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The genomics era has yielded great advances in the understanding of cancer biology. At the same time, the immense
complexity of the cancer genome has been revealed, as well as a striking heterogeneity at the whole-genome (or omics)
level that exists between even histologically similar tumors. The vast accrual and public availability of multi-omics da-
tabases with associated clinical annotation including tumor histology, patient response, and outcome are a rich resource
that has the potential to lead to rapid translation of high-throughput omics to improved overall survival. We focus on the
unique advantages of a multidimensional approach to genomic analysis in this new high-throughput omics age and discuss
the implications of the changing cancer demographic to translational omics research.

The remarkable technological breakthroughs of the last 10 yr have

reshaped how we view the cancer genome; therefore, so must our

approach to the translation of this knowledge. ‘‘Cancer genomics’’

refers to the study of tumor genomes using various profiling

strategies including (but not limited to) DNA copy number, DNA

methylation, and transcriptome and whole-genome sequencing—

technologies that may collectively be defined as omics. The goal

of cancer genomics is to survey these omics data to identify genes

and pathways deregulated in cancer and reveal those that may be

useful for the detection and management of disease. Such discov-

eries will improve our understanding of the biology of cancer and

lead to the discovery of novel diagnostic, prognostic, and thera-

peutic markers that will ultimately improve patient outcomes. The

field of cancer genomics is rapidly evolving and coupled with the

ever-increasing efficiency of genomic profiling; this has led to the

realization that personalized medicine is likely to soon become

a reality. It is hopeful that in the near future, tumors of cancer pa-

tients will be profiled in a timely manner and that the tumor omics

findings will subsequently be used to inform patient management.

To date, high-resolution and high-throughput technologies

have yielded an unprecedented view of cancer omics. This work

has led to the identification of biologically important genes and

pathways frequently disrupted across many cancer types that has

improved our understanding of cancer as a disease and, moreover,

has revealed clinically relevant diagnostic, prognostic, and drug-

gable targets. At the same time, these technologies have also un-

veiled the immense genomic complexity, and striking inter- and

intratumor heterogeneity—at the level of mutational load and

structural rearrangements—that exists between even histologically

similar tumors (Ding et al. 2008; Stephens et al. 2009; Bozic et al.

2010; Pleasance et al. 2010; Swanton et al. 2011). Distinguishing

the molecular events that confer oncogenic properties driving

cancer biology, for example, a gene mutation that activates a can-

cer promoting cellular pathway, from those events that are merely

passenger events—alterations that do not drive cancer pathway

disruptions—is critical for the translation of omics findings (Hudson

et al. 2010). Deciphering driver events is key to designing rational

therapeutics aimed at specific cancer phenotypes, predicting patient

response to traditional modalities, and expanding the pool of pa-

tients likely to benefit from existing treatments. Thus, the field of

cancer genomics is presently tasked with distinguishing key genes

and pathways driving tumorigenesis and drug response from a be-

wildering background of genomic variability. Currently, two large

international research efforts are churning out omics data for several

cancer types that will be extremely useful in helping with this task.

The goal of both the International Cancer Genome Consortium

(ICGC) and The Cancer Genome Atlas (TCGA) is to compile omics

data that are openly available to the public in order to rapidly im-

prove our understanding of the molecular mechanisms driving

cancer (Cancer Genome Atlas Research Network 2008; Hudson et al.

2010; Verhaak et al. 2010). In an age of targeted therapy and routine

tests for prognostic or predictive molecular markers, the availability

of these data has profound implications for translating basic re-

search into personalized medicine.

Successes in translating cancer genomics
to targeted cancer therapy
Alongside the widespread use of early detection and screening

programs, particularly for breast, cervical, prostate, testicular, and

colorectal cancers, targeted therapies have been instrumental in

extending the lives of millions of cancer patients (Etzioni et al.

2003). A summary of the fortuitous and labored discovery, trans-

lation, and rational application of many targeted therapies has

been recently described in an excellent essay by Haber et al. (2011).

Pioneering work in this field began with the discovery and targeted

interference of the oncogenes to which cancer cells are addicted.

