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During tumor initiation and progression, cancer cells acquire a selective advantage, allowing them to outcompete their
normal counterparts. Identification of the genetic changes that underlie these tumor acquired traits can provide deeper
insights into the biology of tumorigenesis. Regions of copy number alterations and germline DNA variants are some of
the elements subject to selection during tumor evolution. Integrated examination of inherited variation and somatic
alterations holds the potential to reveal specific nucleotide alleles that a tumor ‘‘prefers’’ to have amplified. Next-generation
sequencing of tumor and matched normal tissues provides a high-resolution platform to identify and analyze such somatic
amplicons. Within an amplicon, examination of informative (e.g., heterozygous) sites deviating from a 1:1 ratio may suggest
selection of that allele. A naive approach examines the reads for each heterozygous site in isolation; however, this ignores
available valuable linkage information across sites. We, therefore, present a novel hidden Markov model-based meth-
od—Haplotype Amplification in Tumor Sequences (HATS)—that analyzes tumor and normal sequence data, along with
training data for phasing purposes, to infer amplified alleles and haplotypes in regions of copy number gain. Our method
is designed to handle rare variants and biases in read data. We assess the performance of HATS using simulated amplified
regions generated from varying copy number and coverage levels, followed by amplicons in real data. We demonstrate
that HATS infers the amplified alleles more accurately than does the naive approach, especially at low to intermediate
coverage levels and in cases (including high coverage) possessing stromal contamination or allelic bias.

[Supplemental material is available for this article.]

Tumor development and growth can be viewed as an evolutionary

process (Nowell 1976). Genetic variation in the form of somatic

alterations (e.g., mutations, translocations) and inherited poly-

morphisms provide the raw material for the acquisition of tumor-

related traits. Copy number aberrations (CNAs)—regions of so-

matic amplification (amplicons) or deletion—are a hallmark of

tumor genomics. Recurrent amplicons have been observed over

two decades (Kallioniemi et al. 1992; Joos et al. 1995; Cher et al.

1996; Korn et al. 1999; Paris et al. 2004; Zhao et al. 2005; Sun et al.

2007a) and are believed to be advantageous to the tumor during

tumor development.

Genome-wide scans of CNAs have progressed in resolution

from technologies such as traditional comparative genomic hy-

bridization (CGH) to array-based CGH (Solinas-Toldo et al. 1997;

Bentz et al. 1998), including tiling array CGH (Ishkanian et al.

2004) and single nucleotide polymorphism (SNP) arrays (Wang

et al. 1998; Lin et al. 2004); methods for copy number detection on

such platforms oftentimes utilize hidden Markov models (HMMs;

see Supplemental Methods). The recent advent of high-through-

put, next generation sequencing (NGS) platforms now offers tre-

mendous opportunities in characterizing genomes—healthy or

disease-affected—at the nucleotide level of resolution.

Modern sequencing of genomes is massively parallel. The

subject’s DNA is first sheared, after which the laboratory-amplified

fragments are sequenced, producing short reads that are several

dozen bases long (Ronaghi et al. 1996; Gharizadeh et al. 2002;

Bentley et al. 2008; McKernan et al. 2009). Reads are aligned to the

human reference genome (Bentley et al. 2008; Li et al. 2008a, b; Alkan

et al. 2009; Langmead et al. 2009; Li and Durbin 2009; McKernan

et al. 2009). Since reads at a site are assumed to sample each of its two

original copies (or more, in the case of amplicons), multiple in-

dependent reads can be observed to cover each haploid copy of a site

in a manner following the Poisson distribution with genome-wide

expectation L (as determined by the laboratory amplification step).

Multiple computational approaches for detecting structural

variants and copy number changes within NGS data have been

developed (Dalca and Brudno 2010). One such class of methods

utilizes paired-end sequence information for detection of germline

insertions, deletions, and inversions (Tuzun et al. 2005; Korbel

et al. 2007; Bentley et al. 2008; Chen et al. 2009; Hormozdiari et al.

2009; Lee et al. 2009; McKernan et al. 2009). Another such class

examines depth of reads to infer germline copy number variants

(CNVs) (Xie and Tammi 2009; Yoon et al. 2009). This read depth

paradigm was also applied to tumor and matched normal tissues to

detect copy number and breakpoints of CNAs in tumors (Chiang

et al. 2009). A third class combines read depth with mate pairs for

CNV calling (Medvedev et al. 2010).

In addition to CNAs, inherited polymorphisms are clearly

related to cancer biology and predisposition. Classic examples in-
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clude the highly penetrant mutations in BRCA1 (Hall et al. 1990;

Miki et al. 1994) and BRCA2 (Wooster et al. 1995) that lead to

breast cancer. More recently, genome-wide association studies

(GWAS) have led to the discovery of more modestly penetrant

variants that are associated with human traits (McCarthy et al.

2008; Hindorff et al. 2009; Witte 2010), including cancer suscep-

tibility (Amundadottir et al. 2006; Freedman et al. 2006; Zanke

et al. 2007; Amos et al. 2008; Easton and Eeles 2008; Fletcher et al.

2008; Hung et al. 2008; Thorgeirsson et al. 2008; Ahmed et al.

2009; Le Marchand 2009; Song et al. 2009; Wu et al. 2009; Chung

et al. 2010; Stadler et al. 2010a, b; Turnbull et al. 2010).

GWASs stem partially from modern population genetics,

which offers ample data and models to understand sequence

polymorphisms—mostly single nucleotide variants (SNVs)— along

with their correlation to one another and to disease phenotypes

(Hartl and Clark 2007). Specifically, the nonrandom allele combi-

nations of proximal SNVs along a single genomic copy, called

haplotypes, are a useful unit of local genomic variation. Although

haplotypes are not observed directly from genotype data, com-

putational phasing methods (Kimmel and Shamir 2005; Rastas

et al. 2005; Eronen et al. 2006; Scheet and Stephens 2006;

Browning and Browning 2007; Sun et al. 2007b) distinguish ma-

ternal from paternal alleles, thus reconstructing germline haplo-

types. Amplicons in cancer typically lie along a haplotype.

Since the somatic genome is a descendent of the germline

genome, recent studies have explored the relationships between

these distinct but related genomes (Jones et al. 2009; Kilpivaara

et al. 2009; Olcaydu et al. 2009). For example, a particular het-

erozygous locus in a tumor may ‘‘prefer’’ to have one germline

allele somatically amplified over another. Such an event has been

demonstrated in a targeted fashion in mouse skin tumors (Nagase

et al. 2003; de Koning et al. 2007) and in human colorectal cancers

(Ewart-Toland et al. 2003; Hienonen et al. 2006). The latter studies

found the AURKA gene to be preferentially amplified when con-

taining a low penetrance (T > A) germline variant. In order to ro-

bustly perform this type of analysis genome-wide, allelic copy

number status must first be measured; several existing algorithms

do this on SNP arrays (Nannya et al. 2005; Komura et al. 2006;

Laframboise et al. 2007; Korn et al. 2008). We recently reported

such an analysis and discovered new links between germline SNP

variants within somatic amplicons in glioblastoma SNP array data

(Dewal et al. 2010; LaFramboise et al. 2010). The higher resolution,

coverage, and larger dynamic range of NGS platforms now compel

us to address such questions on tumor sequence data. As a first

step, we must determine allelic copy number status of the reference

alleles and SNVs within amplicons.

