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Cancer genomes are complex, carrying thousands of somatic mutations including base substitutions, insertions and de-
letions, rearrangements, and copy number changes that have been acquired over decades. Recently, technologies have
been introduced that allow generation of high-resolution, comprehensive catalogs of somatic alterations in cancer ge-
nomes. However, analyses of these data sets generally do not indicate the order in which mutations have occurred, or the
resulting karyotype. Here, we introduce a mathematical framework that begins to address this problem. By using samples
with accurate data sets, we can reconstruct relatively complex temporal sequences of rearrangements and provide an
assembly of genomic segments into digital karyotypes. For cancer genes mutated in rearranged regions, this information
can provide a chronological examination of the selective events that have taken place.

[Supplemental material is available for this article.]

The genome of a cancer cell is a portrait of the mutational forces

and selection pressures experienced by the emergent malignant

clone, displaying enormous somatic variation ranging from small-

scale point mutations, often numbering in thousands per cancer,

to large-scale chromosomal rearrangements resulting in complex

patterns of genomic architecture and copy number changes

(Bignell et al. 2007, 2010; Pleasance et al. 2010a,b). Unlocking the

temporal dynamics of these complex genomic structures may

provide important insights into the mechanisms of cancer de-

velopment. Although recent methods have emerged that use in-

formation across many samples to make inferences on the order

of events (Stephan-Otto Attolini et al. 2010), extracting this in-

formation from a single sample has great potential applicability. For

example, identifying the earliest events in the genesis of massive

DNA amplification may give clues as to which genes or fusion genes

are the target of the amplicon (Campbell et al. 2008); inferring rear-

rangement or point mutation signatures through the cancer’s evo-

lution in time may indicate changes in mutational forces experi-

enced by the clone (Pleasance et al. 2010a); and comparing genomic

profiles of metastases and primary tumors can help time the onset of

metastasis (Shah et al. 2009; Ding et al. 2010; Campbell et al. 2011).

The acquisition of structural rearrangements in the devel-

oping cancer clone transforms the genome from its diploid,

germline configuration to the eventual chaotic karyotype we ob-

serve in many tumors. Historically, from experiments such as array

hybridization, the cancer genome is presented in wild-type geno-

mic order as a series of discrete chromosomal segments of fixed

copy number (Olshen et al. 2004). Techniques can now determine

the integer allelic copy numbers within each segment (Greenman

et al. 2010; Van Loo et al. 2010; Yau et al. 2010). Of course, such

approaches do not capture the potentially dispersed nature of

these segments that can be seen by, for example, fluorescent in situ

hybridization (FISH). Now, paired-end read data from massively

parallel sequencers can be used to identify how these segments

connect together. Specifically, reads bridging a somatic breakpoint

will have ends mapping to disparate regions of the reference ge-

nome, revealing both the orientation and connectivity between

pairs of genomically linked segments (Campbell et al. 2008). These

technologies thus enable the generation of comprehensive cata-

logs of somatic mutations of all categories from cancer samples

(Ding et al. 2010; Pleasance et al. 2010a,b). In particular, the an-

notation of all genomic rearrangements in a given sample together

with highly detailed data on allelic copy number of disrupted

chromosomal segments opens the possibility of reverse-engineer-

ing the history of rearrangements that have taken place and con-

structing contigs of digital karyotypes of cancer genomes to base-

pair resolution.

Graph theory has seen particular utility in this area of re-

search. For example, frameworks such as De Bruijn graphs have

aided the assembly of genomes (Pevzner 2000; Zerbino and Birney

2008), and breakpoint graphs have had success in constructing

rearrangement phylogeny across species, pioneered with several

contributions from Sankoff and Pevzner (Sankoff and Blanchette

1999; Pevzner 2000; Bader and Ohlebusch 2007; Bader et al. 2008;

Alekseyev and Pevzner 2009; Warren and Sankoff 2009a,b). These

methods have also been adapted to genomes containing duplica-

tions (Alekseyev and Pevzner 2007) and cancer (Raphael et al.

2003; Raphael and Pevzner 2004; Ozery-Flato and Shamir 2009).

These methods generally start from known contigs of segments.

Although massively parallel sequencing is producing information
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about cancer genomes in unprecedented detail, we will see that

they do not directly produce chromosomal sequences and specific

methods are required to investigate rearrangement in cancer for

the type of data we are considering.

Here we report the formal exposition and practical imple-

mentation of graph theory methods for reconstructing contigs

derived from the eventual architecture of a cancer genome and the

temporal sequence of rearrangements that generated them. We

also develop a statistical model for intercalating the parallel pro-

cesses of small-scale point mutation and large-scale genomic rear-

rangement in molecular time. We demonstrate that this mathe-

matical framework works well with complete data sets, albeit with

limitations imposed by the quality of the data and the complexities

of the genomes. These techniques are illustrated with the pedagogic

example shown in Figure 1 and the real examples described in

Figure 3 below. These include new data from a primary breast

cancer, PD3904, along with the cell lines HCC1187 and NCI-

H209 that we have previously investigated (Howarth et al. 2008;

Stephens et al. 2009; Pleasance et al. 2010b).

Results

A pedagogic example

To provide motivation and describe both the type of information

produced and the questions these data generate, consider the hy-

pothetical example given in Figure 1. Here we observe a region of

the genome throughout transformation from wild-type formation

to rearranged cancer genome.

We start with two parental copies of a genomic region at

a nominal time zero. We assume that there is a single-nucleotide

(point) mutation process mutating the genome at a fixed rate per

megabase per time unit. Over the time interval (0, t1), the region

accumulates two mutations, labeled a and b. At time t1 we have our

first genomic transformation, an inverted duplication (ID) in

which the region from positions BP1 to BP2 is copied and inserted

in inverted orientation adjacent to the original region. Note that

we now have two copies of the point mutation a. Over the time

period (t1, t2), one of the contigs accumulates another point mu-

tation c, at which point we have our second transformation—a

breakage-fusion-bridge (BFB) cycle. This process occurs when

a double-stranded DNA (dsDNA) break acquired during the G0/1

phase of the cell cycle is duplicated during DNA replication, and

the two identical chromosomal ends are directly joined, leading to

an inverted orientation of the two copies of the segment at the

breakpoint (Lo et al. 2002; Bignell et al. 2007). In our hypothetical

example, the breakpoint BP3 represents the position where the

duplicated chromosomal arms or segments were joined. These

three breakpoints split the original genomic configuration into

four segments (labeled 1, 2, 3, and 4 in Fig. 1), noting that each

segment has a constant copy number and is demarcated at each

end by either rearrangements or telomeres. This series of duplica-

tions now results in four copies of mutation a. The period (t2, t3)

witnesses the arrival of two more mutations d and e, at which point

we see our third transformation—a chromosomal duplication

(CD). The final time period (t3, T ) results in two more mutations f

and g, at which point the genome is sequenced. We now have the

three chromosomes displayed, which we represent algebraically as

three sequences of segment numbers: 23[1 2�2 3�3 2�2�1] and

[1 2 3 4], the negative signs implying reversed orientation.

The evolution as we have just described cannot, of course, be

observed. Given such a sample, we instead would perform a variety

of experiments to investigate the genome. Firstly, we can use

a microarray to investigate the integer allelic copy number. For our

example, this would reveal both the genomic coordinates of the

four segments and three breakpoints and give the number of

copies for each parental allele. These data are displayed in Figure

1Bi. This tells us how many copies and the genomic coordinates of

the segments, but not how they are connected. Our second step is

to use massively parallel paired-end sequencing to determine this.

Specifically, any paired-end reads that bridge a somatic connection

can be identified because they have end sequences that map to

disparate regions of the reference genome, or an end in reversed

orientation. This will tell us both which segments are pairwise

connected and which ends of those segments are attached. This

will identify three possible aberrant connections, given in Figure

1Bii. Paired reads of type [2, �2] arise when they bridge the con-

nection of the right end of a copy of the second segmented region

to the same end of an identical segment. This can occur at any of

the four intersections denoted algebraically as [. . . 2 �2 . . .] in

Figure 1A. Paired reads of type [�2, 3] arise when they bridge one of

the four connections of the left end of a copy of the second seg-

ment to the left end of a copy of the third segment (type [�3, 2] are

equivalent, reading an inverted genome). Finally, paired reads of

type [3, �3] occur when they bridge any of the two somatic con-

nections of the right side of two copies of third segments. Our third

experimental approach uses the sequences in the ends of paired

reads to identify the point mutations. Comparing the frequency of

reads that contain the mutated base to those containing the wild-

type reference base allows us to infer the number of genomic

copies of each point mutation. The resulting data for this example

are given in Figure 1Biii.

Given these observables, several natural questions arise.