The first of these, the ERBB2 (also known as HER2) receptor an-

tagonist trastuzumab (Herceptin) for ERBB2-positive breast can-

cers, was quickly followed by the first kinase inhibitor, imatinib

(Gleevec), which targets the BCR–ABL1 fusion gene harbored by

95% of chronic myeloid leukemia (CML) patients. Treatment with

these targeted therapies resulted in a dramatic increase in patient

response (Druker et al. 2006; Hudis 2007). It was also realized that

existing drugs could be used to treat other cancers driven by similar

molecular mechanisms (Papaetis and Syrigos 2010). Gleevec was
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also discovered to inhibit additional tyrosine kinases including

KIT, which is constitutively activated by mutation in gastrointes-

tinal stromal tumors (GIST). Treatment of GIST patients with

Gleevec also resulted in a significant increase in patient response.

The success of Gleevec paved the way for the development and

application of other tyrosine kinase inhibitors (TKIs), such as those

used to treat non-small-cell lung cancer (NSCLC) and colorectal

cancer (CRC) (Nowell and Hungerford 1961; Lynch et al. 2004; Paez

et al. 2004; Druker 2008; Keedy et al. 2011). Clearly, the study of

cancer genome structure has led to the detection of important

molecular alterations, which have been translated into improved

patient outcomes.

Encouragingly, the elapsed time between target discovery and

clinical utilization of targeted therapies has decreased significantly

in the past five years (Gerber and Minna 2010; Chin et al. 2011).

The translation of ALK inhibitors, which are used to treat the ;7%

of NSCLCs patients whose tumors harbor EML4–ALK rearrange-

ments, was achieved in a remarkable three years, although the

speed of translation was enhanced due to the preexistence of ALK

inhibitors (Soda et al. 2007; Gerber and Minna 2010; Kwak et al.

2010). Speed of translation will likely increase further as classic

drug development and trial regimes are reshaped to include pro-

spective characterization of patients so that targeted therapies are

only applied to patients harboring the specific genetic alteration for

which the therapy was designed, and collection and interrogation

of tumor and blood specimens throughout clinical trials to assess

patient response (Gerber and Minna 2010; Chin et al. 2011; Haber

et al. 2011). Had these principles not been applied, the therapeutic

potential of gefitinib in EGFR-mutant lung tumors would have

likely gone unnoticed (Lynch et al. 2004). Mutations in EGFR fre-

quently occur in NSCLC (10%–30%), resulting in aberrant activa-

tion of the tyrosine kinase domain. Thus, targeted therapies di-

rected at mutant EGFR are designed to inhibit its tyrosine kinase

activity to which the lung cancer cells are addicted (Pao and

Chmielecki 2010).

Fortunately, as target discovery moves genome wide, cancer

omics data are rapidly accumulating, providing a valuable resource

for identifying novel targets. Promising new drugs, such as PLX-4032

for melanoma patients harboring V600E-BRAF mutations (Flaherty

et al. 2010; Poulikakos and Rosen 2011), validate the genomics!
target ! drug route of translation, whereby a specific molecular

target, in this case, BRAF mutation, was identified and an effica-

cious, selective therapeutic was developed based on the underlying

molecular findings. BRAF mutations have since been discovered in

other cancers including lung and most recently multiple myeloma,

providing a rationale for their future evaluation as therapeutic

targets in these cancers (Ding et al. 2008; Chapman et al. 2011).

In addition to the successful translation of individual gene

mutations into therapeutic targets, diagnostic, prognostic, and pre-

dictive signatures based on gene panels have also emerged from

cancer genomics work. For example, expression signatures based

on multigene sets are used clinically for breast cancer prognostic

prediction (Oakman et al. 2010). Moreover, genomic profiling

technologies are being translated into the clinic, allowing clini-

cians to perform assays to assess several relevant cancer genes in

parallel, reducing the time, cost, and materials required for testing

(Stricker et al. 2011). The development of a biomarker—a mea-

surable marker that can be used clinically to assess one or more

clinical needs, e.g., to diagnose or predict disease behavior or re-

sponse to therapy—is a complex process that involves assessment

of prevalence, sensitivity, specificity and rigorous validation in

multiple clinical cohorts. Along with the increasing successful

application of cancer biomarkers, several pertinent practical and

ethical considerations have been acknowledged, as discussed in

detail by Offit related to discovery and appropriate clinical evalu-

ation standards of genomic biomarkers, along with development

of new ‘‘genomic counselling’’ models, for example (Offit 2011;

Weitzel et al. 2011).

