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Next-generation DNA sequencing technologies are enabling genome-wide measurements of somatic mutations in large
numbers of cancer patients. A major challenge in the interpretation of these data is to distinguish functional ‘‘driver
mutations’’ important for cancer development from random ‘‘passenger mutations.’’ A common approach for identifying
driver mutations is to find genes that are mutated at significant frequency in a large cohort of cancer genomes. This
approach is confounded by the observation that driver mutations target multiple cellular signaling and regulatory
pathways. Thus, each cancer patient may exhibit a different combination of mutations that are sufficient to perturb these
pathways. This mutational heterogeneity presents a problem for predicting driver mutations solely from their frequency
of occurrence. We introduce two combinatorial properties, coverage and exclusivity, that distinguish driver pathways, or
groups of genes containing driver mutations, from groups of genes with passenger mutations. We derive two algorithms,
called Dendrix, to find driver pathways de novo from somatic mutation data. We apply Dendrix to analyze somatic
mutation data from 623 genes in 188 lung adenocarcinoma patients, 601 genes in 84 glioblastoma patients, and 238 known
mutations in 1000 patients with various cancers. In all data sets, we find groups of genes that are mutated in large subsets
of patients and whose mutations are approximately exclusive. Our Dendrix algorithms scale to whole-genome analysis of
thousands of patients and thus will prove useful for larger data sets to come from The Cancer Genome Atlas (TCGA) and
other large-scale cancer genome sequencing projects.

[Supplemental material is available for this article.]

Cancer is driven by somatic mutations in the genome that are

acquired during the lifetime of an individual. These include single-

nucleotide mutations and larger copy-number aberrations and

structural aberrations. With the availability of next-generation

DNA sequencing technologies, whole-genome or whole-exome

measurements of the somatic mutations in large numbers of can-

cer genomes are now a reality (Mardis and Wilson 2009; Inter-

national Cancer Genome Consortium 2010; Meyerson et al. 2010).

A major challenge for these studies is to distinguish the functional

‘‘driver mutations’’ responsible for cancer from the random ‘‘pas-

senger mutations’’ that have accumulated in somatic cells but that

are not important for cancer development. A standard approach to

predict driver mutations is to identify recurrent mutations (or re-

currently mutated genes) in a large cohort of cancer patients. This

approach has identified several important cancer mutations (e.g.,

in KRAS, BRAF, ERRB2, etc.), but has not revealed all of the driver

mutations in individual cancers. Rather, the results from initial

studies (The Cancer Genome Atlas Research Network 2008; Ding

et al. 2008; Jones et al. 2008) have confirmed that cancer genomes

exhibit extensive mutational heterogeneity with no two genomes—

even those from the same tumor type—containing exactly the same

complement of somatic mutations. This heterogeneity results not

only from the presence of passenger mutations in each cancer

genome, but also because driver mutations typically target genes in

cellular signaling and regulatory pathways (Hahn and Weinberg

2002; Vogelstein and Kinzler 2004). Since each of these pathways

contains multiple genes, there are numerous combinations of

driver mutations that can perturb a pathway important for cancer.

This mutational heterogeneity complicates efforts to identify

functional mutations by their recurrence across many samples, as

the number of patients required to demonstrate recurrence of rare

mutations is very large.

An alternative approach to testing the recurrence of in-

dividual mutations or genes is to examine mutations in the con-

text of cellular signaling and regulatory pathways. Most recent

cancer genome sequencing papers analyze known pathways for

enrichment of somatic mutations (The Cancer Genome Atlas Re-

search Network 2008; Ding et al. 2008; Jones et al. 2008), and

methods that identify known pathways that are significantly

mutated across many patients have been developed (e.g., Boca

et al. 2010; Efroni et al. 2011). In addition, algorithms that extend

pathway analysis to genome-scale gene interaction networks have

recently been introduced (Cerami et al. 2010; Vandin et al. 2011).

Pathway or network analysis of cancer mutations relies on prior

identification of the groups of genes in the pathways. While some

pathways are well-characterized and cataloged in various databases

(Kanehisa and Goto 2000; Jensen et al. 2009; Keshava Prasad et al.

2009), knowledge of pathways remains incomplete. In particular,

many pathway databases contain a superposition of all compo-

nents of a pathway, and information regarding which of these

components are active in particular cell types is largely unavail-

able. These concerns, plus the availability of increasing numbers of

sequenced cancer genomes, motivate the question of whether it is

possible to discover groups of genes with driver mutations auto-

matically, or mutated driver pathways, directly from somatic mu-

tation data collected from large numbers of patients.

De novo discovery of mutated driver pathways seems im-

plausible because of the enormous number of possible gene sets to

test: e.g., there are more than 1026 sets of seven human genes.

However, the current understanding of the somatic mutational

process of cancer (McCormick 1999; Vogelstein and Kinzler 2004)

1Corresponding author.
E-mail braphael@cs.brown.edu.
Article published online before print. Article, supplemental material, and pub-
lication date are at http://www.genome.org/cgi/doi/10.1101/gr.120477.111.