Firstly, how can we use these data to construct the digital karyo-

types 23[1 2 �2 3 �3 2 �2 �1] and [1 2 3 4]? Secondly, from the

example we saw that of the three genomic transformations, the ID

produced the two rearrangements [2, �2] and [2, �3], the BFB

event resulted in a single rearrangement [3, �3], and the CD pro-

duced no rearrangement data. Can we find a general method to

cluster the rearrangements into transformations, and can we use

these clusters to identify the types of transformation that have

taken place? Thirdly, we know from the evolution described in

Figure 1A that the three events occurred in the order ID < BFB < CD.

If we know what transformations have taken place, is there

a method to formally deduce this order? Finally, we have seen that

in the first segmental region, there were two mutations, d and e,

that have two genomic copies. These occurred prior to the BFB

event. There is also one mutation with a single genomic copy, g.

This occurred after the BFB event. The ratio of these two classes of

counts will be a function of the timing of the BFB event. The final

question we consider is the following: Can we use the point mu-

tation data to estimate when the transformations occurred?

Our approach uses the observables to investigate these ques-

tions with the following six steps: The first step extracts the mu-

tation portfolio of the cancer genome with a range of modern se-

quencing techniques. The second step constructs the allelic graph.

This is a way of representing both the allelic integer copy number

segments and the connectivity between them. The third step con-

siders path-walking techniques to extract chromosomal contigs.

The fourth step constructs the somatic graph. This is a dual graph

to the allelic graph and describes how different rearrangements

and breakpoints cluster together into single genomic transfor-

mations. This also allows us to classify the transformations that

have taken place into standard classes of genomic rearrangement.
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Figure 1. Genome evolution. Here we describe an example portion of the genome undergoing somatic rearrangement. (A) The evolution of the region
through time, subject to three rearrangements—an inverted duplication, a breakage-fusion-bridge cycle, and a chromosomal duplication. (Green and
purple) The parental alleles. The numbers indicate the segmental regions, a negative sign meaning a segment is in reversed orientation. (Red stars) Single-
nucleotide mutations, a, b, . . ., g. (B ) The observables. (i ) Contains allelic integer copy numbers, counting each parental segment. (ii ) Contains rear-
rangement data; the two segments forming the left and right connection are indicated, the negative sign indicating reversed orientation, along with the
breakpoints involved by each segment. (iii ) The distribution of single nucleotide mutations; the number in row s and column m counts the number of
mutations in segments numbered s with multiplicity m. (C ) Graphical representations of these data. (i ) The allelic graph, representing the segments and
their connectivity. Each node represents an allele of a segmented region; the numbers on nodes are major and minor copy numbers. Each black solid
(curved) edge represents a rearrangement between two segments; the numbers on the edge represent the number of genomic copies of the connection.
Each dotted black edge indicates a germline connection between two consecutive segments. The horizontal direction of each end of each edge indicates
the side of the segment that is attached. (ii ) The somatic graph. Each node represents a somatic breakpoint. Each edge connects two nodes, representing
a rearrangement implicating the two associated breakpoints. Each end is attached to the side of the breakpoint the rearrangement involves.



The fifth step implements in silico transformations on the refer-

ence genome to infer the likely order of events that took place. This

technique also assembles the segments into digital karyotypes. The

sixth step takes any putative order of events and uses the point

mutation data to obtain maximum likelihood estimates of when

the events took place.

In the following two sections, we provide a heuristic overview

of these techniques, discussing a pedagogic example and then clin-

ical data. Validation of the algorithm predictions with fluorescent

in silico hybridization (FISH) is then detailed. An assessment of the

accuracy and robustness of the methods and results are given with

the aid of in silico simulations. A discussion then follows. A detailed

description of the approach in Methods completes the study.

Method overview

The overall aim of our approach is to reverse-engineer the genomic

evolution portrayed in Figure 1. Our techniques rely on six steps:

Finding the genome mutation portfolio, constructing the allelic

graph, finding paths in this graph to form digital karyotypes, con-

structing the somatic graph, and classifying the genomic trans-

formations, determining their order, and finally timing rearrange-

ments. We now describe each of these stages in detail.

The first step, determining the genomic data, is summarized

in Figure 1B for this example.

The second stage is to represent the copy numbers and rear-

rangements with the allelic graph (Fig. 1Ci). The nodes represent

both parental copies of each of four regions, giving 2 3 4 nodes.

The numbers assigned to nodes are the allelic copy numbers (to-

taling 20, the number of segments). Each edge (connecting two

nodes) represents a genomic connection between two adjacent

segments (represented by the nodes). The straight dashed edges

represent wild-type (germline) connections between segments.

The curved solid edges represent somatically acquired connections

between segments formed through rearrangement. Each end of an

edge connects to either the left or right side of each node, corre-

sponding to whether the left or right side of the segment is at-

tached, respectively. The number assigned to each edge indicates

the total number of such connections (for details of the calcula-

tions involved, see Methods and the Supplemental Material).

The third step constructs contigs. As we walk through the

graph reading consecutive nodes, we are traversing contiguous

segments represented by the nodes and so constructing digital

karyotpes. For the example in Figure 1Ci, the leftmost and right-

most nodes represent the first and fourth regions that have telo-

meres at the ends, thus we start from such a node and walk through

the graph until another telomere is reached (we assume no internal

somatic telomeres for simplicity). Notice that the allelic graph has

two components. If we walk across the simpler component with

one copy of each edge and node, reading off the regions, we have [1

2 3 4]. This represents the (purple) wild-type chromosome in Figure

1A. The remaining component has copy numbers 4, 8, 4, and

0 associated with the nodes. We thus have four telomeric ends

and so two paths to construct. Walking through the graph, we

have two possibilities: two copies of [1 2 �2 3 �3 2 �2 1] or, alter-

natively, [1 2�2 1] and [1 2�2 3�3 2�2 3�3 2�2 1]. Note that the

former pair of paths represents the final genomic conformation

in Figure 1A. We explore further methods to deduce the correct

configuration.

The fourth step is to construct the somatic graph given in

Figure 1Cii. This graph enables the grouping of rearrangements

into ‘‘events.’’ Each node now represents the genomic position of

a somatic DNA break (rather than chromosomal segment), se-

quentially numbered BP1 to BP3 in Figure 1. Each edge represents

an observed rearrangement. So, for BP1 (the break between seg-

ments 1 and 2) in Figure 1A, the segment to the right of BP1

(segment 2) is joined to the segment to the right of BP2 (segment

3). We represent this in the somatic graph as an arc (labeled E[1,2])

from the right side of BP1 to the right side of BP2. From the paired-

end sequencing, we have also observed a rearrangement that joins

the segment to the left of BP2 to itself, labeled E[�2,�2], and E[�3,�3],

joining the left side of BP3 to itself. The utility of this construction

is that each component of the resulting graph represents a set of

rearrangements involved in the same genomic transformation (see

Methods). The topology of these components can then be used to

identify the type of genomic transformation. Figure 2 contains this

information for a set of nine standard transformations observed in

cancer genomes. We thus have two components in Figure 1Cii to

compare with this dictionary of possibilities. We recognize the

larger component as an ID and the smaller as a BFB. Finally, we

note that because the total number of copies of telomeric nodes is

six, there are three chromosomes, the reference genome is diploid,

and so we must also have had a single CD. We have thus identified

all three transformations that have taken place.

The fifth step tests different orders of these transformations in

silico upon the germline genome to determine which reproduce

the observed copy number profile and are thus consistent with the

observed data. We have three events and so 3! orders to test. For

each transformation we know which breakpoints are involved so

we can implement the transformations upon the algebraic repre-

sentations of chromosomes in an in silico manner. Consider the

incorrect order ID < CD < BFB. From the allelic graph we have two

components to consider. One is simply a wild-type chromosome

and thus has no transformations to implement. This can be rep-

resented algebraically as [1 2 3 4]. It remains to apply the ID from

breakpoint BP1 to BP2, a CD, and a BFB at BP3, to the other

component, in that order. Initially, we have a single chromosome

of the four segments [1 2 3 4]. We then have an ID from BP1 to BP2,

giving us [1 2�2 3 4]. The CD then gives us 23[1 2�2 3 4]. Finally,

we apply the BFB at BP3. There are two copies of this position, but

either gives us the final set of contigs—[1 2 3 4] from one allele and

[1 2 �2 3 �3 �2 2 �1], [1 2 �2 3 4] from the other. Now when we

examine the allelic copy numbers, we find the minor and major

copy numbers for each segmental region are, in turn, (1, 3), (1, 6),

(1, 3), and (1, 1). This does not match the observed values (Fig. 1Bi),

and the order is rejected. The only order of transformations

that correctly reproduces the observed allelic copy numbers is ID <

BFB < CD, the evolution portrayed in Figure 1A.

We have now successfully identified and ordered the genomic

transformations. The final step is to use the point mutations to

time the transformations. The time points of Figure 1A are nomi-

nal, so we turn to real examples to effectively demonstrate these

techniques.

Clinical data

In Figure 3Ai, we see the copy number profiles of chromosomes 5,

6, and 17 of primary breast cancer sample PD3904. There are two

rearrangements between these chromosomes (highlighted in red).