Challenges in translation of cancer omics findings
Many of the successes in translational cancer genomics have oc-

curred in tumors addicted to single genetic alterations. However,

for genetically complex tumors characterized by many alterations,

prescribing targeted therapies based on the status of a single mo-

lecular alteration in a patient’s tumor is often not sufficient to

predict therapeutic response (Fojo and Parkinson 2010). In these

cases, a major challenge in predicting treatment response is the

substantial molecular heterogeneity that exists even for histolog-

ically similar tumors that may sustain (1) alterations to different

cellular pathways, (2) disruption of different components of similar

pathways, and/or (3) unique mechanisms of disruption to genes or

pathways. These factors contribute substantially to the variable

tumor behavior and treatment response observed clinically and

therefore complicate the translation of omics findings to the clinic.

For example, some lung cancers are characterized by mutations in

the oncogene EGFR, while others are affected by KRAS mutations,

and although these tumors may have a similar appearance histo-

logically, they exhibit different therapeutic responses to EGFR in-

hibitors. EGFR and KRAS function at different levels in the same

cellular pathway; however, targeting this pathway upstream at the

level of EGFR results in shorter progression-free or overall survival

in KRAS mutant patients compared with EGFR mutant patients

(Karapetis et al. 2008; Allegra et al. 2009). This example illustrates

the importance of considering molecular heterogeneity when mak-

ing decisions regarding therapy. In addition to drug response, the

relationship between tumor heterogeneity and variable tumor

behavior also applies to other tumor phenotypes including prog-

nosis and outcome.

The use of cancer omics to define molecular subtypes for some

genetically heterogeneous tumors has proven clinically useful. For

example, five major subtypes of breast cancer have been identified

based on molecular profiling, and each is associated with different

clinical measures such as treatment response and prognosis (Prat

and Perou 2011). Thus, molecular subtyping as well as identifica-

tion of particular mutations in tumors can be used to identify

specific patient cohorts with favorable responses to gene-targeted

therapies, thereby improving patient outcomes.

Many of the challenges in translational omics can be summed

up by the ‘‘cancer biomarker problem,’’ which refers to the great

disparity between the large amount of omics information that has

been produced compared with the relatively smaller number of

successfully translated diagnostic, prognostic, and especially predic-

tive biomarkers derived from this massive body of work (Sawyers

2008; Poste 2011). The practical challenges hindering translation

of omics-generated tumor markers or signatures include the lack of

availability of well-defined, clinically characterized cohorts for

evaluating the biomarker and lack of standardization regarding

how specimens are collected, handled, and stored. Ultimately, these

roadblocks can influence whether or not biomarkers validate in well

controlled cohorts (Liotta and Petricoin 2011; Poste 2011). Bio-

marker translation has also been impeded by a lack of mecha-

nistic links to the tumor itself, although some successfully trans-

lated biomarkers do not have well-established roles in cancer
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biology, yet are clinically very useful due to their strong correla-

tions with specific phenotypes (Liotta and Petricoin 2011). These

considerations suggest that there will be greater success translating

biomarkers to the clinic when (1) validation studies are performed

across multiple data sets and (2) the biomarkers have a role in tu-

morigenesis, so that they are causative rather than correlative.

Access to cohorts with well-annotated clinical information

remains a significant barrier and challenge for most omics studies.

Nevertheless, the relation of omics data to distinct clinical–path-

ological phenotypes is paramount to acceleration of translatable

findings, particularly for cancers associated with well-known risk

factors. For example, lung tumors from smokers and never smokers

were found to exhibit distinct molecular and clinical features and

different tumorigenic mechanisms, suggesting that they should be

managed differently (Lee et al. 2010; Dasgupta et al. 2011; KLThu, EA

Vucic, R Chari, W Zhang, WW Lockwood, JC English, CE MacAulay,

AF Gazdar, S Lam, WL Lam, unpubl.). Specifically, distinct muta-

tional profiles for the EGFR–RAS–RAF–MEK–ERK pathway exist in

lung adenocarcinoma from smokers and non-smokers. Moreover,

patients who responded to TKIs were primarily never smokers

(Lynch et al. 2004). These findings were quickly translated to EGFR

diagnostic testing to predict which patients are likely to respond to

TKI regimens. Another example of the importance of stratifying

patients according to risk when pursuing omics studies is the de-

tection of novel susceptibility loci specific to never-smoker lung

cancer (Ahn et al. 2011)—findings that would not have been pos-

sible without the collection of corresponding detailed clinical in-

formation. In summary, these omics studies applied to defined

clinical cohorts informed treatment strategies for smoking related

cancer and may also lead to improved screening and early de-

tection programs for never smokers. For other cancers, the in-

tegration of clinical features, particularly those pertaining to well-

known cancer risk factors, into study design will significantly

advance our understanding of the biology underlying distinct

clinical phenotypes and cohorts, translating to improved disease

management.