22:375–385 � 2012 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/12; www.genome.org Genome Research 375
www.genome.org



places two additional constraints on the expected patterns of so-

matic mutations that significantly reduce the number of gene sets

to consider. First, an important cancer pathway should be per-

turbed in a large number of patients. Thus, given genome-wide

measurements of somatic mutations, we expect that most patients

will have a mutation in some gene in the pathway. Second, a driver

mutation in a single gene of the pathway is often assumed to be

sufficient to perturb the pathway. Combined with the fact that

driver mutations are relatively rare, most patients exhibit only

a single driver mutation in a pathway. Thus, we expect that the

genes in a pathway exhibit a pattern of mutually exclusive driver

mutations, where driver mutations are observed in exactly one

gene in the pathway in each patient (Vogelstein and Kinzler 2004;

Yeang et al. 2008). There are numerous examples of pairs of

mutually exclusive driver mutations including EGFR and KRAS

mutations in lung cancer (Gazdar et al. 2004), TP53 and MDM2

mutations in glioblastoma (The Cancer Genome Atlas Research

Network 2008) and other tumor types, and KRAS and PTEN muta-

tions in endometrial (Ikeda et al. 2000) and skin cancers (Mao et al.

2004). Mutations in the four genes EGFR, KRAS, ERBB2 (also known

as HER2), and BRAF from the EGFR–RAS–RAF signaling pathway

were found to be mutually exclusive in lung cancer (Yamamoto et al.

2008). More recently, statistical analysis of sequenced genes in large

sets of cancer samples (Ding et al. 2008; Yeang et al. 2008) identified

several pairs of genes with mutually exclusive mutations.

We introduce two algorithms to find sets of genes with the

following properties: (1) high coverage—most patients have at

least one mutation in the set; (2) high exclusivity—nearly all pa-

tients have no more than one mutation in the set. We define

a measure on sets of genes that quantifies the extent to which a set

exhibits both criteria. We show that finding sets of genes that

optimize this measure is in general a computationally challenging

problem. We introduce a straightforward greedy algorithm and

prove that this algorithm produces an optimal solution with high

probability when given a sufficiently large number of patients,

subject to some statistical assumptions on the distribution of the

mutations (A Greedy Algorithm for Independent Genes section).

Since these statistical assumptions are too restrictive for some data

(e.g., they are not satisfied by copy-number aberrations) and since

the number of patients in currently available data sets is lower than

required by our theoretical analysis, we introduce another algo-

rithm that does not depend on these assumptions. We use a Mar-

kov chain Monte Carlo (MCMC) approach to sample from sets of

genes according to a distribution that gives significantly higher

probability to sets of genes with high coverage and exclusivity.

Markov chain Monte Carlo is a well-established technique to

sample from combinatorial spaces with applications in various

fields (Gilks 1998; Randall 2006). For example, MCMC has been

used to sample from spaces of RNA secondary structures (Meyer

and Miklos 2007), haplotypes (Bansal et al. 2008), and phyloge-

netic trees (Yang and Rannala 1997). In general, the computation

time (number of iterations) required for an MCMC approach is

unknown, but in our case, we prove that our MCMC algorithm

converges rapidly to the stationary distribution.

We emphasize that the assumptions that driver pathways ex-

hibit both high coverage and high exclusivity need not be strictly

satisfied for our algorithms to find interesting sets of genes. Indeed,

mutual exclusivity is a fairly strong assumption, and there are ex-

amples of co-occurring, and possibly cooperative, mutations such

as VHL/SETD2/PBRM1 mutations in renal cancer (Varela et al.

2011), and CBF translocations and kinase mutations in acute

myeloid leukemias (Deguchi and Gilliland 2002). Yeang et al.

(2008) suggest a model in which mutations in genes from the same

pathway were typically mutually exclusive, and mutations in

genes from different pathways were sometimes co-occurring. It is

also possible that mutations in some genes of an essential pathway

are insufficient to perturb the pathway on their own and that other

co-occurring mutations are necessary. In this case, there remains

a large subset of genes in the pathway whose mutations are ex-

clusive, e.g., a subset obtained by removing one gene from each co-

occurring pair. The identification of these subsets of genes can be

used as a starting point to later identify the other genes with co-

occurring mutations.

We apply our algorithms, called De novo Driver Exclusivity

(Dendrix), to analyze sequencing data from three cancer studies:

623 sequenced genes in 188 lung adenocarcinoma patients, 601

sequenced genes in 84 glioblastoma patients, and 238 sequenced

mutations in 1000 patients with various cancers. In all three data

sets, we find sets of genes that are mutated in large numbers of

patients and are mostly exclusive. These sets include genes in the

Rb, p53, mTOR, and MAPK signaling pathways, all pathways

known to be important in cancer. In glioblastoma, the set of three

genes that we identify is associated with shorter survival (Backlund

et al. 2003). We also show that the MCMC algorithm efficiently

samples multiple sets of six genes in simulated mutation data with

thousands of genes and patients. Both the greedy and MCMC al-

gorithms scale to whole-genome analysis of thousands of patients

and thus will prove useful for analysis of larger data sets to come

from The Cancer Genome Atlas (TCGA) and other large-scale

cancer genome sequencing projects.