One is a genomic connection linking the right side of the first

segment of chromosome 6 to the left side of the second segment of

chromosome 17, denoted [16, 217]. The allelic graph (Fig. 3Bi) tells

us that there is one genomic copy of this connection. This con-

nection is between separate chromosomes, and so the simplest

Cancer genome rearrangement phylogeny
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explanation is an unbalanced translocation, UT6,17. Note that

segment 16 has a copy number of two and is homozygous. This

region must have experienced a loss of one parental copy, CL6,

followed by a duplication of the remaining allele, CD6. UT6,17 must

have occurred after CD6 to ensure a single genomic connection

(CL6 < CD6 < UT6,17). We also have the single genomic connection

[15, 317], another unbalanced translocation, UT5,17. Region 317 has

copy number three, indicating duplication (CD17), a duplication

that again must have occurred before the translocation (CD17 <

UT5,17). An in silico implementation of these events on the chro-

mosomes (see the Supplemental Material) correctly recapitulates

the observed data providing a parsimonious ordering of events,

resulting in the following five digital karyotypes: [117 217 317], [16

217 317], [16 26], [15 25], and [15 317]. Note that we can also see this

by constructing walks across the allelic graph. (There is also an

alternative allelic graph that gives a slightly distinct solution.) (See

the Supplemental Material.)

We now analyze these events chronologically by relating the

multiplicities of point mutations in each segment to their copy

number changes following the genomic transformations. Region

16 has 64 heterozygous single-nucleotide mutations, which must

have occurred after duplication CD6, and only three homozygous

mutations, which must have occurred before, indicating an early

duplication. By assuming that these point mutations occur at

a fixed Poisson rate, we can combine these counts with the evo-

lution of copy number segments to estimate the duplication time.

Specifically, because the three homozygous mutations occur on

the one undeleted copy in the first time period prior to duplication

and the 64 heterozygous mutations fall on either of two copies in

the second time period following duplication, the ratio of these

two time periods should be 3:32. We cannot determine the abso-

lute times because any mutation count can result from a fast mu-

tation rate in a short period of time or from a slow mutation rate

over a long time period. We can, however, determine the relative

time periods, which are normalized to percentages (see Methods).

Indeed, the first time period has estimated time (see Methods)

8.57% (=3/35) (c.i. 1.80%–19.96%). Similarly, region 317 has 128

heterozygous and 14 homozygous mutations, implying that CD17

has an estimated time of 26.60% (c.i. 16.48%–37.79%). These are

relatively distinct values suggesting that events occurred during

distinct cell divisions.

Now having constructed a quantitative rearrangement his-

tory, the timing of these events can be examined in locations

containing cancer genes to investigate the chronological implica-

tions on selection. When examining cancer genes for this exam-

ple, we found a homozygous nonsense USP6 variant on chromo-

some 6. This gene, if causative, was likely to have been inactivated

before the duplication event; otherwise, it would be heterozygous.

The resulting combination of orderings and timings can now

be combined into a summary timeline of events (Fig. 4A).

Validation

We now have a methodology to construct the rearrangement

histories of some clusters of rearrangements, and we would like to

examine the veracity of the predictions. The only feature that we

Figure 2. Transformation dictionary. A description of the effects for nine transformation classes named in the header row. The first and second rows
describe the change in the genome. The third row highlights the allelic graph structure. The fourth row gives the corresponding somatic graph com-
ponent. The fifth row describes genomic connectivity prior to the transformation. The sixth row describes the copy number profiles following the
transformation. The remaining rows give the connection matrices. The signs associated with transformations indicate the orientation of the genome at
breakpoints. All information is displayed for breakpoints arising in wild-type (non-inverted) regions of the genome. m�i ;m

+
i represent copy numbers for

segments to the left and right side of breakpoint i. i+;j� indicates that the right side of breakpoint i must be genomically connected to the left side of
breakpoint j prior to the transformation. Isisj i; jð Þ indexes rearrangement between breakpoints i and j, where Si and Sj are the genomic orientations at the
breakpoints.
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can examine experimentally with reasonable ease is the predicted

chromosomal contigs. This can be achieved with FISH techniques

on cell lines. We implemented this approach for the two clusters of

rearrangements in cell lines HCC1187 and NCI-H209 (rather than

primary sample PD3904, where the source of DNA is limited),

those of Figure 3iii,iv.

Using the techniques we have outlined above, the cluster of

rearrangements between chromosomes 1 and 6 in HCC1187 is

most parsimoniously explained as an unbalanced translocation,

then a tandem duplication, followed by chromosomal duplication

(UT < TD < CD) (for details of the evolution, see the Supplemental

Material). This prediction results in the six contigs 23[16 26 36],

23[16 26 21 26 21 31], and 23[11 21 31] given in Figure 4B. Using

green and red FISH probes binding to segments 21 and 26, re-

spectively, we would predict from the solution that there would be

two copies of wild-type chromosome 1 (each with an isolated green

probe), two copies of wild-type chromosome 6 (each with an iso-

lated red probe), and two identical derivative chromosomes, each

containing a red–green–red–green pattern. This is indeed what was

observed (see Fig. 4B; Supplemental Material).

Applying our methodology to the complex cluster of rear-

rangements in NCI-H209 resolves the evolution into a combination

of two chromosomal duplications, three unbalanced transloca-

tions, two inversions, a deletion, and two breakage-fusion-bridge

cycles (see Methods; Supplemental Material). This results in four

predicted contigs—[11 21 31 41 51 61 71 81 91 101 111], [�44�34 21

31 41 51 111], [15 24 34 44], and [14 24 34 31 �91 51 61 71 �71

71�71�61�51 91�31�34�24�14] (see Fig. 4C). We used FISH to

examine the four predicted contigs (see the Supplemental Mate-

rial). This confirmed not only the sequence of segments [�44 �34

21] bridging the translocations between chromosomes 1 and 4

(Fig. 4Ci), and the sequence [15 24 34 44] bridging the trans-

location between chromosomes 1 and 5 (Fig. 4Cii), but the

genomic fold back caused by two breakage-fusion-bridge events

is clearly reflected in the duplicated FISH probes shown in Figure

4Ciii.

Collectively, these data do not provide direct proof of the

transformations we claim. However, they do confirm the predicted

karyotype structure, implying that our rearrangement histories are

correct.

Figure 3. Copy number segment connectivity. Here we display copy number segmentation, rearrangement data, and single-nucleotide mutation data
for four sets of rearrangements. The first two (i and ii ) involve primary breast cancer sample PD3904, iii and iv involve cell lines HCC1187 and NCI-H209,
respectively. Each chart in A presents the output from the PICNIC segmentation algorithm, the upper plot being total copy number and the central plot
representing genotype intensity. (The lower plot) Single-nucleotide mutations. (Green) Total copy number; (blue) minor copy number. (Blue) The intra-
chromosomal rearrangements; (red) inter-chromosomal rearrangements. (B) Allelic graphs for each rearrangement cluster. (Gray lines) Alternative graph
topologies. The blue and green node colors highlight individual parental chromosomes. (C ) Somatic graphs for the clusters. Each component represents
a transformation, the type indicated with a label. The acronyms are defined in Figure 2.
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Accuracy

Having constructed timelines of transformations, it is natural to

enquire into the accuracy of results and their robustness under

perturbation of the cancer genomes mutation portfolio.

We have assumed a unique breakpoint in regions of copy

number change. Any paired read bridging the associated rear-

rangement has two ends that can act as primers for PCR confir-

mation, which resolves the breakpoint to base-pair level. In

Supplemental Table 2 of Campbell et al. (2008), for example,

we find that 43/94 rearrangements are direct joins of clean

dsDNA breaks, without either overlap or inserted (non-tem-

plated) sequence. The remaining rearrangements all had a few

bases (<9) of micro-homology (sequence identical and over-

Figure 4. Validation. (A) The estimated timeline of rearrangement and selection events through oncogenesis relative to a molecular clock (along the
horizontal axis) for the two clusters of PD3904. Events that can be timed are represented by vertical lines. Events that can only be ordered relative to these
times are indicated by horizontal lines. (B,C ) The predicted sequences of segments and FISH images for the two clusters of Figure 3iii,iv, respectively. Each
segment is represented as a rectangle, with light to dark shading indicating the left and right ends of each segment. The number labels for each segment
are as described in Figure 3 and the Supplemental Material. Green and red segments correspond to chromosomes 1 and 6 of HCC1187. Yellow, blue, and
brown segments represent chromosomes 1, 4, and 5 of NCI-H209. Arrows indicate positions and luminescence of probes designed to test predicted
adjacency of segments. For HCC1187, the green and red probes hybridize to segment 2 of chromosomes 1 (denoted 21) and 26, respectively. For Ci,
white, red, and green probes hybridized to 21, 34, and 44, respectively. Magenta, white, red, and green probes in Cii hybridized to 15, 24, 34, and 44,
respectively. Green and white probes in Ciii hybridized to 31 and 24, respectively. Breakpoints between chromosomes are represented by triangles. (D) The
mean error of predicted rearrangement times. Mutations were generated at background prevalence of 0.5, 1, 2, and 5 mutations per megabase. Tandem
duplications were constructed of lengths 1, 5, 10, 25, 50, and 100 Mb at random times. The mean errors of the prediction time of rearrangements from
1000 simulations are indicated. (E ) The predicted error of multiplicity for normal contamination ranging from 0% to 50%, and read depth up to 100.
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lapping from either side of the breakpoint) that non-homolo-

gous end-joining DNA repair mechanisms used, but, impor-

tantly, we found no larger-scale sequence homology indicative

of homologous recombination. Twenty-three out of 94 also had

small shards of unmappable sequenced (<32 bases). These

data suggest that each copy number change is associated

with a specific and unique breakpoint and our assumptions are

reasonable.