Deciphering biologically relevant DNA mutations
Whole-genome data allow for the interpretation of sequence var-

iants in the context of a tumor’s entire genomic landscape. In-

terpretation of omics data for any malignancy, in a biologically

relevant context, is paramount to the clinical translation of this

information (Jones et al. 2010; Lunshof et al. 2010; Link et al. 2011;

Pasche and Absher 2011; Welch et al. 2011). The most biologically

relevant alterations are ‘‘drivers’’ of tumorigenesis that underlie

particular tumor features or behaviors, such as treatment response,

and generally represent ideal candidates for therapeutic interven-

tion. Therefore, the goal of many cancer omics studies is to identify

these driver molecular events from those changes that may occur

by random chance, or are ‘‘reactive’’ to causative perturbations to

genes or pathways. Thus, it is important to acknowledge that at the

biological level, not all sequence mutations (or other omics alter-

ations) have biological implications. The imminent arrival of $1,000

genome sequences and the increasing availability of sequencing

data today allow for the interpretation of DNA level alterations

beyond their impact on protein structure (Lunshof et al. 2010).

Analytical approaches to interpreting DNA level data vary widely.

Some of these approaches, along with various sequencing meth-

odologies, have been recently reviewed (Robison 2010; Hoffmann

2011). Importantly, approaches to distinguish causative events

informatically can be confounded by several factors, which are

compounded greatly by whole-genome sequencing data. Here we

discuss several of the confounding factors that affect such analysis.

In a sequencing experiment, silent mutations are often used

to calculate background mutation rates against which all other

mutations may be statistically compared to identify genes mutated

at frequencies greater than background, because these mutations

may be biologically relevant. Non-silent mutations alter amino

acid sequences and are therefore more likely to have a functional

effect and confer a growth advantage to cancer cells. However, non-

silent mutations, which include missense, nonsense, insertions,

deletions, and mutations affecting splicing, are not all functionally

equivalent, and as several groups have found, not equally selected

for (Radivojac et al. 2008; Mort et al. 2010; Fischer et al. 2011; Youn

and Simon 2011). For example, mutations introducing stop codons

(nonsense), those affecting splicing, or resulting in functional al-

terations to phosphorylation sites occur at significantly higher rates

than other non-silent mutations, which may signify their selection

and importance to cancer cells (Greenman et al. 2006; Radivojac

et al. 2008; Fischer et al. 2011; Youn and Simon 2011). Moreover,

mutations occurring in a tumor sample with very few mutations

overall, compared with a tumor sample with thousands, are likely

relevant to tumor biology (Youn and Simon 2011). Algorithms that

consider such factors will likely yield more biologically informative

results and are less biased by overall levels of genomic alteration

compared with algorithms that focus on gene mutation frequency

alone.

The overall level of genomic complexity differs substantially

between tumors. The extent of genomic alteration may indicate

underlying biological mechanisms affecting genomic stability that

may mask important mutational events. As such, taking into ac-

count the overall background in which identified mutations occur

may help to identify those events most biologically important to a

tumor and related to a particular tumor phenotype. Genomic al-

terations of pathways responsible for normal maintenance and

repair of the genome may also drive sequence-level alterations

particularly for tumors with high frequencies of complex genomic

rearrangements (Hampson 1997; Bignell et al. 2007; Stephens et al.