We present a novel method for analyzing NGS data in order to

distinguish the amplified from the nonamplified alleles within

tumor CNA regions, which themselves can be identified before-

hand from the same data. We assume that only one of the chro-

mosomes in a homologous pair undergoes amplification along an

amplicon, as the majority of amplifications were observed to be

monoallelic versus biallelic in earlier work (LaFramboise et al.

2005). As we later show, the statistical signal for allelic imbalance

of amplification that is coming from a single heterozygous site is

often inconclusive due to limitations of coverage, sequencing bias,

and stromal contamination. We, therefore, collate information

from multiple heterozygous sites by leveraging the known struc-

ture of linkage disequilibrium (LD) between these variants within

the population being interrogated. Specifically, we develop an

HMM-based approach, called Haplotype Amplification in Tumor

Sequences (HATS), that reports the amplified alleles, and thus

haplotypes, in the tumor sample based on (1) coordinates and

copy number of CNA regions in a tumor sample called by existing

methods, (2) allele-specific counts of reads from tumor and

matched normal sequences (when available) corresponding to

those regions (Li et al. 2009), (3) genotype calls of sites within those

regions, and (4) independent training data consisting of phased

haplotype sequences from the same population as that of the

sample. This training data provides LD information across sites,

allowing for more accurate haplotype construction versus exam-

ining each site in isolation. In contrast to prior work based on SNP

array data (Dewal et al. 2010), HATS is able to handle information

unique to sequencing, such as rare or low frequency variants, in-

cluding novel SNV sites or somatic mutations not represented in

the training data. Evaluation of HATS using synthetic data sets as

well as real tumor data, obtained from The Cancer Genome Atlas

(TCGA) (Network 2008), emphasizes that HATS detects the am-

plified allele (within called amplicons) more accurately than an

alternative, naive approach over 99% of the time. The gain is es-

pecially prominent at lower to intermediate levels of average

coverage, as well as in cases (including high coverage) involving

stromal contamination or allelic bias.

Results (Evaluation)
For each heterozygous site within a called amplicon a (of copy

number Ca) in a tumor sample, the naive model compares the

counts of reads that observe each allele and designates the allele

with the greater read count as the amplified allele (see Methods). If

the read counts are equal, no call is made. The naive model is thus

vulnerable to allele-specific biases in addition to fluctuations in

read counts that occur at low coverage levels. HATS is designed to

address these issues. HATS examines the allele-specific read depth

and calculates allelic biases for each site within a, along with

leveraging known LD structure over multiple sites (see Methods),

to call the amplified alleles.

The advantage that this provides to HATS must be gauged. We

summarize the performance of both the naive model and HATS

using the metric sensitivity, or the probability of a gold standard

amplified allele at a heterozygous site being correctly called as

amplified. We examine only those sites within regions known

to be amplified, called a priori by a copy number-calling algorithm

or a different platform such as array CGH. Thus, specificity, in this

case—the fraction of nonamplified alleles (within an amplicon)

called as nonamplified—is identical to sensitivity. We first derive the

power of the naive model theoretically. Afterward, we determine the

sensitivity of the naive model and HATS using simulated data, fol-

lowed by real data.

Theoretical power of the naive model

The number of reads that cover each haploid copy of a site follows

the Poisson distribution with genome-wide expectation L. At

a heterozygous site, L and ðCa � 1Þ 3 L represent the mean read

counts for the nonamplified and amplified alleles, respectively.

The combined mean for both alleles is L + ðCa � 1Þ 3 L = Ca 3 L,

and the diploid coverage is 2L. The theoretical power of the naive

model is the total probability of the amplified allele possessing

a read count greater than that of the nonamplified allele, with the

space of read count pairs generated from Poisson curves with re-

spective means just mentioned. This is described more formally in

Supplemental Methods. Results over a range of values for 2L and

Ca are shown in Supplemental Figure S1.

Genome Research 363
www.genome.org

Amplified haplotype call ing in next-gen tumor data



Performance of HATS and the naive model in simulations

To measure the sensitivity of HATS across a variety of tumor data

set scenarios, we generated numerous synthetic data sets con-

taining amplicons and assessed HATS’ ability to call the amplified

alleles within the amplicons. We performed the same for the naive

model as a baseline comparison. Simulations revealed that HATS’

sensitivity eclipses that of the naive model over 99% of the time in

practical data sets.

In further detail, simulation of a particular data set first re-

quires training data consisting of phased germline genotypes for

d unrelated individuals from the same population. We select n of

the d individuals to comprise the test data (indexed by 1 # j # n).

Stretches of somatic amplification are randomly generated and

applied along the genome of each sample j such that these re-

current stretches overlap across the samples. Each CNA amplicon

a in j thus consists of a gold-standard amplified and nonamplified

haplotype pair. For a heterozygous genotype at a site in a, counts of

reads that observe the amplified allele and nonamplified allele are

sampled from Poisson distributions with respective mean haploid

coverages ðCa � 1Þ 3 Lj and Lj. For a homozygous site in a, counts

of reads that observe the allele are sampled from a Poisson distri-

bution with mean haploid coverage Ca 3 Lj. In the scenarios that

incorporate allelic bias (described later), these read counts may be

adjusted to reflect the simulated bias.

For each sample j, the allele-specific read count information

along each amplicon in j is analyzed by the naive model. In addi-

tion, the training data of (d – n) samples, along with genotype

information, copy number Ca, tumor allelic read counts, and

normal allelic read counts (for calculating bias) along each ampli-

con in j are analyzed by HATS. We define accuracy as the fraction of

gold-standard amplified alleles along heterozygous sites in each

simulated CNA region a that is correctly called as amplified.

Setting n > 1 is only relevant for scenarios in which allelic bias

is simulated, as multiple samples provide a better estimate of the

bias. When not simulating bias, we set n = 1 and employ a d-fold

cross-validation scheme in which each a in each j is processed by

the naive method and HATS, the latter using a training data set of

(d – 1) samples. Again, overlapping amplicon coordinates are ap-

plied to each j.

The variability across the synthetic data sets is implemented

via a set of seven parameters, described in Table 1. We perform 100

trials for each parameter value combination when iterating over

the parameter space, performing a d-fold cross-validation per trial

if n = 1. To prevent an explosive growth of the parameter space, we

iterate over only one parameter at a time, while maintaining the

other parameters at their default values. The exception to this is

when we simulate bias, in which we explore the space of the last

two parameters, as described later.