The accuracy of the predicted transformation orders is sensi-

tive to the copy number estimates. Any error here will result in very

different paths in the allelic graph and will adversely affect pre-

dictions of karyotype and transformation orders. This is also

compounded by normal contamination, which has the effect of

reducing the separation of copy number intensity between distinct

copy numbers, making integer copy number estimation somewhat

more difficult. For example, 50% contamination in a diploid

sample will have similar differences between copy number in-

tensities to a quadraploid cell line.

Furthermore, any incorrectly called or missed rearrangements

will change the allelic and somatic graph topologies, making the

identification of transformations difficult. This is compounded by

the incompleteness of the Figure 2 dictionary. For example, NCI-

H209 has 64 breakpoints identified by copy number segmentation,

of which 55 (86%) had associated rearrangements found from se-

quencing data (339 coverage, 112 Gb of sequence). HCC1187 (a

sample with much lower coverage, 7 Gb of sequence) had 50

breakpoints identified by copy number segmentation of which

only 21 (42%) rearrangements were found, along with one bal-

anced breakpoint. All 51 of these breakpoints, along with two

other balanced breakpoints, were found by FISH (Howarth et al.

2008; Supplemental Material). Comparison with Figure 2 enabled

classification of 26 of these breakpoints; 14 were from unbalanced

translocation, four from tandem duplications, two from terminal

deletions, and six from deletions. However, 13 involved three

clusters of rearrangements that could not be classified. Together

this suggests that Figure 2 is a relatively comprehensive list, al-

though further extensions are clearly required. The remaining 14

breakpoints could not be resolved into rearrangements and were of

unknown type.

The accuracy of timing predictions will depend on both the

point-mutation prevalence and the length of the genome under

consideration. This was examined by simulating tandem duplica-

tions of various lengths, at random times, under different muta-

tion prevalence to determine the accuracy of prediction. The

lengths varied from 1 to 100 Mb, and the mutation prevalence

varied from 0.5 to 5 mutations per megabase. Reasonable precision

was obtained for duplication sizes and mutation prevalence that

are typically observed in samples (see Fig. 4D; a prevalence 3

length ;25 has a timing error ;10%).

There will also be additional error arising from the estimation

of multiplicity. This noise will increase with the degree of normal

contamination and decrease with the depth of coverage. To con-

sider these effects, we simulated mutations of multiplicities one

and two in a diploid region and determined the error in multi-

plicity estimates for normal contamination between 0% and 50%

and read depth between 10 and 100. The error was remarkably

small, as seen in Figure 4E. Sample NCI-H209 is a cell line with no

normal contamination and coverage of 330, implying an error of

;1%. For the primary sample PD3904, this was slightly higher

with contamination of 26% and similar coverage giving an error of

;3%. These levels of error will have a relatively small effect on the

accuracy of timing estimation.

Discussion

We have developed a technique to help reconstruct the history of

rearrangements responsible for cancer genome karyotypes. This

uses allelic copy number segmentation, rearrangements, and so-

matic single-nucleotide mutation distributions, and so is based

entirely on the final observed portfolio of mutations.

The simplest application of this method is to construct digital

karyotypes with path-walking techniques that have classically re-

quired chromosomal painting. The number of solutions for the

method used can become prohibitive for regions with higher copy

numbers, and more efficient methods such as Pevzner et al. (2001)

and Idury and Waterman (1995) may prove applicable to these

types of multi-chromosomal problems. Furthermore, the solutions

that these methods present may also contain circular loop solu-

tions in general. Although this is biologically plausible as circu-

lar double-minutes, more specific approaches such as Fleischner

(1990) and Raphael and Pevzner (2004) may be appropriate to

differentiate circular and linear solutions.

This method also has the capacity to identify both the class

and order of genomic transformations. However, transformations

of greater complexity than those seen in Figure 2 are possible (as

described in Methods [Fig. 3ii] and chromosomes 3 and 5 of NCI-

H209 [Supplemental Material]; but see also Berger et al. 2011 and

Stephens et al. 2011). Although classifying the transformations is

not possible in these cases, the graph-walking techniques are

generally applicable and can be used to reconstruct digital karyo-

types. A fuller exploration of the biology behind these intricate

cases is clearly warranted, and we believe the tools developed

above will help unravel their genesis.

We also make chronological inferences on both genomic

transformations and selection, which may have other applica-

tions—identifying periods of genomic instability, for example, or

understanding the order of key oncogenic events; distinguishing

early drivers, important to the induction of pre-cancerous clones,

from more recent driving events that may be fueling metastasis.

We note that the estimated times indicate when rearrangements

occur relative to a background generation of point mutations,

a rate that may vary with differing exposures to mutagenic envi-

ronments. Consequently, these times should be viewed as a mo-

lecular rather than chronological clock, indicating the trans-

formations’ likely occurrence within the accumulating mutational

burden.

There are limitations to these methods. Firstly, temporal in-

formation is gleaned when rearrangements collude to produce

complex genomes, telling us little about genomes less prone to

rearrangement. Having smaller rearranged segments or lower

point mutation rates will also reduce the accuracy of timing esti-

mates. Secondly, missing data result in incomplete histories. For

example, some rearrangements observed with chromosomal

painting and associated copy number changes should lead to

specific paired reads that are absent in the final data set. For the

data presented, we found 65% of them. The missing data can be

due to insufficient read depth, a problem easily rectified by deeper

sequencing, but could also be breakpoints occurring in regions that

are difficult to map uniquely, such as centromeric breaks or those

formed by mechanisms relying on homology. The data presented

are based on ends of ;30 bases. Ends much longer than this are

now possible, which will reduce missing data. Applying de novo

assembly techniques to regions around putative breakpoints may

help complete data sets and shed light on these difficulties. How-

ever, this will not help when deletion events remove all copies of
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a somatically acquired breakpoint. The construction of a full por-

trait of the rearrangement history then presents a complex hidden

variable problem.

These methods also rely on precise data. High normal con-

tamination (>50%) will make precise copy number estimation

difficult, which is further complicated by higher ploidy. For com-

plex products of rearrangements, such as those implicating mech-

anisms leading to amplicons, accurate data sets cannot be easily

constructed, making rearrangement inference difficult. Further-

more, these techniques apply to a single clone. Until single-cell

sequencing is realized, predictions for samples with greater cell-to-

cell heterogeneity will be difficult.

The techniques we have introduced will thus be limited to

well-curated clusters of rearrangements until more complete mu-

tation portfolios for cancer genomes are obtained.

These techniques are publicly available with the imple-

mentation GRAFT (Genome Rearrangement Assembly For Tumors;

www.sanger.ac.uk/genetics/CGP/Software/GRAFT).

Methods
We now describe each step of our approach in more detail.

Extracting mutation portfolios

To construct the mutation portfolio, we require integer allelic copy
number segmentation, rearrangements of those segments, and
the distribution of single-nucleotide mutations within each copy
number segment.

Integer allelic copy segmentation for tissue contaminated
with normal cells is possible on various platforms (e.g., see Van Loo
et al. 2010; Yau et al. 2010). We used PICNIC on Affymetrix Ge-
nome Wide SNP 6.0 arrays, an algorithm initially designed for cell
lines (Greenman et al. 2010) that has been updated to provide
segmentation and normal contamination estimates for primary
tissue samples (http://www.sanger.ac.uk/genetics/CGP/Software/
PICNIC). Segmentation includes start and end coordinates, along
with major and minor copy number estimates for each region, M
and m. The resulting segmentation for the genomes analyzed can
be found in the Supplemental Material. PD3904 had an estimated
26% normal contamination.

To identify rearrangements, paired-end read data were pro-
duced via Illumina GAX2 machines. Rearrangements were iden-
tified by extracting reads with ends that were either proximal to
a copy number change, or where two read ends occur either side of
a copy number neutral breakpoint (such as a translocation). We
filtered for somatic events by selecting cases in which no corre-
sponding reads were found in the reference sample. Confirmation
of putative rearrangements was by polymerase chain reaction
(PCR), which also resolves breakpoints down to the base-pair level.