2009; Swanton et al. 2011). For example, frequency of tandem

duplications was correlated with specific subtypes of breast cancer,

suggesting that disruption of crucial DNA maintenance pathways

may underlie distinct mechanisms of transformation in different

subtypes (Stephens et al. 2009; Swanton et al. 2011). Sequence-level

alterations may also be driven by hypomethylation of normally

heavily methylated repetitive DNA (Rizwana and Hahn 1999; Eden

et al. 2003; Daskalos et al. 2009; Igarashi et al. 2010; De and Michor

2011) or by aberrant promoter hypermethylation (silencing) of DNA

repair genes (MLH1, CDKN2A)—as has been observed in several

cancer types (Kane et al. 1997; Sengupta et al. 2007; Cancer Genome

Atlas Research Network 2008; Vasavi et al. 2010; Shima et al. 2011;

Tawfik et al. 2011). In tumors with a high genomic alteration load,

DNA alterations may be a consequence of disruption to genes

maintaining genomic integrity. In these cases, the driving events,

which represent promising therapeutic targets, may be overlooked

if all sequence-level events are considered equally between tumor

types and the biological role of the affected genes is not considered.

Cancer genomes are, however, not exclusively disrupted at

the level of DNA sequence but frequently at multiple levels of ge-

netic regulation and by diverse mechanisms. Therefore, in addi-

tion to DNA sequence-level analysis, it is imperative to investigate

other genomic dimensions such as DNA methylation and coding

and non-coding RNA expression, to better elucidate the full com-

plement of omics alterations underlying cancer biology.
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A multidimensional approach to cancer omics

The identification of events driving distinct tumor phenotypes

requires interrogation of multiple omics dimensions on appropri-

ate, well-annotated tumor specimens, and the interpretation of

these molecular data in a biologically and clinically meaningful

way (Hood et al. 2004; Gondek et al. 2007; Yamamoto et al. 2007;

Cancer Genome Atlas Research Network 2008; Dunbar et al. 2008;

Gandhi et al. 2009; Modrek et al. 2009; Segditsas et al. 2009; Soh

et al. 2009; Wang et al. 2010; Vidal et al. 2011). Using a multi-omics

systems-based approach to the analysis of patient cancer samples

will enhance our understanding of cancer biology and accelerate the

translation of omics research. This approach requires the generation

of several types of omics data from each individual cancer specimen

(i.e., system), including genome sequence and structural information

(i.e., DNA copy number), epigenome, transcriptome, proteome, and

metabolomics data followed by integration of these dimensions to

identify the key genes and pathways driving an associated pheno-

type, such as tumor progression or drug response, for example.

There are several advantages of applying a multi-omics ap-

proach to cancer research. For example, multi-omics data allow the

identification of genes that are altered at high frequency by mul-

tiple mechanisms but at low frequency by any single mechanism

(Chari et al. 2010a,b). A single-dimensional approach may over-

look frequently disrupted genes, if the frequency of alteration by

one mechanism is low. Since aberrations can also occur at multiple

points within signaling pathways important to cancer, multi-

omics data integration would help to identify signaling pathways

frequently disrupted at multiple components, but perhaps at low

frequencies at any single component of a pathway (Chari et al.

2010a,b). These concepts are exemplified by the diverse mecha-

nisms of gene disruption at multiple pathway components in the

EGFR signaling pathway, which is commonly activated in non-

small-cell lung cancer (Fig. 1). Simultaneous interrogation of mul-

tiple mechanisms of gene disruption in a single tumor (i.e., mu-

tation, copy number, DNA methylation, miRNA deregulation, etc.)

also has the power to identify genes that undergo biallelic dis-

ruption, which may be indicative of selection and may therefore

signify driver genes. Since it is likely that important cancer genes

undergo biallelic disruption, such as inactivation of tumor sup-

pressors by concurrent DNA methylation and copy number loss—

disruption of signaling pathways by one or multiple mechanisms

may also indicate those most strongly selected for to promote tumor

cell growth.

Figure 1. Activation of EGFR signaling in non-small-cell lung cancer (NSCLC) can occur via disruption of several different components at multiple levels
of the pathway. (A) Different proteins in the EGFR pathway can be activated (red) or inactivated (blue) by underlying genetic or epigenetic changes at the
DNA level, leading to aberrant pathway activity and oncogenic signaling in NSCLC. Examples of key oncogenes affected include EGFR, RAS, PIK3CA, and
AKT. Conversely, examples of tumor suppressors that are inactivated include PTEN and RASSF1. (B) Genetic and epigenetic mechanisms responsible for the
disruption of genes in the EGFR signaling pathway in NSCLC include DNA copy number alterations (amplification or deletion), point mutations, and DNA
methylation changes. Thus, it is important to consider multiple aspects of the genome and epigenome simultaneously to elucidate the mechanisms
driving pathway deregulation. This illustration was generated using Ingenuity Pathway Analysis software.