Toward determining sensitivity for a parameter value com-

bination, we focus only on those accuracies (from the combi-

nation’s trials) whose corresponding amplicons cover at least

a threshold of v heterozygous sites. An example plot of accura-

cies for each amplicon a versus the number of heterozygous

sites in a is depicted in Figure 1A (using example parameter values

½2Lj = 6;Ca = 3�). Note that as the number of heterozygous sites in

a increases, the accuracies converge to a peak for either method.

The peak thus represents an asymptotic measure for accuracy,

which we assign as the sensitivity. A large value for v isolates those

points contributing to the peak while avoiding the discreteness

effects observed in small values. To determine the value of each

peak, we perform k-means clustering on those points passing v,

Table 1. Simulation parameter definitions

Parameter name Default Description

Amplicon copy number (Ca) 3 This parameter represents the number of haploid copies of the genome along amplicon
a in tumor sample j.

Haploid genome-wide coverage of
tumor (L)

5 This parameter represents the mean of a Poisson distribution which, upon sampling,
determines the number of reads on a haplotype at a particular site i in tumor sample j.

Haploid genome-wide coverage of
normal (~L)

5 This parameter represents the mean of a Poisson distribution which, upon sampling,
determines the number of reads on a haplotype at a particular site i in the matched
normal of sample j.

Mean length of a recurrent amplicon 390 kb This parameter represents the mean of an exponential distribution which, upon sampling,
determines the length of recurrent amplicons across samples. The distribution possesses
a mean of 390 kb by default. This exponential distribution can produce stretches of
over 1, or even 2, Mb. The default value was determined in Dewal et al. (2010).

Number of recurrent amplicons 5 This parameter determines the number of recurrent amplicons in the genome. A value
of 5 represents a realistic number of such regions, as was determined in Dewal et al.
(2010).

GC read bias ratio 1.0 This parameter is used to represent GC bias that is observed in real sequence data. It
represents the ratio of the simulated AT read count to the simulated GC read count at
the site i in question. The idea is that the presence of a G or C at i translates to a
(slightly) higher GC content level, which may disrupt the sequencing chemistry and
thus induce bias. A value of 1.0 indicates no bias, while larger values indicate stronger
bias. The default value is set to 1.0 so that other parameters can be tested
independently of bias during simulation.

Number of samples in test data 1 This parameter represents the number of samples that are to be excised from the training
data set in order to be used as test data. For example, if the original training data set
contained ten individuals, and this parameter was set to 2, then two individuals would
comprise the test data, while eight would comprise the effective training data to be
used in the simulations. The default value is set to 1, as values >1 are only relevant when
simulating with bias. Increasing the test data size in bias simulation improves HATS’
estimation of the bias.

Two of the default values were obtained by observing parameter-specific properties in a real Illumina 550K data set obtained from The Cancer Genome
Atlas (TCGA), published from a previous study (Dewal et al. 2010).
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setting k = 1 for each method. The resulting centroid for each

method represents the peak and thus the sensitivity for that

method.

Simulation results

We obtained three training data sets from the 1000 Genomes

Project (The 1000 Genomes Project Consortium 2010), each of

which contained phased haplotype sequences from individuals

from a HapMap population (The International HapMap Consortium

2005). Any trio children were removed to preserve independence

among individuals, resulting in the data sets respectively in-

cluding d = 55 European (two trio children removed), d = 55

Yoruban (one trio child removed), and d = 59 Japanese and Chinese

individuals. These data sets were used independently to avoid

stratification effects. Data for additional individuals are expected

to be available publicly over time. The HATS method, as well as

the evaluation procedure above, can easily work with an expanded

training set.

When simulating without bias, we observed that the first two

parameters (regarding amplicon copy number and tumor haploid

coverage) have the most impact on sensitivity. The fourth pa-

rameter, Mean Length of a Recurrent Amplicon, increases the number

of heterozygous sites in a by virtue of increasing the span of a. We

noted above that a longer a provides a better estimate of the as-

ymptotic accuracy of each method. In Figure 1A, HATS performs

better than the naive method in over 99.7% of points (representing

amplicons) that each encompass at least v = 20 heterozygous sites.

At the default parameter values, HATS does better in 99.3% of

points that each encompass at least v = 20 heterozygous sites, with

an average accuracy gap of 10.2%. When there is no restriction on

v, HATS matches the naive method in 6.3% of points and out-

performs it in 93.4% of points. Example

plots depicting accuracy over varying num-

bers of heterozygous sites across vary-

ing diploid coverage levels are given in

Supplemental Figure S2. Points encom-

passing at least v = 1,000 heterozygous

sites converge to their associated peak,

which indicates sensitivity.

The sensitivities of the two methods

across varying levels of coverage (with a

default copy number of 3) in the European

individuals are depicted in Figure 1B.

Both curves for HATS— with a Genotype

Error Correction mechanism either en-

abled for low 2Lj (to recover an allele

possibly missed due to no reads observing

that allele at low coverage; see Supple-

mental Methods) or disabled—perform

better than the naive model, especially at

intermediate to lower coverage levels. We

also show that the naive simulated sen-

sitivity is congruent with its theoretical

estimate. For both methods, the break-

down of sensitivities per read count ob-

serving a site over the coverage levels is

given in Supplemental Figure S3. Sensi-

tivities for Yoruban and Asian individuals

are depicted in Supplemental Figure S4

and show similar performance.

Simulation results: Modeling biases

Real sequence data is known to contain bias, a common example of

which is GC bias (Bentley et al. 2008; McKernan et al. 2009). While

HATS’ bias correction is designed to handle allele-specific biases in

read counts in general, we test its ability to handle GC biases spe-

cifically. When simulating with bias, we vary the two parameters,

GC Read Bias Ratio and Number of Samples in Test Data. The resulting

sensitivities are depicted in Figure 2A. The former parameter

models GC bias by representing the ratio of AT reads versus GC

reads at a heterozygous site. The greater the ratio, the stronger the

induced bias; a value of 1.0 signifies no induced bias. Note that this

parameter only affects sites {G/A, G/T, C/A, C/T}. The latter pa-

rameter determines the test data size n, which, when increased,

improves HATS’ estimate of the bias and thus the performance.