The single-nucleotide somatic mutation loci were identified
by filtering paired reads with ends containing single nucleotides
that differ from the reference normal sample. The ‘‘multiplicity’’ of
each mutation was estimated by taking all reads with an end that
contains the position of the mutant base and comparing the
number of reads containing the mutant base to the number of
reads with a wild-type base. Specifically, each mutation exists in
a segmented region with major and minor copy numbers M and m
(obtained from PICNIC). Each somatic mutation initially occurs
on one of the parental chromosomes (it is not known which one)
and so has at most M copies when sequenced and has a multiplicity
r 2 {1, 2, . . ., M } to be estimated. If the position of the somatic
mutation had ns and nw overlapping reads containing somatic and
wild-type bases, and there was normal contamination p, we used

a binomial model to provide maximum likelihood estimates of the
number of chromosomal copies r containing that mutation

PrðrjM;m;ns;nwÞ}
ð1�pÞr

ð1�pÞðM + mÞ+ 2p

� �ns

1� ð1�pÞr
ð1�pÞðM + mÞ+ 2p

� �nw

; r 2f1;2; . . . ;Mg

An explanation of this form, the resulting lists of point mu-
tations, and the distributions of multiplicities within each copy
number segment are given in the Supplemental Material.

Allelic graph

We now assume that we have a complete mutation portfolio for
the genome under consideration. To find the genomic architecture
that explains this configuration of copy number changes and
rearrangements, we introduce the allelic graph, a graph construct
in which nodes represent the allelic copy number segments and
edges represent their pairwise connectivity (Fig. 3B).

To construct the allelic graph, we represent each copy number
segmental region with two nodes, one for each parental allele,
arranged in wild-type genomic order. The numbers associated with
each pair of nodes are the major and minor allelic copy numbers
(the allocation to top and bottom nodes is arbitrary). Each edge
linking two nodes represents the existence of genomic connec-
tions between two corresponding segments. These edges fall into
two classes depending on whether the two segments have this
connection in the matched wild-type (normal) sample. We term
these ‘‘wild-type’’ and ‘‘somatic’’ edges. To construct these, we need
the following important principle.

Principle of allelic copy number conservation

Breakpoints are the genomic locations implicated in rearrange-
ments, mainly coordinates of the ends of copy number segments
but also positions of copy neutral rearrangements such as trans-
location. Consider then the local neighborhood of any breakpoint,
as depicted in Figure 5. Initially, there are two parental copies of the
genome either side of the breakpoint (Fig. 5i), which are connected
together in wild-type formation. There will be a moment during
clonal development when this breakpoint is implicated in a rear-
rangement. Prior to this event, there may have been other rear-
rangements affecting the number of copies of this region, but all
connections across this position will be wild type (Fig. 5ii). The
rearrangement then implicates the breakpoint. This will likely in-
volve a single chromosome, and so the somatic change involves
one particular parental allele; the other allele is unaffected at this
breakpoint and remains in wild-type configuration (Fig. 5iii). Al-
though there will be other rearrangements that alter the number of
copies of these segments, it is highly improbable that the same
breakpoint will be implicated, resulting in the final portrait of
Figure 5iv. We then find that when we consider the allelic copy
numbers of the two copy number segments bridging a breakpoint,
two of them must be equal, which are also connected together in
wild-type formation. The other two alleles, quite possibly unequal,
must be involved in the somatic rearrangement. Note that some
copies of these alleles may also be connected together in wild-type
formation.

We can now use this observation to construct the edges of the
allelic graph. Wild-type edges represent the normal genomic con-
figuration, joining segments adjacent in the germline. We take all
pairs of copy number segments consecutive in the germline and
identify the alleles with identical parental copy numbers. These are
genomically connected, and so the corresponding nodes are joined
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with a wild-type edge. These are the dashed straight edges in Figure
3B. The other two nodes represent alleles involved in the somatic
formation of the breakpoint. Some copies of these may also be
connected in the germline and are also joined by a wild-type edge.
Formally, we represent this as follows.

Each segmental region is labeled as sc for segment s of chro-
mosome c. The major and minor copy numbers M c

s and mc
s repre-

sent the larger and smaller allelic copy numbers (allocation is ar-
bitrary if equal) and are each associated to a node. We know from
the principle of allelic copy number conservation that at least one
of (mc

s , M c
s ) matches at least one of (mc

s+1, M c
s+1), and the corre-

sponding segments are connected. We let a c
s index how the copies

of major and minor alleles of segment sc connect to neighboring
segment (s + 1)c. The value a c

s =1 indicates that the major alleles
(copy numbers M c

s and M c
s+1) are joined together, as are the minor

alleles (copy numbers mc
s and mc

s+1) (the corresponding nodes are
attached with the horizontal dashed edges). The value a c

s = 0 in-
dicates that major and minor alleles are joined together (M c

s with
m c

s+1 and mc
s with M c

s+1, the angled straight dashed edges). In gen-
eral, we have, for 1 # s < Sc

a c
s =

1; M c
s = M c

s + 1 or mc
s = mc

s + 1

0; M c
s = mc

s + 1 or mc
s = M c

s + 1

�

When a segment has equal major and minor copy numbers,
we cannot unambiguously determine how the wild-type edges join,
doubling the number of valid allelic graphs. This occurred at 17%
of breakpoints we examined.

Somatic edges represent connections acquired somatically by
the cancer clone (the curved continuous lines). Each somatic edge
corresponds to a single genomic rearrangement, representing
a somatic connection between two segments. For each segment
involved, either the left or right side is connected. The corre-
sponding end of the somatic edge then extends from the corre-
sponding node in the left or right direction, respectively. Sub-
sequently, each end of an edge either points in a leftward or
a rightward direction, resulting in a bidirectional graph, a type of
graph that has seen utility in assembly problems (Myers 2005;
Medvedev et al. 2007). To draw the somatic connection, we need to
identify the node involved, that is, specify whether the major or
minor allele is implicated. Generally, the allele involved in a so-
matic edge can be identified unambiguously by applying the
principle of allelic copy number conservation and finding the
wild-type edges linking nodes of unequal copy number.

Consider the breakpoint separating the copy number seg-
ments with allelic copy numbers fmc

s ; M c
s g and fmc

s+1;M
c
s+1g. We

indicate the parental alleles involved in the formation of this so-
matic breakpoint with binary parameter b c

s . The value b c
s =1 in-

dicates that major allele Mc
s and its wild-type partner (the allele it is

connected to with a straight wild-type edge) were involved. The
value b c

s =0 indicates that the minor allele mc
s and its wild-type

partner were involved. This is represented formally as follows:

b c
s =

1; mc
s = mc

s + 1 or M c
s + 1

� �
0; M c

s = mc
s + 1 or M c

s + 1

� �
(

:

When both the major and minor alleles are equal in value to
their wild-type partner, we have to consider both possibilities,
doubling the number of allelic graphs.

Each valid array pair ðac
s ;b

c
sÞ describes a unique ‘‘topology’’ for

the allelic graph. We now assume that a single topology is under
consideration.

To complete the graph, we need to quantify the edges, or
equivalently, count the number of times pairs of segments connect
in the specified orientation. To deduce this, we invoke the fol-
lowing observation.

Edge conservation principle

Each end of every segment must do one of three things. Firstly, it
could be attached to its wild-type partner. Secondly, it could be
somatically attached to another segment. Finally, it could be cap-
ped with a telomere. These possibilities must account for all ge-
nomic copies of the segment. Thus, we find that the sum of the
number of copies of all edges (and telomeres) touching the left
(respectively, right) side of the allelic node must equal the allelic
copy number of that node.

For all the examples we considered there were no somatic
telomeres, and for simplicity of presentation we now assume that
all telomeres are at wild-type positions.

These calculations constitute an integer programming prob-
lem (see the Supplemental Material). We solved this with brute
force, which provided sufficient efficiency for the problems we
encountered. This completes the description of the allelic graph,
and we now have a complete representation of both allelic copy
number segmentation and corresponding rearrangements. We
make five remarks concerning this construction.

Firstly, note that each edge arising from a breakage-fusion-
bridge cycle accounts for two copies of a node because the single
rearrangement is involving two copies of the region represented by
the node. For example, the BFB edge attached to the right of seg-
ment 71 in NCI-H209 only has two copies but accounts for all four
copies of 71 (Fig. 3Biv).

Secondly, such systems of equations neither have to have
a solution (the topology being tested may be incorrect and be
rejected), nor a unique solution (different combinations of rear-
rangements may produce the same data). It is possible that the

Figure 5. Allelic copy number conservation. A notional sketch of the implication of a breakpoint. (i ) The two parental alleles either side of the
breakpoint. (ii ) After some time, we may have more than one copy of each. (iii ) The breakpoint is implicated on one chromosome of one allele. (iv) Further
copy number changes occur leaving one parental allele conserved across the breakpoint.