Omics to outcomes
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The aforementioned international genome characterization

consortia are generating such data for many tumor types, and al-

ready it is clear that even for tumors with thousands of mutations,

a limited number of pathways are frequently altered (Boca et al.

2010), echoing the hypothesis put forth by Vogelstein, which

suggests that even for tumors with thousands of mutations, a

limited number of pathways likely drive cancer biology (Boca et al.

2010). For example, in glioblastoma, one of the first tumor types to

be subjected to comprehensive omics profiling, three frequently

disrupted pathways (RB, p53, and receptor tyrosine kinase path-

ways) were found to be independently altered in 78%, 87%, and

88% of tumors, respectively; 74% of all tumors harbored aberra-

tions to all three of these pathways. These observations reveal

pathways suitable for targeted therapeutic intervention, including

potential inhibition of EGFR and its downstream targets ERBB2,

MET, or PI3K

Identifying pathways driving cancer phenotypes
Although some cancers may be driven by alterations to critical

cancer genes with unrelated functions, others may be driven by

concomitant disruption of a network of genes, which collectively

functions to activate or deactivate a specific cellular pathway

driving tumor growth. Therefore, in order to better understand the

relationships between disrupted genes and the biological mecha-

nisms sustaining cancer growth, it is important to study the

complex cellular networks that may underlie distinct clinical

phenotypes. Elucidation of deregulated pathways in cancer using

pathway analyses are powerful methods that have multifaceted

utility: identification of key molecular networks driving cancer

phenotypes, development of novel therapeutic targets to inhibit

cancer promoting pathways, and guidance of the reappropriation

of existing therapies for patients with appropriate predictive path-

way profiles. Appreciation of these benefits of pathway analysis has

led to an explosion in interest in pathway databases that catalogue

various cellular networks (e.g., the Kyoto Encyclopedia of Genes

and Genomes, KEGG) (Kanehisa et al. 2010) and analysis tools

for identifying pathway perturbations (e.g., Ingenuity Pathways

Analysis; http://www.ingenuity.com) that can be used to interpret

the genetic disruptions revealed by multi-omics analysis in the con-

text of cancer biology.

The importance of interpreting omics data at the pathway

level is highly relevant to translation of new findings. For example,

DNA alterations to pathway components downstream from EGFR,

as described for glioblastoma (Verhaak et al. 2010), occur in many

NSCLC, breast, and colorectal tumors and therefore in patients

selected for TKI therapy because of positive predictive EGFR mu-

tations. Frequently, however, these tumors harbor additional mu-

tations in the Ras/Erk pathway including KRAS, PTEN, IGFR1, or

BRAF that contribute to TKI non-responsiveness (van Zandwijk

et al. 2007; Engelman and Janne 2008; Laurent-Puig et al. 2009;

Fojo and Parkinson 2010; Rizzo et al. 2010; Pallis et al. 2011; Park

et al. 2011). Many studies and trials continue to emphasize the

importance of discerning how additional alterations and pathway

disruptions contribute to patient response to targeted therapy

(Fojo and Parkinson 2010). These issues can complicate and delay

the broad application of targeted therapies. For instance, cetux-

imab (an EGFR inhibitor) received accelerated FDA approval for

treatment of colon cancer. However, it was later shown to result in

no improvement in overall survival and/or caused serious harm in

the form of high-grade toxicities for ;40% of patients with tumors

harboring KRAS mutations (Karapetis et al. 2008; Fojo and Parkinson

2010). This amounted to an estimated 100,000 patients being

treated with a drug from which they likely did not benefit or by

which they were harmed. Thus, pathway-level interpretation of

omics findings can be critical for determining treatment modalities

best suited for individuals whose tumors harbor a complex net-

work of omics aberrations.

Knowledge of how pathways may respond to targeted in-

hibition is highly relevant to the application and accurate assess-

ment of targeted therapies. Since tumor dependence on amplified

receptors may be circumvented by alteration or inactivation of

downstream effectors, identifying driver genes and pathways as-

sociated with a particular cancer phenotype would undoubtedly

accelerate the identification of novel cancer targets aimed at un-

derlying cancer biology—or more likely guide the ‘‘repositioning’’

of already existing drugs (Lussier and Chen 2011).

Exploring genomes of mammalian cancer models
Validation of cancer research findings related to almost all aspects

of cancer biology in humans can be performed in animal models.