The figure depicts the performance of the naive model, HATS

without bias correction (n = 1 is sufficient as n > 1 is relevant only

when estimating bias), and HATS with bias correction. Our method

consistently outperforms the naive model. Furthermore, bias cor-

rection becomes more effective as either the level of induced bias or

n increases. When the simulated bias is weak and n > 1, bias cor-

rection performs only slightly less than does no bias correction by

a 0.003 cost in sensitivity. However, bias correction quickly gains

the upper hand as the simulated bias increases past 1.5 (or 2 in the

case of n = 2). When n = 1, the estimate of bias is not as precise and

results in a slightly weaker result (with a 0.008 sensitivity cost on

average) unless the induced bias is very strong (3.33). Note that

there is only a marginal performance improvement when in-

creasing n from 15 to 20. The reasons are that the improvement in

estimating the bias plateaus and that the training data set size is

reduced, which negatively impacts sensitivity. The latter reason

may be assuaged with a larger d. In general, the figure demonstrates

Figure 1. Accuracy example and sensitivity of HATS and the naive method from simulations, Euro-
pean (CEU) training sata set. (A) Accuracies of each sample trial (2Lj = 6, Ca = 3). Each point in the
embedded, raised-dot plot represents the accuracy for a particular amplicon a in sample j per trial. As the
number of heterozygous sites in a increases, the accuracies converge to a peak for the naive method and
a peak for HATS. We set the threshold v to 1000 and use k-means clustering to determine the centroids
for each peak. The centroid for the naive model resides at ;0.80, which is assigned as the sensitivity for
the naive method for parameter values (2Lj = 6, Ca = 3). The centroid for HATS exists at ;0.975. (B)
Method sensitivities. This figure displays the simulation sensitivity results for HATS (with Genotype Error
Correction [GEC] turned on or, by default, off) as well as for the naive method. The naive theoretical curve
is included for comparison purposes, illustrating that the naive results can, indeed, be calculated theo-
retically. Note that it takes up to diploid coverage of 45 until the naive method can match the performance
of HATS. The GEC mode noticeably improves performance at very low coverage levels for HATS. The
training data set was obtained from the 1000 Genomes Project (http://www.1000genomes.org/).
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that HATS can accommodate and correct for stronger biases with

the tradeoff of performing slightly weaker—a loss of 0.003 in

sensitivity for n > 1—for sites possessing smaller biases.

Simulation results: Modeling stromal contamination

In tumor data, the called copy number of an amplicon often de-

viates from an integer quantity. The reasons are that the tumor

cells may not all carry the same aberration (i.e., intra-tumoral ge-

netic heterogeneity) and that a tumor sample may be admixed

with normal cell types (i.e., stromal con-

tamination). We focus on the latter rea-

son. A region that is amplified in the tu-

mor (with Ca = 3) but copy-neutral in the

healthy somatic cells may average to

a noninteger copy number, e.g., 2.50 in

the case of a 50-50 mixture. We extend

HATS to handle noninteger copy num-

bers and test its performance on simu-

lated regions with Ca = 2.50 and Ca = 2.80,

with the respective results shown in Fig-

ure 2B and Supplemental Figure S5. Note

that as coverage reduces, the sensitivity of

HATS is smaller than that from equiva-

lent coverage levels with Ca = 3. However,

HATS maintains its gap over the naive

method. More importantly, the naive

simulated and theoretical curves do not

converge with HATS’ curve even when

coverage is high or very high (in the case

of Ca = 2.50), strongly suggesting that the

naive method performs inadequately in

the common scenario of imperfect tu-

mor purity. The breakdown of (Fig. 2B)

sensitivities per read count observing

a site over 2Lj is depicted in Supplemental

Figure S6.

Simulation results: Hemizygous
deletions with stromal contamination

We have extended HATS to analyze het-

erozygous deletion mixtures, in which

deleted alleles are difficult to identify as

lost due to the reads coming from the

stromal cells that observe those alleles.

HATS thus utilizes these read counts

(along with LD structure) to identify

these alleles (and haplotypes) as the ones

lost in the tumor. HATS can analyze data

with a copy number between 1.5 and 2,

exclusive. An example of simulation re-

sults (with Ca = 1.9) is depicted in Sup-

plemental Figure S7. A potential future

extension involves handling data with

pure heterozygous deletions (Ca = 1)

when matched normal information is

available; this functionality is already

partially implemented via HATS’ Geno-

type Error Correction feature. We do not

focus on pure homozygous deletions, as

the lost alleles may be recovered by ex-

amining the matched normal genotypes or via existing germline

imputation algorithms (Browning and Browning 2007). From this

point onward, we return to focusing on amplifications only.

Performance of HATS and the naive model in real data

We also evaluate the performance of both methods on CNA re-

gions in real data. We consider data that has been sequenced as

well as typed on an independent platform such as SNP arrays. The

sequenced tumor data would be of high enough coverage 2L to

Figure 2. Results of simulated aspects of real tumor data. (A) Sensitivity of HATS with bias correction
and the naive model from simulations, European (CEU) training data set. This figure displays the sim-
ulation sensitivity results for HATS with bias correction activated (using varying sample sizes to estimate
bias), bias correction inactivated, and the naive model. The x-axis represents the simulated induced bias,
ranging from 1.0 (representing no bias) to 5 (representing strong bias). HATS eclipses the naive method
in all instances. When the simulated bias is weak and n > 1, bias correction performs only slightly less
than does no bias correction by a 0.003 cost in sensitivity. However, bias correction quickly gains the
upper hand as the simulated bias increases past 1.5 (or 2 in the case of n = 2). When n = 1, the estimate of
bias is not as precise and results in a slightly weaker result (with a 0.008 sensitivity cost on average) unless
the induced bias is very strong (3.33). Note that there is only a marginal improvement in performance
when increasing the test data set size from 15 to 20. The reason is that this reduces the training data set
size, which negatively impacts sensitivity; in addition, improvement in estimation of the bias plateaus.
(B) Sensitivity of HATS and the naive model from simulations with stromal contamination, European
(CEU) training data set, copy number 2.5. This figure displays the simulation sensitivity results for HATS
as well as for the naive model, given a copy number of 2.5, which represents a tumor of copy number 3
with 50% stromal contamination of copy-neutral healthy cells. Note that the performance gap between
the two methods remains wide, and the naive method does not catch up to HATS even at a very high
diploid coverage of 90. The training data set was obtained from the 1000 Genomes Project (http://
www.1000genomes.org/).
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accurately obtain genotype, copy number, and allele-specific read

count information beforehand. For any amplicon a with Ca $ 3,

the amplified alleles that the naive method calls within a are

treated as the gold standard for a, as simulation results in Figure 1B

reveal the naive method’s good performance at high coverage.

Alternatively, the gold-standard amplified alleles may be called

from the SNP array using, for example, B-allele frequency differ-

ences (see Methods in LaFramboise et al. [2010] for a detailed

procedure and quality control filtering steps). In either case, we

then down-sample a random fraction L=L of the reads to mimic

a data set of lower coverage 2L, for which we test the calling of the

amplified allele by HATS versus the naive method. Call accuracy

for 2L is reported as the fraction of correct calls across 100 such

subsampling trials.

Performance is demonstrated in a glioblastoma tumor sample

(TCGA-06-0877) of European descent, with whole genome se-

quence, array CGH, and SNP array data obtained from The Cancer

Genome Atlas (Network 2008) (see Methods: Input data specifi-

cations). Chromosomes 2, 7, 12, 19, and 20 of this sample are

called by array CGH as possessing a chromosome-wide average

copy number of 2.6, suggesting a tumor copy number of 3, with up

to 40% of sample cells being nontumor-related cells of copy

number 2. We considered a specific CNA region at chr19:2.18-

2.54Mb that is reported to possess a local average coverage of 2L =

33.7 and a local average copy number of Ca = 3.18, consistent with

a local copy number of 4 in the 60% of sample cells that are tumor

cells. Figure 3 presents call accuracy for this region across various

levels of coverage 2L, with the gold-standard amplified alleles

called by the naive method on the tumor sequence data itself. As

expected, both naive calling and HATS perform well when 2L is

high. As 2L decreases, the performance gap between HATS and the

naive method widens before shrinking slightly at low coverage.