Cancer genome rearrangement phylogeny

Genome Research 355
www.genome.org



frequencies of reads corresponding to the edges can be used to
determine the most likely solution (see the Supplemental Mate-
rial). The examples we considered only had one solution, however.

Thirdly, the examples we have considered have not included
any somatic telomeres. The construction we described includes the
possibility of somatic telomeres that will form in processes such as
chromosomal arm loss. These may be identified by finding paired
reads such that one end contains the telomeric repeat pattern of
TTAGGG or CCCTAA.

Fourthly, fundamental to our construction is the assumption
that each breakpoint is implicated once in a single chromosome,
which the principle of allelic copy number conservation requires.
However, repair mechanisms mediated by homologous recom-
bination may violate this assumption. For example, gene transfer
can copy one segment and substitute it in the same position on
another chromosome, using the same two breakpoints twice,
which results in copy neutral LOH. If we consider moving across
one of the breakpoints into LOH, both parental copy numbers
change (1,1 to 0,2). This violates allelic copy number conservation.
There will also be no discordant reads bridging the breakpoint.
These two facts can help identify these positions. The methods we
introduced need extending to cater for such effects. However, an
examination of consecutive allelic copy numbers in the segmen-
tation used in Bignell et al. (2010) revealed very few candidate
regions, and none were present in the examples presented. Fur-
thermore, the resultant DNA only differs at single-nucleotide
polymorphisms, and so there are no structural differences.

Finally, we note that the allelic graph as defined is analogous
to the breakpoint graph that is commonly used in the literature to
investigate rearrangements (Pevzner 2000). Specifically, a contig of
segments is often represented as a breakpoint graph in which pairs
of consecutive nodes of the graph are arranged in the linear se-
quence as they appear in the contig. The edges that connect the
nodes of this graph come in two categories. Firstly, there are the
straight edges (denoted black edges in the literature) that connect
segments consecutive in the observed contig and so are analogous
to the somatic connections in our constructions. Secondly, there
are curved arc edges (denoted gray edges) that connect numerically
consecutive segments and so represent pairs of segments that
would have been originally connected. These are analogous to the
wild-type connections in the allelic graph. For the data we have, we
typically do not have contigs. Instead, we have simply reversed the
breakpoint graph in the following sense. Writing the segments of
a contig out in order essentially represents the genome at its final
stage. By writing out the copy number segments in wild-type order,
we are instead representing the genome at its initial state. The
curved gray edges of the breakpoint graph then become our wild-
type straight edges, and the straight black edges of the breakpoint
graph become the curved somatic edges in our allelic curve. This
reversal of representation allows us to describe the copy number
and rearrangement information without having to know the
structure of the contigs, which, after all, is one of the aims of this
study, which we now address.

Graph walking

We wish to use the allelic graph to assemble the segments into
contigs. Many assembly methods have been developed that use
overlapping sequences and use frameworks such as De Bruin
graphs to construct sequences of contigs for genomes with un-
known sequence (Pevzner 2000; Zerbino and Birney 2008). The
problem we consider here is distinct; we know the sequence for
each segment and how they are pairwise connected. We are simply
trying to put these pairwise connections of two consecutive seg-
ments into contigs of multiple segments.

To do this, we now assume that we have a complete allelic
graph. This means that we know how parental copies of each ge-
nomic segment connect to each other, the orientation of the
connected segments, and how many copies of these connections
exist. This information enables us to glue together these segments
into digital karyotypes. To construct a solution, we simply start
from a node representing a segment with a telomere and walk
along the edges of the graph (away from the telomere) until an-
other telomeric node is reached, respecting the bidirectionality
dictated by the graph. This walk is equivalent to joining consecu-
tive segments and so reconstructs individual chromosomes. The
number of telomeric nodes counts the number of such paths, and
so the number of chromosomes, twice. The edge and node counts
tell us how many times each connection and segment must be
used by all such paths.

Consider the example given in Figure 3Bii, which consists of
a complex cluster of 11 copy number segments of chromosome 13
involving six intra-chromosomal rearrangements and two trans-
locations, one to chromosome 18 and another that could not be
identified (represented as *) either because it involved a repetitive
region that could not be mapped or because it is capped by a telo-
mere. There are six ends and so three contigs to construct. The
topology of the allelic graph reveals a component that is a wild-
type chromosome (the blue nodes). The other two contigs derive
from the remaining component, which is comprised entirely from
the remaining parental allele. One is simply a translocation to
chromosome 18. For the remaining contig, we walk through the
allelic graph starting from * following the only possible solution;
the palindromic contig [* 7 �5 3 9 2 10 �10 �2 �9 �3 5 �7 *]. We
have thus assembled the genome without any assumptions on the
rearrangements that have taken place.

Other examples with greater complexity may well contain
more than one solution, and more sophisticated methods are re-
quired. We took the following exhaustive approach. Each vertex
has the same number of edges approaching the segment from one
side, m, that exit from the other. Any path using an approaching
edge can continue onto any of the exiting edges on the other side.
Thus, we assign a permutation matrix to each node from the
symmetric group Sm, describing how all edges either side of the
node are pairwise connected. This encapsulates all possible paths
through the allelic graph. One then starts from a telomeric node
and follows the path dictated by the permutations to obtain a viable
chromosome structure. Repeating this process for all possible com-
binations of permutation matrices will produce all possible paths.

Clearly only one of these solutions can have plausibly arisen
during the cancer’s development. We now explore methods to
help reveal which set of contigs is likely to be correct, and what
rearrangements led to this structure.

Somatic graph

We would like to investigate the extent to which we can firstly
cluster rearrangements into single transformations and secondly
identify their nature. To achieve these two aims, we introduce the
somatic graph.

The allelic graph essentially described how the segments are
connected. The somatic graph is a dual graph, describing instead
how rearrangements and breakpoints relate. A breakpoint is the
genomic position implicated in a rearrangement. One of the two
segments either side of this position is attached in rearrangement
to the end of another, possibly remote, segment, marking the lo-
cation of a second breakpoint. Rearrangements thus connect pairs
of breakpoints. We then first form a single node for each break-
point. For any chromosome there must be one less breakpoint than
the number of segmented regions. These are arranged horizontally
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in genomic order as shown in Figure 3C. They are numbered se-
quentially so that breakpoint b corresponds to the position be-
tween segments b and b + 1. Each rearrangement links two
breakpoints (possibly the same breakpoint twice). This connection
is represented by an edge connecting the associated nodes. The
segment to the left or the right of the breakpoint is implicated by
each rearrangement. We represent this by attaching the end of the
edge to the left or right side of the node, respectively. As with the
allelic graph, each end of each edge has two possible directions,
resulting in a bidirectional graph. The relationship between com-
ponents and genomic transformations is a general phenomenon
that relies on the following principle.

Somatic graph component principle

Any edge connecting a pair of nodes in the somatic graph repre-
sents an individual rearrangement between the two corresponding
breakpoints. These events must have arisen simultaneously. Con-
versely, as a breakpoint is implicated once in a single moment, all
rearrangements involving that breakpoint must have occurred at
the same time. We thus conclude that all edges touching the node
corresponding to that breakpoint represent rearrangements that
occurred concurrently. We can extend this argument inductively
across all nodes and edges within a single component of the so-
matic graph to conclude that each component represents events
that occurred simultaneously.

We would like to be able to use each component to help
identify the underlying transformation that took place at that
moment. There is a variety of standard transformations that mod-
ify genomic segments in a cancer genome. In this study, we con-
sider the dictionary of nine transformations described in Figure 2.
Each transformation generates a distinct set of breakpoints that are
pairwise connected in the somatic graph by edges representing
somatic rearrangements between them.

To encapsulate the structure of each component and help
characterize the nature of the underlying transformation, we in-
troduce binary connection matrices. These matrices index the
connections between breakpoints represented by edges in the so-
matic graph. Each edge represents a rearrangement involving two
breakpoints. This also involves two segments. Each segment is ei-
ther to the left or the right side of the breakpoint involved. Each
end of the edge then has left or right directionality (�/+), corre-
sponding to the side of the breakpoint implicated in the rear-
rangement. Each edge has two ends and so four possible orienta-
tions associated with it, resulting in four matrices. The resulting
matrices for standard transformations are indicated in Figure 2.