The standard mammalian model is the mouse, which is relatively

inexpensive to use, can be genetically modified, and is amendable

to pharmacogenomics studies. Several limitations are recognized

(Firestone 2010), but perhaps underappreciated considering their

importance to drug screening and their function as preclinical

models. Most significantly, mouse cancers almost exclusively in-

volve genetic induction in highly inbred strains. Moreover, xe-

nografts do not convey the genetic variation of a complex human

disease like cancer nor the interaction between the tumor and its

microenvironment and immune system cells. To account for some

of these limitations, genetically complex and clinically relevant

genetically engineered and inducible mouse models have been

developed and are commonly used, as recently described (Politi

et al. 2006; DuPage et al. 2009; Zhou et al. 2010; Politi and Pao

2011). Moreover, recombinant inbred strains are instrumental for

identifying susceptibility genes and modifiers (Perez-Losada et al.

2011; Philip et al. 2011; Politi and Pao 2011). It is noteworthy that

the emerging ability to rapidly and inexpensively characterize

genomes of new organisms (e.g., whole genome and transcriptome

sequencing) may propel the development of new mammalian

models for studying human cancer. For example, the domesticated

dog; there are some 80 million dogs in the United States, many of

which receive a good level of health care, age five to eight times

faster than humans, and share their owners’ environmental ex-

posure; in addition, different breeds have dramatically varied risks

for diverse types of cancers (Chen et al. 2009; Boyko et al. 2010;

Parker et al. 2010; Rowell et al. 2011).

Anticipating shifts in patient demographics
With the advances and widespread implementation of cancer

screening and early detection programs, early-stage tumors are

becoming more readily detectable, and survival rates for many

cancers are improving (Aberle et al. 2011). These changes will also

bring new opportunities for omics analyses of pre-malignant le-

sions. This shift will also put more emphasis on the genomics of

early disease and should lead to the development of new omics-

based strategies for cancer detection and early intervention. Ulti-

mately, this will lead to improvements in cancer prevention and

will further our understanding of the molecular mechanisms

driving cancer initiation and development. For example, omics

profiling of early-stage disease may reveal gene signatures capable
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of predicting which lesions progress to prostate cancer or whether

a CT-detected lung nodule would become invasive.

Another example of shifting patient demographics involves

tobacco-related cancers. With anticipated success in smoking

prevention and cessation campaigns, in the coming decades, lung

cancer in North America will increasingly become a disease of

former and never smokers (Halpern et al. 1993; Tong et al. 1996;

Peto et al. 2000). The use of cancer omics to discover novel early-

detection biomarkers and to assemble gene signatures capable of

stratifying risk for these patients will be immensely important to

serve these emerging cohorts.

Translating omics to improved healthcare
The goals of cancer research are also advanced by high-throughput

profiling efforts of non-disease cells and tissues, such as the NIH

Roadmap Epigenomics Mapping Consortium, a public resource of

epigenomics maps for normal tissues and stem cells (Bernstein

et al. 2010), and the Personal Genome Project, which aim to create

highly comprehensive and integrated human genome maps in-

tegrated with phenome data (Church 2005; Lunshof et al. 2010).

The generation of 100,000 individual genome sequences with as-

sociated medical records will contribute immensely to our under-

standing of how our genomes contribute to normal phenotypic

variation, interact with environments to contribute to disease sus-

ceptibility, and function directly in disease initiation and propa-

gation. The knowledge and tools developed by these studies have

great potential to provide similar insight into the causes of cancer or

responses to targeted chemotherapies, for example, when applied

to the study of individual cancer genomes.

The central tenet of omics investigation is that it allows for

open (not only hypothesis driven) discovery. Integrating omics data

with epidemiological data from well-defined cohorts improves our

ability to associate genetic alterations with environmental exposures

and specific clinical phenotypes, which has the potential to improve

our current understanding of cancer biology and ultimately patient

management. Now that technological developments have enabled

such multidimensional studies, much of the focus will shift to study

design, interpretation, and clinical applicability. Crucial to further-

ing the goals of this field and to the continued support and funding

of this multidisciplinary work is the communication of findings to

the public by the scientific community. While translational success

of cancer research is judged by improved survival for cancer patients,

its effective implementation will require educating the medical es-

tablishment and the public at large about the power of omics to

transform medicine and improve patient outcomes.
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