Utilizing the Genotype Error Correction, however, increases the

performance. The breakdown of sensitivities per read count ob-

serving a site at 2L is depicted in Supplemental Figure S8.

We ran this down-sampling analysis again, except with the

gold-standard amplified alleles called from the SNP array data for

the same sample. SNP arrays naturally possess a lower density of

sites interrogated as compared to sequence data. Restricting HATS

to only array sites forces it to ignore sites in the training data not

typed on the array, resulting in weaker LD structure gleaned from

the training data. Despite this, HATS retains its performance gain

over the naive curve, as seen in Supplemental Figure S9. Moreover,

only three heterozygous sites comprise the gold standard after

quality control filtering in this case; HATS performed better than

the naive method even with such few sites.

We consider another region at chr2:30-31Mb within the same

sample possessing local 2L = 38.7 and Ca = 2.50 (50% stromal

contamination). We discuss findings in Supplemental Results,

with HATS’ markedly superior sensitivity illustrated in Supple-

mental Figures S10 and S12. These evaluation procedures reveal

that HATS outperforms the naive model in real tumor data, even

when sites are few and especially when coverage is reduced or

stromal contamination is present.

Discussion
During recent years, algorithms have been developed for SNP array

platforms to determine somatic allele-specific copy numbers of

germline SNPs. Such data indicates CNAs and enables one to

pinpoint potential disease-associated variants and, by virtue,

haplotypes within the wide span of these regions. However, the

drawbacks of these algorithms are the

suboptimal resolution of the platform,

and more importantly, issues with call

fidelity: Amplified regions render these

algorithms prone to incorrect genotype

calls in tumor tissue. As NGS technologies

offer nucleotide level resolution while

avoiding SNP array issues that affect am-

plified call fidelity, we aimed to develop

a novel method that could determine the

amplified alleles, and thus, haplotypes in

such data. To our knowledge, no other

methods exist that call somatically am-

plified alleles and haplotypes in NGS

data.

Determination of haplotypes is

equivalent to locally phasing the tumor

data using read counts from the tumor

sample and haplotype frequencies from

training data. Only one chromosome is

assumed to be amplified along a homolo-

gous region. At its core, HATS builds an

HMM, using allele-specific read counts as

emissions and training haplotypes to

model transitions. Usage of the training

data is motivated by the notion that the

haplotype constructed from the ampli-

fied alleles (called within an amplicon)

should partially reflect a mosaic of exist-

ing haplotypes within the same pop-

ulation. The training haplotypes enable

Figure 3. Empirical sensitivity of HATS and the naive model, TCGA glioblastoma sample (TCGA-06-
0877), Chr 19. This figure displays the sensitivity results for HATS and the naive method on an amplified
region (chromosome 19: 2,181,615–2,541,253) in a glioblastoma patient (TCGA-06-0877) obtained
from TCGA with a local copy number of 3.18. The naive theoretical curve is included for comparison
purposes. The gold-standard amplified alleles were obtained by analyzing the region with the naive
method using high coverage (33.73) read counts, as simulations for a copy number of 3 indicated high
sensitivity for the naive method at high coverage levels. The read counts were randomly down-sampled
to result in varying coverage levels as displayed on the x-axis (with 100 trials of down-sampling per-
formed per coverage level). The down-sampled read counts were passed to both HATS and the naive
method. The reported amplified alleles were compared with the gold standard to indicate sensitivity.
Note that for higher coverage levels, the performance of both HATS and the naive method is strong,
which is expected as this was observed in the simulations. As coverage decreases, HATS maintains
a marked performance improvement over the naive method. Tumor alignment files and copy number
data for this patient were obtained from TCGA (see Methods: Input data specifications).
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HATS to utilize linkage information from multiple sites, thus

helping to improve power over that of the naive method. Within

an amplicon a called a priori, HATS reports the amplified allele at

each site that is polymorphic either in the sample or the training

data, including those sites harboring rare variants or somatic mu-

tations. We note that HATS is also able to handle hemizygous de-

letion mixtures. It can identify the deleted alleles or haplotypes

that are otherwise difficult to identify as deleted (due to traces of

those alleles coming from contaminating stromal cells).

The assumption of one chromosome being amplified is cen-

tral to HATS. While evidence of the prevalence of monoallelic

amplification has been found in previous studies (LaFramboise

et al. 2005), along with recent studies recounting most amplifica-

tion events to be low gain (Network 2011), we acknowledge that

the extent to which one or both alleles is amplified still remains an

open question. HATS in its current form may produce switch errors

in phasing if applied on regions with both chromosomes ampli-

fied. However, the method can be extended by adding extra states

representing candidate double amplifications. Such modifications

would also help HATS toward phasing germline CNV regions.

Currently, HATS is equipped to locally phase germline heterozy-

gous CNVs of copy number 3 should those regions map uniquely

to the reference genome. The caveat is that samples copy-neutral

for those regions would be required to calculate any allele-specific

biases. Another potential extension involves incorporating paired-

end information, though the practical gain from this would need

to be assessed, as the mate pair distance is typically smaller than

the distance between polymorphic sites.

It should be noted that the constructed amplified haplotype

may differ from the true tumor haplotype with respect to the order

of sites. Genomic rearrangements in tumor DNA disrupt the local

cellular copy of inherited germline sequence, potentially resulting

in a somatic haplotype that differs from the corresponding germ-

line haplotype. However, rearrangement information from tumor

DNA may be lost during sequencing, as single reads are mapped to

the reference sequence. As such, the amplified tumor haplotype as

called by HATS would reflect the order of sites in the reference

genome (and the inherited germline sequence) rather than that of

the rearranged tumor haplotype. A similar limitation of our ap-

proach is the potential presence of mitotic recombination. This

would imply different phasing for tumor versus normal data but

would typically be limited to a small number of events (Cavenee

et al. 1983; Paques and Haber 1999; Barbera and Petes 2006; LaFave

and Sekelsky 2009).