In general, the components of the somatic graph are readily
identifiable via standard stepwise search algorithms (Gross and
Yellen 2004). Each component of the graph belongs to a trans-
formation. The somatic graph is bidirectional, so we represent each
component within b breakpoints by four b 3 b binary connection
matrices: I++; I+�; I�+; and I�� . Specifically

Io1 o2 ðb1; b2Þ=
1; breakpoints b1; b2 are edge connected with

respective orientations o1; o2

0; otherwise

8<
:

Note that these matrices have the following symmetries un-
der transposition:

I + + ðb1; b2Þ = I + + ðb2; b1Þ; I��ðb1; b2Þ = I��ðb2; b1Þ
and I +�ðb1; b2Þ = I�+ ðb2; b1Þ:

For any rearranged cancer genome, the culpable genomic
transformations result in the observed components of the somatic
graph. We can now compare the connection matrices from each

somatic graph component to Figure 2 to identify the possible
transformations that have taken place. Note that we must consider
various permutations of the data. Firstly, the order of the break-
points needs to be permuted (permute the rows and columns of the
connection matrix); the formulation listed represents a specific use
of breakpoints. Secondly, the genome at a breakpoint could have
been inverted from a preceding transformation. Any transfor-
mation operating on a segment on one side of a breakpoint will
thus appear to operate on the opposite side of the breakpoint when
viewed in the reference genome. This changes the side of the node
that the corresponding edge attaches to, and so the sign of one of
the matrix superscripts. We thus need to consider all possible ge-
nomic orientations at the breakpoints.

Many transformations require two breakpoints to be
genomically connected prior to the transformation event. For ex-
ample, a tandem duplication from breakpoint b1 to b2 requires the
segment to the right of b1 (as viewed in the reference genome) to be
connected to the segment on the left of b2, which is represented as
1+ ; 2�. If the genome at b1 was inverted by an earlier trans-
formation, it will be the segment to the left of b1 (as viewed in the
reference genome) that is genomically connected, and the condi-
tion becomes 1� ; 2�. Any permutations of breakpoints or re-
versed orientations also need to be applied to these conditions of
connectivity (for an explicit example of these transformations, see
the Supplemental Material).

The specific comparisons are implemented as follows.
We have the four observed connection matrices Iobs

o1 ;o2 bi; bj

� �
for B breakpoints i, j = 1, 2, . . ., B and orientations o1, o2 2 {6}. We
have a candidate test transformation with connection matrices
Itrans

o1 ;o2 ðbi; bjÞ from Figure 2. We test a set of orientations ti 2 {6}, i =

1, 2, . . ., B and a breakpoint permutation s 2 SB to see if all elements
of the permutated observed connection matrices match the test
transformation connection matrices:

I
tio1 ;tjo2

obs sðbiÞ;sðbjÞ
� �

= Itrans
o1 ;o2 ðbi; bjÞ 8 i; j 2 1;2; . . . ; Bf g; o1; o2 2 6f g:

If we find a match, then this tells us three things. Firstly, the
tested transformation is a valid class. Secondly the genome at
breakpoint bi has orientation ti immediately prior to its formation.
Thirdly, any requirements of genomic connectivity bsi

i ;b
sj

j from the
transformation dictionary in Figure 2 become b ti si

i ;b
tjsj

j :

A few remarks are in order. Firstly, there may be more than one
match, and we must check all possibilities. Secondly, the number
of breakpoints and number of edges represented in the test and
observed matrices have to be equal to obtain a match; otherwise,
the test transformation can be rejected without further compari-
son. Thirdly, the symmetries of the connection matrices outlined
above mean that we only need to check a subset of these elements
(I+� and the upper triangular portions of I++ and I�� would suffice,
e.g.). Fourthly, the symmetries in some of the transformations
mean that not all permutations need be considered. Specifically,
both the inversion and the translocation are symmetric (see Fig. 2),
and no permutations are necessary. The insertion connection
matrices are invariant under three-cycle permutations of break-
points, and so only the three transpositions need be considered
(i.e., swap pairs of breakpoints). Fifthly, if this fails to identify the
transformation, we consider the possibility that subsequent rear-
rangements may have deleted all copies of some breakpoints. This
means that some of the unit entries in Itrans

o1 ;o2 b1; b2ð Þmay be zero
in Iobs

tio1 ;tjo2 s bið Þ;s bj

� �� �
. The two INVs of Figure 3Civ are examples

of this, each having a somatic connection removed by BFBs.
By comparing the information from each component of the

breakpoint graph to the dictionary of Figure 2, we can identify the
set of possible transformations that caused the breakpoints. This
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just leaves the large-scale events such as chromosomal gain and
loss that do not implicate breakpoints. To determine this, we cal-
culate the difference in the observed number of telomeric nodes to
the original number at wild type. This counts the number of
chromosomal losses (CL) or duplications (CD) twice. We need to
make an adjustment if there are any unbalanced translocations
(UTs) taking place, as each such event will lose a chromosome.

We now have a general method to identify standard classes of
transformations that have taken place. However, we note that the
dictionary of transformations given in Figure 2 is unlikely to be
complete. Take the example in Figure 3ii, where we have three
localized copy number gains with a copy number of 3 surrounded
by a copy number of 1. This simple-looking copy number profile
actually involves a complex of six internal rearrangements, one
rearrangement to an unknown location and a translocation. The
four components of the resulting breakpoint graph point toward
some interesting complexities. The components {1, 2, 4, 9}, {3, 8},
and {5, 7} are three transformations likely to have produced these
segments along with component {6}, linking to some other un-
known region. The final component {10} involves a BFB and the
translocation. Given the copy numbers, this suggests the final
transformation caused breakpoint 10, a BFB doubling the complex
arrangement of segments. This is further reinforced by the palin-
dromic contig, the path-walking method produced in the previous
section. However, instead of losing the genome to the right of the
breakpoint (as is normal with a BFB cycle), the remaining segment
was stitched to a region in chromosome 18. Note that although we
cannot classify these rearrangements into any of the standard
classes of Figure 2, the machinery has still allowed us to point to an
interesting probable sequence of events.

We now assume that we have constructed a complete list of
candidate transformations involved in the cancer genome’s for-
mation. This provides no indication of which order they are likely
to have occurred in. We now consider this problem in more detail.

Ordering transformations

We now assume that we have a list of candidate transformations,
and we know the mutually exclusive sets of breakpoints each
transformation implicates. We wish to determine which possible
orders of these events are consistent with the observed data. Note
that the solution will not necessarily be unique (two transfor-
mations on separate chromosomes can occur in either order with
the same result).

We take a two-pronged attack to determine the possibilities.
We first demonstrate that the number of copies of somatic con-
nections limits the number of possible sequences of transfor-
mations. The second approach involves in silico implementation
of transformations to see which possible orders recapitulate the
observed copy number profile.

The principle of allelic copy number conservation assumes
that breakpoints occur at unique positions on single chromo-
somes. The rearrangements forming these breakpoints are as-
sumed to do so once with a somatic edge count of 1. Any sub-
sequent transformation from the dictionary of Figure 2 will do no
more than double either node or edge counts. Consider the allelic
graph of Figure 1Ci. The rearrangement associated with the BFB
has an edge count of 2. This was originally 1 at formation and re-
quires at least one subsequent event so was either the first or second
transformation. The two edges associated with the ID have an edge
count of 4. When this first forms, the edge counts are 1, and so we
require two subsequent events. This must have been the first event.
The edge counts then tell us the only possible order, ID < BFB < CD.

In general, an allelic graph edge has count e. Higher values
imply earlier events and allow us to place restrictions on the pos-

sible orders of transformations. Specifically, an edge with value e
must have received at least max 0;1+ log2 e� 1ð Þ

	 
� �� �
ensuing

duplications after its formation. We can maximize this over all
somatic edges associated with the transformation to obtain the
minimum number of subsequent transformations that took place.

At this stage, we still do not know whether any putative order
of transformations is consistent with the observed data. To test any
candidate order, we start from a germline configuration of the
genome and sequentially apply each transformation in silico to
identify which cases recapitulate the observed copy number
data. Specifically, for any putative order of transformations T1 <

T2 < T3 < . . . < TR, we have (for more details, see the Supplemental
Material):

Step 1: Construct algebraic chromosomes in a germline configu-
ration of segments 1

p
c ;2

p
c ; . . . ; s

p
c

� �
for each parental allele p of

chromosome c.
Step 2: For transformation Tr, find the positions of all rmax break-

points b r
1; b

r
2; . . . ; b r

rmax
implicated by the transformation in the

algebraic chromosomes (there may be more than one location
for each breakpoint).

Step 3: Sequentially apply transformation Tr to algebraic chromo-
somes (as defined in Fig. 2; see also the Supplemental Material)
trying all positions found in Step 2. If not possible with any
combination of breakpoint positions, reject the transformation
order.

Step 4: Count the allelic copy numbers from algebraic chromo-
somes. If these values agree with the experimentally observed
values, output both the order of events and the resulting alge-
braic contigs; otherwise, reject the order.

These methods are capable of dealing with considerably
greater complexity; the cluster of NCI-H209 (Fig. 3Aiv) results from
two inversions (INVa, INVb), two breakage-fusion-bridge cycles
(BFBa, BFBb), a deletion (DEL), three unbalanced translocations
(UTa, UTb, UTc), and two chromosomal duplications (CD1, CD4).
The only possible temporal orders that recapitulate the observa-
tions satisfy the following partial ordering:

fCD1;CD4g< fUTa;UTbg;CD1 < fINVa; INVbg;
fUTb; INVa; INVbg< BFBb < BFBa

In silico implementation of transformations suggests that
there are two possible configurations (depending on which chro-
mosome the DEL occurs) (for details, see the Supplemental Material).
Only one solution has a wild-type copy of chromosome 1. We
cannot without additional information distinguish the two pos-
sibilities. However, chromosomal painting on the cell line sug-
gested that there is a wild-type copy of chromosome 1, and the
final genomic structure for this complex of rearrangement is com-
posed of the four chromosomes shown in Figure 4C, three of which
are rearranged.

