. Mathematically, this
measurement can be formulated as:

(1)

In the above, Text Regiongroundtruth stands for text region in the gold standard corpus and
Text Regionalgorithm stands for the algorithmically detected text region. The operator
Area(X) computes the area of the region X in pixels. The range of the Modulated
Overlapping Area (MOA) measurement as defined above is between 0 and 1. When Text
Regiongroundtruth fully agrees with Text Regionalgorithm, MOA reaches the maximum value
of 1. When Text Regiongroundtruth is entirely disjoint from Text Regionalgorithm, MOA
reaches the minimum value of 0.
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4. Results
4.1. Text Detection Performance in Biomedical Images

We start with a qualitative assessment on the performance of our text detection algorithm.
To this end, we provide sample images along with automatically detected text regions
(Figures 3 and 4). The blue boxes outline the detected text regions, while the purple lines
and areas indicate non-textual elements. A qualitative assessment of our approach is helpful
for identifying the strength and weaknesses of our algorithm. For example, we see
satisfactory text detection performance in Figure 3.(b). However, two strings “the” and
“number” in the bottom horizontal label of the image are mistakenly detected as one single
text region “the number”. In Figure 4, we show the intermediate text detection results of two
rounds of the PTD algorithm, from which we can see that our algorithm progressively
refines its text detection results.

4.2. Quantitative Evaluation and Performance Comparison with Peer Text Detection
Algorithms

To explore the effectiveness and advantages of our approach, we also compare the
performance of our algorithm with a few state-of-the-art text detection algorithms. To this
end, we identified recently published algorithms for text detection, including the DCT
feature based text detection method proposed by [21], the text particle based multi-band
fusion method for text detection as proposed by [22], the visual saliency based and
biologically inspired text detection method proposed by [23], and the fast text detection
method proposed by [24]. We also implemented two simplified version of our algorithm to
study the different components of our procedure. To distinguish between these different
versions of our algorithm, we call the iterative text detection method introduced in Sec. 2.4
the multistep method, which is denoted as “multiple steps”. We also study the performance
of our method when the number of iterations is limited to one round. We call this
modification of our algorithm the one step iteration version, denoted as “one step”. Finally,
we also implemented the classical histogram-based analysis without pivoting where the
vertical histogram is derived for the full image rather than for the segments from the
horizontal histogram (see Sec. 2.2). We refer to this naive version as “naive”.

The results of these evaluations are shown in Table 2. We observe the following: The naive
method outperforms the other peer methods in terms of F-rate and MAO. The pivoting
procedure improves upon the naive version, with a performance increase of 0.045 F rate
and .051 MAO. The iterative procedure further improves upon the pivoting result, both in
terms of F-rate and MAO. There is no performance increase when conducting more than 2
iterations of our algorithm.

5. Discussion
5.1. Iterative PTD Algorithm Performance

Our evaluation showed that the iterative PTD algorithm performs well on the gold standard
text detection corpus (Table 2). The naive (classical) version is outperformed by the pivoting
algorithm, which performs the vertical histogram on each image text segment as determined
by the horizontal histogram (Section 2.3 and Figure 2). The pivoting algorithm subdivides
image text regions into subcomponents, instead of identifying large text blocks as in the
naive or classical approach. This subdivision into smaller units seems to cope better with the
distributed nature of the biomedical image text. The iterative application of our algorithm
results in further performance gains. As discussed, iteration ensures the detection of nested
image regions. As can bee seen in Table 2, performance seems to stabilize after one
iteration. This can be understood as follows: Biomedical images seem to contain (on
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average) one level of text nesting, which can be recovered by one iteration of our PTD
algorithm.

5.2. Comparison with Prior Work in Text Detection in Images
We conducted an extensive comparison with existing text detection algorithms. None of the
tested algorithms were able to outperform the histogram-based text detection approach. It
should be noted that these algorithms are optimized for a particular text detection task,
which might be different from the one encountered in biomedical images. Consequently, the
performance of these algorithms as presented in the literature is higher than the numbers
presented in Table 2. Our results indicate that we can not use these algorithms on biomedical
images without major modifications.

For comparison, we quickly review the performance of the tested algorithms on other image
sets. In [21], the author reports algorithm performance for two typical settings of his
algorithm–a low frequency mode and a high frequency mode. The evaluation is performed
on the ICDAR-set, which is from the TrialTrain data used in the ICDAR 2003 Robust
Reading Competition, see [25]. For the low frequency mode, the average precision, recall
and F-rate of his algorithm is 32.6%, 91.9%, and 43.4% respectively. For the high frequency
mode, the average precision, recall and F-rate is 35.6%, 88.6%, and 45.1% respectively. It
should be noted that the [21] algorithm performs well on our gold standard corpus in terms
of recall. Precision is low, though, indicating many falls positive calls.

[22] evaluated their method on the Location Detection Database of IC-DAR 2003 Robust
Reading Competition Dataset, see [25]. The precision, recall and F-rate on the dataset is
60%, 81%, 69% respectively. Finally, [24] reported the performance of their algorithm on an
image set consisting of 308 images from the Web, recorded broadcast videos, and digital
videos. The reported a recall and accuracy of 91.1% and 95.8% respectively.

6. Conclusions
Biomedical image search and mining is becoming an increasingly important topic in
biomedical informatics. Accessing the biomedical literature via image content is
complementary to text-based search and retrieval. A key element in unlocking biomedical
image content is to detect and extract (via OCR) text from biomedical images, and making
the text available for image search. In this paper, we are concerned with text detection, i.e.
finding the precise areas of image text elements. We propose a new text detection algorithm
which is ideally suited for this purpose. The key feature of our algorithm is that it searches
for text regions in a pivoting and iterative fashion. The pivoting procedure allows for
recovery of distributed image text, and the iterative procedure uncovers nested image
information. We believe that these two algorithm features are crucial for detecting text in
biomedical images.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Diagram illustrating the overall procedure of our new text detection algorithm.
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Figure 2.
Diagram illustrating one step of the PTD algorithm (Sec. 2.3).
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Figure 3.
A text detection example produced by our algorithm along with the original image. Image
from [26].
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Figure 4.
Text detection example with intermediate step-by-step text detection results. Image from
[27].
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Table 1

Guidelines for manual identification of image text regions.

1 Image texts that form a coherent entity, such as “bcl-xl (+)”, “p<0.01”, and “S.E. RECOVERSOLUTION (i,j,k)” are considered
individual text regions

2 Symbols that are attached to a word, such as brackets, forward slashes, and dashes, e.g. “MMC-transgenic” and “vif(+)” are part of
the same term.

3 Include Greek letters, and letters in subscript and superscript

4 Labels consisting of numbers or single letters are considered standalone image text regions

J Biomed Inform. Author manuscript; available in PMC 2012 January 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xu and Krauthammer Page 18

Table 2

Performance comparison between different text detection methods

(a) Performance of four existing text detection methods.

Measurement

Existing Methods

[21] [22] [23] [24]

Precision 0.291 0.110 0.116 0.457

Recall 0.980 0.464 0.528 0.210

F-rate 0.418 0.154 0.158 0.256

MOA 0.263 0.084 0.091 0.125

(b) Performance of our new text detection method.

Measurement

Our Method

Naive One step Two steps Multiple steps

Precision 0.528 0.598 0.637 0.637

Recall 0.626 0.655 0.672 0.670

F-rate 0.519 0.564 0.600 0.600

MOA 0.332 0.383 0.430 0.429
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