The design philosophy of HATS envisions the algorithm as

a tool in a workflow of algorithms for studying tumors, helping to

open the door for allele-specific downstream analysis. At the same

time, it is reliant on upstream data; namely, the a priori calling of

the amplicon. This is done intentionally, as modularity is a fun-

damental design principle in building complex pipelines, and it

guides us here as well. Furthermore, CNA and CNV calling has

been studied extensively and has matured over the years to the

point that it has become integral to existing pipelines (Network

2008, 2011). However, upstream errors can occur, some of which

are safeguarded by HATS. For example, small errors in input

amplicon copy number have little effect on HATS, which can na-

ively validate copy number using tumor and matched normal read

counts. The effect is further reduced due to the power HATS le-

verages from the training data. Other errors include amplicons that

are a result of platform-specific biases (e.g., PCR bias). These can be

caught by HATS’ bias correction if they are allele-specific and ap-

pear in the matched normals as well. In addition, the power from

the training data can help reduce the effect of spurious PCR biases

that may occur within an amplicon span. The naive method, on

the other hand, would be much more vulnerable to this. Other

errors include inexact a priori amplicon breakpoint prediction,

which could especially occur with the low resolution of arrays.

Such errors may result in HATS calling an allele as amplified even if

the site lies outside the amplicon in truth, or sites being ignored by

HATS if, in truth, they lie within the amplicon boundary. However,

some of these effects are mitigated when studying multiple tumors

downstream. Amplicons due to artifact in one sample will likely

not recur over multiple tumors and may thus be identified as

unique or erroneous. Similarly, testing for recurrence will tease out

amplicons under selection versus passenger amplicons that occur

randomly and propagate due to duplication mechanisms or ge-

nomic instability during tumor evolution.

A possible alternative to HATS entails first computationally

phasing the matched normal sequence (and, by virtue, the tumor

sequence), ignoring valuable read count information during

phasing. One might then assess tumor read counts at several sites

within an amplicon to determine the particular phased haplotype

targeted for amplification. We tested this approach on four regions

from the glioblastoma patient (TCGA-06-0877), three of which lie

on chromosome 2 and the last on chromosome 19 (see Supple-

mental Table S1). Only sites common to both the sequence data

and SNP array were considered. The gold standard amplified alleles

were determined using array calls. HATS performed with equal or

greater accuracy on all four regions, while inaccuracies in phasing-

first indicated switch error. These results support HATS’ relevance

to amplified allelic calling. Another advantage that HATS possesses

over phasing-first is the ability to make calls on rare variants or

somatic mutations using read depth information. Phasing algo-

rithms, which also rely on germline training data, seem un-

derpowered to do this. In addition, HATS may recover heterozy-

gous calls at low coverage via its Genotype Error Correction;

performing the same with a germline phasing algorithm for se-

quence data would require extra preprocessing overhead for the

end user. Furthermore, several phasing algorithms assume Hardy-

Weinberg equilibrium in the test data, which may not always be

the case due to the presence of risk alleles (Marchini et al. 2006).

Thus, phasing the tumor via the matched normal may not always

lead to accurate results. On the contrary, as the constructed tumor

haplotype would reflect the genome order of the reference se-

quence and matched normal as mentioned above, HATS could

potentially be used to phase the germline alleles in the matched

normal sample based on the tumor data.

One potential future avenue involves examining haplotypes

within recurrent CNA regions across tumor samples to reveal such

genes. This was performed previously on SNP arrays at the single

SNP level (Dewal et al. 2010; LaFramboise et al. 2010) and can now

be extended to next generation sequencing data. HATS’ reporting

of the amplified allele may serve as a first step in this downstream

analysis possibility. One benefit is that sites that were not typed on

SNP arrays may be revealed to be selectively amplified across tu-

mors in sequence data. In addition, the improved call fidelity as

compared to amplified allelic calls on SNP arrays may lead to more

robust results.

More generally, the HATS algorithm is designed to call allelic

imbalances (AIs) at genomic sites within a sample. AIs can provide

important information in multiple scenarios. For example, AI in

transcripts has been detected by RNA sequencing. Transcripts

demonstrating this phenomenon have genetic or epigenetic in-

fluences driving this difference (Zhang et al. 2009; Heap et al. 2010;
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Tuch et al. 2010). Chromatin immunoprecipitation followed by

high-throughput sequencing, ChIP-seq, can also reveal AI at het-

erozygous sites. In this context, allelic imbalance can reflect dif-

ferential binding specificity of a particular DNA-protein inter-

action, thereby possibly highlighting functional variants.

In the pursuit of detecting causal or associated variants, it aids

the cancer community to integrate somatic and germline DNA

changes. We present a method that helps move toward this end in

next generation tumor sequence data. The strong evaluation of

HATS provides us confidence to offer the community this powerful

local phasing method. We hope that cancer researchers will find it

beneficial toward discovering variants and potential oncogenes.

Methods

Naive model parameters and input data specifications
We denote the read count for allele x 2 {0, 1} at a genomic site i (a
potential SNV site) in the tumor sample of individual j by rx. For-
mally, rx would be indexed as ri,j,x, though indices for the site and
individual are omitted for simplicity in the running text when
clear from context. In the set of regions amplified in this sample,
we consider each amplicon a in turn and denote its boundaries by
i�a and i+

a. At an amplified heterozygous site i 2 ½i�a ; i
+
a �, it is mean-

ingful to ask which allele is amplified. A naive model for calling the
amplified allele would simply choose the allele for which a greater
number of reads is observed, denoted as arg-maxx{rx}. A call is
avoided in case of a tie.

With a probabilistic view in mind, rx is a value of a random
variable Rx ; Poisson(lx), where lx represents the site-, individual-,
and allele-specific expectation for the number of tumor reads. This
formulation interprets the naive call as choosing the allele for
which the maximum likelihood estimate of lx is greater. This
model makes use of no input data other than rx and calls sites along
the amplicon a independently of one another. It thus serves as
a suitable performance baseline against HATS.

HATS model parameters

The contribution of this manuscript involves recovering the am-
plified allele based on a more careful modeling of lx. Specifically,
l0 and l1 are assumed to be proportional to the number of copies of
the respective alleles at site i in the tumor sample j at hand. We
denote these numbers, or tumor genotype calls, by G0 and G1, re-
spectively. The total copy number Ca = G0 + G1 at site i is >2 in an
amplicon a, and our task of identifying the amplified allele is tan-
tamount to distinguishing between the cases ðG0 = Ca � 1; G1 = 1Þ
and ðG0 = 1; G1 = Ca � 1Þ. Furthermore, lx is assumed to be pro-
portional to L, the average haploid coverage of the sequenced tumor
j; L is a sample-specific quantity that depends on the sequencing
resources invested in the data for that tumor. Lastly, NGS reads are
known to be often biased toward particular nucleotides (Bentley
et al. 2008; McKernan et al. 2009). Therefore, a realistic and general
model for lx needs to account for such a site-specific (versus sample-
specific) phenomenon. Our model then assumes this parameter is
proportional to an allelic bias factor bx local to this site. In summary,
including site- and sample-specific subscripts (i, j) for completeness
of the formal equation:

li;j;x = Lj �Gi;j;x � bi;x: ð1Þ

Note that by modifying the Poisson mean L via bx, the model
accommodates for genome-wide overdispersion in which the
variance in read counts may exceed the expected variance (also L).
Overdispersion in general may result from a positive correlation
between events (Robinson and Smyth 2008) (e.g., overlapping

reads covering a common interval) or from differing expected
numbers of reads at different sites (Bentley et al. 2008; McKernan
et al. 2009). Since each site may possess a unique bias bx, the site-
and allele-specific Poisson mean lx may also be unique at each site i
in sample j. The combination of the varying lx across sites effec-
tively implements the negative binomial (NB) distribution genome-
wide. Existing methods estimate and use the NB distribution
directly to model overdispersion in other types of sequencing data,
such as in RNA-seq (Anders and Huber 2010; Robinson et al. 2010)
and ChIP-seq (Anders and Huber 2010).