We note that the allelic graph has two choices at the second
and fourth breakpoints of chromosome 1 (Fig. 3Biv, gray dashed
lines). Altering the connections at the fourth breakpoint separates
the two ends of inversion INVa and is rejected as an allelic graph.
Altering the connections at the second breakpoint switches the
copy of chromosome 1 involved in the UTa event but has no effect
on the order of rearrangements. It does, however, affect the
resulting chromosomes, again resulting in no wild-type copy of
chromosome 1 and so is rejected.

Timing evolution

From the previous section, we have one or more possible temporal
orderings of rearrangements. Our aim is to estimate the time pe-
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riods in which rearrangements occurred from the multiplicities of
somatically acquired point mutations occurring in the rearranged
segments. We now take each genomic segment, along with a pro-
posed order of rearrangements, and track its evolution over the
cancer’s lifetime. This can be structured in terms of rooted binary
‘‘segmental evolution trees’’ (see Fig. 6A). Each node represents
a copy of that segment during a time interval between rearrange-
ments. Two nodes corresponding to consecutive time intervals are
connected via an edge when either the rearrangement between the
two time intervals does not affect that segment, or when it is du-
plicated. If a segment is deleted by a transformation, the node
representing the segment prior to the transformation has no
daughter nodes. The number of leaves emanating from the node
present at the final time period is then equal to the multiplicity of
any point mutations that occur in that segment during that time
period. These are the numbers associated with each node.

Consider the example given in Figure 6A. This describes the
evolution of segment 51 from the rearrangement cluster of NCI-
H209 in Figure 3iv. We have seen that this cluster undergoes two
CDs, two INVs, three UTs, two BFB cycles, and a DEL. The events
that affect the number of copies of the segment are CD1, BFBa, and
BFBb. To represent this, we start with two nodes, one for each allele.
The first event is CD1, which duplicates one of the alleles. BFBb

then duplicates one of the resulting copies. One of the daughter
nodes has a value zero because the next event, BFBa, duplicates one
of the copies but deletes the other (for evolution, see the Supple-
mental Material). There are thus three leaves present at the end of
the evolution from the blue parental node, which is the number
associated with the node. The other allele is unaffected throughout
and has a value of 1.

If we assume that mutations are generated as a Poisson pro-
cess, we can then use the distribution of mutation counts within
segments to estimate the time periods. Formally, we proceed as
follows: We denote the estimated number of mutations that have k
genomic copies in copy number segment s at the end of the tu-
mor’s evolution by ns

k (we drop the chromosome index c for sim-
plicity of exposition). We assume that there are R transformations
bridged by time intervals t1, t2, . . ., tR+1 that we are trying to esti-
mate. These have a fixed total time T. Each node of the evolution

tree represents a single copy of a segment during a single time
period. These are connected by an edge if they are either unaffected
by the transformation between the two time periods, or the latter
results from duplication of the first segment. The numbers asso-
ciated with each node, lr,i (i and r index the nodes, representing the
i-th copy of the segment prior to transformation r), are the multi-
plicities that any mutation occurring in that time interval will have
at the end of the tumor development. These values equal the
number of leaves emanating from the node at time T. This in-
formation is readily encoded by constructing adjacency matrices
for each transformation. Specifically, if the segment s in question
has I copies prior to transformation r, after which it has J copies,
then the I 3 J binary matrix es

r flags how the segments evolve. That
is, es

rij=1 indicates that segment copy j derives from copy i following
transformation r. We then multiply these matrices together to give
the leaf counts at each node. Specifically

ls
ri = es

r � es
r + 1 . . . es

R �1
� �

i
:

Next, assume that somatic point mutations occur at a rate of
one per time unit per megabase of DNA. Now, if segment s has
a length rs megabases, then the copy associated with node (r, i) is
assumed to accrue mutations with a Poisson distribution with
mean rstr during time interval tr. These mutations will all have l s

ri

genomic copies in the final genome. Now, for any multiplicity k,
there will be as

kr = # i : l s
ri = k

� �
such segments (and so nodes) pro-

ducing mutations with k copies at rate +rr
sas

kr tr .
However, the observed count of mutations ns

k is likely to in-
clude errors. If matrix ekk0 represents the probability that a muta-
tion with k copies is estimated to have k9 copies, then the number
ns

k of mutations classified (rightly or wrongly) as having k copies
will be Poisson-distributed with mean rate +k0 ;rr

sekk0a
s
k0r tr

 �
. Note

that 1�+k0ekk0 is the probability that the mutation is not classified
and can be used to represent the likelihood that the mutation is
not detected. (This will be more likely for low-multiplicity muta-
tions as more paired-end read depth coverage is required to dif-
ferentiate them from artifact. In all applications we used the
identity matrix as the error matrix, assuming perfect multiplicity
estimation.) In summary, we find that:

Figure 6. Timing. (A) The evolution tree for the rearranged allele of segment 51 from NCI-H209 (see Fig. 3Biv), which undergoes three trans-
formations—a chromosomal duplication and two breakage-fusion-bridge cycles, resulting in four time periods. Each node represents a single genomic
segment during a single time period. Three adjacency matrices e1, e2, and e3 are binary representations of the duplication events. The numbers at each
node count the number of emanating leaves. These are obtained by matrix multiplication of the adjacency matrices (in reverse order) to the index vector
[1,1,1,1,1]. (B) The predicted time line for the NCI-H209 rearrangement cluster.
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nk
s ; Po +

k0 ;r

rsekk0a
s
k0r tr

 !
:

Combining this likelihood across all counts and segments
provides a Poisson regression problem to estimate the rearrange-
ment interval times t1, t2, . . ., tR. Most transformation events will
affect more than one segment (such as CD). Clearly, the time that
this occurs must be the same for all segments. Note that all time
parameters scale with mutation prevalence in this expression.
Subsequently, the absolute times or rates cannot be determined
from these equations. We remove this redundancy by fixing the
total time T at unity. All estimated times can then be thought of as
a proportion of the accumulated mutational burden.

These restrictions can be formulated into linear constraints
on the interval times and the timing estimation achieved by
constrained maximum likelihood. When more than one topology
or in silico simulation provides a viable transformation sequence,
we use maximum likelihood to identify the most probable case.
These solutions seed Markov chain Monte Carlo (MCMC) tech-
niques to produce posterior distributions for the timing events,
from which confidence intervals are assigned. These estimates are
conditional on the mutation multiplicity estimates. For lower read
depth data and higher contamination, there will be additional
variation from the error in these estimates. To model this signifi-
cantly complicates the MCMC and was not implemented in this
study. Confidences arising from low contamination and deep se-
quencing data such as NCI-H209 will be relatively accurate; other
confidence estimates should be viewed with more caution.

We note that these methods are only applicable to transfor-
mations that increase copy number and mutation multiplicity, so
we can estimate the exact timing of the CD events but not UTs, for
example. However, the ordering of all transformations can be
combined with these times to construct timelines of evolution.

For example, when examining the timings for rearrangement
cluster NCI-H209 in Figure 3iv, only the events CD1, CD4, BFBa,
and BFBb increase copy number and can be timed. The CD4 event
occurred at 47.8% (ci 42.6%–78.5%) through tumor development,
the CD1 event occurred at 71.4% (ci 58.8%–78.6%) with BFBb and
BFBa following at 82.4% (ci 80.5%–97.0%) and 91.6% (ci 86.5%–
97.0%). The proximity in both time and position of the two BFB
events are indicative of a single erroneous duplication event oc-
curring during a single cycle of cell division.

Chromosomes 13 and 17 of NCI-H209 consist entirely of
copy-neutral LOH (see the Supplemental Material). The most par-
simonious explanation suggests chromosomal loss with duplica-
tion of the remaining chromosome (CL < CD). Only CD increases
copy number and can have its timing estimated, resulting in esti-
mates 77.6% (ci 74.3%–80.6%) and 62.4% (ci 57.3%–67.8%), for
chromosomes 13 and 17, respectively, implying that duplications
probably occurred during separate cell divisions.

We examined these regions for mutations in cancer genes and
found that chromosome 13 of NCI-H209 contains a homozygous
mutation in RB1 and chromosome 17 contains a homozygous mu-
tation in TP53. Both mutations must have occurred prior to CD.
Selection of RB1 and TP53 thus occurred before 77.6% and 62.4%
of the acquisition of mutational burden, respectively. All this
quantitative temporal information can be combined with the or-
dering determined previously to construct a timeline of the can-
cer’s evolution (Fig. 6B).
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