The definitions of lx, Gx, and Ca easily generalize to homo-
zygous sites (where Gx = Ca for one of the alleles and Gx = 0 for the
other) as well as copy neutral sites (Ca = 2). Furthermore, we con-
sider the sequencing of not only the tumor but also of matched
normal samples of the corresponding individuals (denoted by
operator ;). Our model analyzes a tumor amplicon a only if the
corresponding region in the matched normal is copy-neutral, thus
preventing germline CNV regions from confounding the analysis.
Read counts~rx for normal samples are analogously defined, as are the
random variables: ~Rx ; Poissonð~lxÞ, where ~Ca = ~G0 + ~G1 = 2, and

~li;j;x = ~Lj � ~Gi;j;x � bi;x: ð2Þ

The genotype call at a site is, in fact, comprised of the hap-
lotype calls at that site. We aim to distinguish the two haploid
copies of the genome giving rise to the tumor genotype call.
Within an amplicon a, we assume one of the haplotypes is
(A)mplified while the other is (U)namplified (LaFramboise et al.
2005). We formally represent these ground truth haplotypes as
binary strings qA

a and qU
a , respectively, each listing the alleles along

its sequence. We define the complement operator for allele x such
that �0 = 1 and �1 = 0. At a particular site i 2 ½i�a ; i

+
a �, we denote by Hy

x

the number of copy-neutral copies (0 or 1) of x along q
y
a , where

y 2 fA;Ug; this is depicted in Figure 4A. Naturally, the tumor ge-
notype call for an amplified allele x sums the copies on both
haplotype calls, with amplification of a particular haplotype call
represented by multiplication with a constant (Ca – 1):

Gi;j;x = ðCa � 1ÞHA
i;j;x + HU

i;j;x: ð3Þ
The tumor genotype call for a nonamplified allele �x is similar:

Gi;j;�x = HA
i;j;�x + HU

i;j;�x: ð4Þ
For the matched normal, the genotype call sums the copies of two
nonamplified haplotype calls, as per the requirements of copy
neutrality (see Fig. 4A):

~Gi;j;x = + ~H
U

i;j;x: ð5Þ

HATS hidden Markov model

We use an accepted model of human variation (Kimmel and Shamir
2005; Rastas et al. 2005; Eronen et al. 2006; Browning and Browning
2007; Sun et al. 2007b), presenting haplotypes q̂A

a and q̂U
a as the

output of two respective haplotype HMMs VA and VU, detailed be-
low. We take a Cartesian product of the two haplotype HMMs to
define a genotype HMM, for which the genotypes are the output.
The read counts rx are a probabilistic function of these genotypes, as
explained above. HATS entails deciphering, for each site and sam-
ple, the likelihood of states within this genotype model, and then
choosing the allele most likely to have been amplified. An overview
of the model is provided in Figure 4B–E.

Haplotype HMM

In detail, the haplotype HMM Vyis a state machine with probabi-
listic transitions and deterministic emissions. The states and
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transitions follow the haplotype models used by computational
phasing algorithms for SNP array data (Kimmel and Shamir 2005;
Rastas et al. 2005; Eronen et al. 2006; Browning and Browning
2007; Sun et al. 2007b). In a similar vein, we locally phase the

tumor sequence data based on read counts in the sample data and
haplotype counts in population-relevant training data.

The ‘‘time points’’ of Vyconsist of the set of sites i1, i2, . . ., iM
located within the amplicon a coordinates that are polymorphic

Figure 4. Parameter definition depictions, haplotype, genotype, and integrated HMM. The left half of the figure depicts the definitions of several model
parameters, while the right half depicts examples of the four HMM models. (A) Model parameters are depicted for a heterozygous or homozygous site i in
tumor and matched normal tissues for sample j. For a particular genotype call within a tissue, a diagram of the call is depicted, along with the corre-
sponding H and G parameters. For example, for a heterozygous call within a tumor, the amplicon a (containing i ) from the tumor is shown, depicting the
amplified haplotype (with allele x amplified) within the red frame and nonamplified haplotype (allele �x) within the blue frame. The haplotypes emit their
respective H values per site, followed by the definitions of the G values for each allele. Both H and G should be additionally subscripted by i and j formally,
but these subscripts are excluded for simplicity’s sake. For the amplified haplotype in red, HA

x = 1 since x is present (and amplified), while HA
�x = 0 since �x is

not present within that haplotype at i. For the nonamplified haplotype in blue, HU
�x = 1 since �x is present (and not amplified), while HU

x = 0 since x is not
present within that haplotype at i. (B) Example of the haplotype HMM for the amplified haplotype. Each state contained within a red frame represents
a candidate amplified haplotype. Green boxes represent x while yellow boxes represent �x. The H symbols emitted from a state correspond to the last allele
in the haplotype represented by the state, as depicted by the dotted vertical arrows. The haplotype lengths generally grow from left to right due to addition
of an allele at the current t. Note that at t = 3, most states represent haplotypes of length 3, with the exception of the topmost state, which represents
a haplotype [green | green] of length 2. This haplotype merges two 3-SNP haplotypes [green | green | green] and [yellow | green | green] because they both
are singletons in the training data. Both states [green | green] and [yellow | green] at t = 2 thus transition to state [green | green] at t = 3. (C ) Haplotype
HMM for the nonamplified haplotype. Note that it is identical to B except for the differing emitted symbols. (D) Genotype HMM that is the cross-product of
the haplotype HMMs. For each pair of haplotypes, the amplified haplotype is depicted above the nonamplified haplotype within red and blue frames,
respectively. Each pair of haplotypes inherits the H values from their respective haplotype HMMs. (E ) Translated HMM upon incorporating the model data.
Note that while the structure remains unchanged, the emitted symbols are translated from the H values to the read counts. The rx variables should also
include subscripts i and j for formal correctness, which were omitted here for simplicity’s sake.
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(i.e., include a nonreference allele call) in the germline of the
training data. Sites that are monomorphic in the training data do
not provide information regarding the amplified allele and need
not be analyzed here. Each time point t in Vy maps to a genomic
site it and is associated with a set of HMM states S

y
t . Each s 2 S

y
t is

labeled by a binary string hs, which represents a candidate local
haplotype for polymorphic sites it-l(s)+1, . . ., it, where l(s) = |hs|. State
s emits Hy

x values deterministically depending on hs[l(s)], the last
symbol in hs: Hy

x = 1 for x = hs½lðsÞ� and H
y
�x = 0 for the complement

allele. For every s2 S
y
t in which t > 1, there exists at least one ŝ 2 S

y
t�1

that transitions to s such that they are consistent: The prefix of hsof
length (l(s) – 1), denoted as h�s , is a suffix of hŝ. This relationship can
be visualized in Figure 4B,C. Transitions are allowed only between
consistent states.

Any of the multiple methods for learning a haplotype HMM
from training data may be employed to choose lengths of state
labels hs and transition probabilities between a pair of consistent
states. We implemented a simple such method, which relies on
counts of hs in the training (D)ata ending at t—denoted by Dt ðhsÞ.
The concept behind this is that, at a given locus, a germline haplo-
type of a tumor sample is assumed to be identical to one of the
training haplotypes, randomly switching the training sample that
is locally identical to the tumor haplotype along the genome. This
concept is a standard in germline genetics (Stephens et al. 2001;
Scheet and Stephens 2006; Browning and Browning 2007). The
candidate haplotype label of s is thus tested for such a local
matching. We enforce hs labels to be as long as possible while
maintaining DtðhsÞ $ min(2, l(s)). This constraint prevents creat-
ing labels that are void in D or labels of length >1 that are single-
tons in D (to prevent overfitting), while, on the other hand,
allowing labels of length 1 that represent rare or low frequency
single nucleotide variants in D. The length of state labels thus
trades off accuracy of training vs. overfitting.

The transition probability between consistent states ŝ and s is
set as a Dirichlet prior based on Dt ðhsÞ:

Pr hsjh�s
� �

=
Dt hsð Þ

Dt�1 h�s
� � ; if l sð Þ > 1

= freq hs ; D; tð Þ; if l sð Þ = 1 and Dt hsð Þ $ 1: ð6Þ

The function freq() represents the haplotype frequency of
hsin D ending at t. Recall that we never encounter the case in which
|hs| = 1 and Dt ðhsÞ = 0, as we ignore sites monomorphic in D. Such
sites that are polymorphic only in the test sample data (rare var-
iants or somatic mutations) are handled external to the HMM and
are described in the section Enhancements and Optimizations
below.

Genotype HMM

We construct a genotype HMM V by cross-multiplying VA and VU

(see Fig. 4D). The M time points remain unchanged. At a given t,
the set of states is the Cartesian product St = SA

t 3 SU
t . Thus, for each

s = ðsA; sU Þ 2 St , sA 2 SA
t and sU 2 SU

t . State s thus inherits its labels,
denoted as ðhA

s ;h
U
s Þ, from its component states. Likewise, s inherits

the Hy
x values (over all y and x), which it emits deterministically. The

transition probability from ŝ = ðŝA; ŝU Þ 2 St�1 to s is the product of
the transition probabilities to the component states of s:

Transition Probability of ŝ to s = Pr hA
s jh

A�
s

� �
3 Pr hU

s jh
U�
s

� �
: ð7Þ

Integrated HMM

Our model for the read data is a new HMM V+ that is a replica of V,
adding stochastic emissions on top of it (see Fig. 4E). For each state

s 2S+
t , the emitted symbols are, instead, the read counts rx for each

allele x. Each s is still labeled with ðhA
s ;h

U
s Þ and inherently repre-

sents the Hy
x values (over all y and x). Assuming Ca is known be-

forehand and that bx is calculated, parameters Gx and lx can be
calculated from Hy

x (over all y and x). The emission probability for s
is the probability of observing rx, assuming an underlying Poisson
distribution for the read counts at site it with mean lx. It is calcu-
lated on the Poisson distribution as

Emission Probability at s =
Y1
x = 0

Pr ri;j;x; li;j;x

� �
: ð8Þ

HMM deciphering algorithm to call the amplified allele

The ultimate goal of the HMM is to decipher which allele x is
amplified at t. Toward this end, we apply the forward-backward
algorithm on V+, resulting in a probability P(s) for each state in V+.
Let S+

t;x 4 S+
t represent those states whose amplified haplotype la-

bels hA
s end in x, or more formally, whose hA

s labels possess x as the
last symbol. HATS computes the total likelihood for each allele x by
summing over the relevant P(s) values:

LtðxÞ= + s2S +
t;x

PðsÞ: ð9Þ

HATS finally reports the most likely such x to have been amplified
at t via: arg-maxx{Lt(x)}. In the case of a tie, HATS designates Ø as
the amplified allele at t to reflect this ambiguity.

Input data specifications

HATS jointly considers input regarding n tumor and matched
normal samples (1 # j # n). Specifically, input data corresponding
to a particular sample j includes the input data from the naive
model, in addition to the following:

(1) Ca (>2, obtained by preprocessing with a copy number-calling
algorithm (Chiang et al. 2009) or typing the sample on another
platform, e.g., array CGH);

(2) L and ~L (calculable beforehand);
(3) ~rx and ~Gx for all i in each of the n samples that are copy-neutral

at i, with the constraint that i resides in amplicon a in sample j;
and

(4) genotypes from the tumor of individual j that do not take copy
number into account.

The latter two are obtainable via a genotype caller component from
an alignment algorithm (Li et al. 2009). The third input specifi-
cation—read counts from each i within copy-neutral regions in
tumor and matched normal samples, such that i resides in an
amplicon in at least one of the n input tumor samples—allows for
calculation of the site-specific bias factor bx. Estimation of bx and
the effects of the availability of matched normal data on this es-
timation are discussed in Supplemental Methods. This tumor and
matched normal input data can be derived from aligned sequence
data obtainable from any sequencing project or initiative. The tumor
and matched normal data we used in Results was downloaded from
TCGA. The respective URL and relevant dbGaP accession number are
http://tcga-data.nci.nih.gov/tcga/, phs000178.v4.p4.

Lastly, HATS takes advantage of linkage information across
multiple sites to call the amplified alleles, whereas the naive model
ignores LD by examining each site individually. Toward this end,
HATS uses training data (denoted above as D) for human germline
variation, which entails phased haplotype sequence data on d un-
related individuals that are independently sampled from the same
population as the n cancer patients whose tumors are to be ana-
lyzed. The training population can be determined as a preprocess-
ing step using ancestry informative markers in the tumor samples.
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The training data itself can be obtained, for example, from the 1000
Genomes Project (The 1000 Genomes Project Consortium 2010).

Enhancements and optimizations

Tumor samples may include sites housing somatic mutations or
variants that are unique to the samples and missing in the training
data (e.g., singletons). HATS utilizes read depth, along with bias
determination, to call the amplified allele at each such site. In
addition, HATS possesses the ability to potentially recover an allele
missed due to low coverage (Genotype Error Correction); this is
integrated with a mechanism to utilize tumor genotypes to prune
the explosive growth of states. Details on these enhancements are
provided in Supplemental Methods.

Data access
The HATS source code, as well as instructions to build and run the
software, is available at (http://tumorhats.sourceforge.net/).
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