Results
Consider mutation data for m cancer patients, where each of

n genes is tested for a somatic mutation (e.g., single-nucleotide

mutation or copy-number aberration) in each patient. We repre-

sent the mutation data by a mutation matrix A with m rows and

n columns, where each row is a patient and each column is a gene.

The entry Aij in row i and column j is equal to 1 if gene j is mutated

in patient i, and it is 0 otherwise (Fig. 1). For a gene g, let G(g) = {i: Aig =

1} denote the set of patients in which g is mutated. Similarly, for a set

M of genes, let G(M) denote the set of patients in which at least one

of the genes in M is mutated: G(M) =[g2MG(g). We say that a set M of

genes is mutually exclusive if no patient contains more than one

mutated gene in M, i.e., G( g)\G(g9) = Ø for all g, g92M. Analogously,

we say that an m 3 k submatrix M consisting of k columns of a

mutation matrix A is mutually exclusive if each row of M contains at

most one 1. Note that the above definitions also apply when the

columns of the mutation matrix A correspond to parts of genes (e.g.,

protein domains or individual residues). In the results below, we

analyze data using both definitions of the mutation matrix.

Earlier studies (Ding et al. 2008; Yeang et al. 2008) employed

straightforward statistical tests to test for exclusivity between pairs

of genes. More sophisticated tests for pairwise exclusivity have also

been proposed (Bradley and Farnsworth 2009). However, it is not

clear how to extend such pairwise tests to larger groups of genes,

particularly because the number of hypotheses grows rapidly as the

number of genes in the set increases. Moreover, identification of

pairs of mutually exclusive mutated genes is not sufficient for

identification of larger sets (as suggested in Yeang et al. 2008), since

mutual exclusion relations are not transitive. For example, consider

two patients s1 and s2: In s1, only gene x is mutated; in s2, genes (y, z)

are mutated. The pairs of genes (x, y) and (x, z) are mutually ex-

clusive, but the pair (y, z) is not. In fact, finding the largest set of
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genes with mutually exclusive mutations is NP-hard by reduction

from maximum independent set (Garey and Johnson 1990).

Instead, we propose to identify sets of genes (columns of the

mutation matrix) that are mutated in a large number of patients

and whose mutations are mutually exclusive. We define the fol-

lowing problem:

Maximum Coverage Exclusive Submatrix Problem: Given

an m 3 n mutation matrix A and an integer k > 0, find a mutually

exclusive m 3 k submatrix M of k columns (genes) of A with the largest

number of nonzero rows (patients).

We show that this problem is computationally difficult to

solve (for proof, see the Supplemental Material). Moreover, this

problem is too restrictive for analysis of real somatic mutation data.

We do not expect mutations in driver pathways to be mutually

exclusive because of measurement errors and the presence of pas-

senger mutations. Instead, we expect to find a set of genes that are

mutated in a large number of patients and whose mutations exhibit

‘‘approximate exclusivity,’’ meaning that a small number of patients

have a mutation in more than one gene in the set. Thus, we aim to

find a set M of genes that satisfies the following two requirements:

1. Coverage: Most patients have at least one mutation in M.

2. Approximate exclusivity: Most patients have no more than one

mutation in M.

There is an obvious trade-off between requiring mutual ex-

clusivity in the set and obtaining low coverage versus allowing

greater non-exclusivity in the set and obtaining larger coverage.

We introduce a measure on a set of genes that quantifies the trade-

off between coverage and exclusivity. For a set M of genes, we de-

fine the coverage overlap

v Mð Þ = +g2M G gð Þj j � G Mð Þj j:

Note that v(M) $ 0 with equality holding when the mutations in

M are mutually exclusive. To take into account both the coverage

G(M) and the coverage overlap v(M) of M, we define the weight

W Mð Þ= G Mð Þj j � v Mð Þ = 2 G Mð Þj j �+g2M G gð Þj j:

Note that the weight function W(M) is only one possible measure

of the trade-off between coverage and exclusivity (see Methods).

The problem that we want to solve is the following:

Maximum Weight Submatrix Problem: Given an m 3 n

mutation matrix A and an integer k > 0, find the m 3 k column sub-

matrix M̂ of A that maximizes W(M ).

Even for small values of k (e.g., k = 6), finding the maximum

weight submatrix by examining all the possible sets of genes of size

k is computationally infeasible: for example, there are »1023 sub-

sets of size k = 6 of 20,000 genes. We show that the Maximum

Weight Submatrix Problem is also computationally difficult to

solve (for proof, see the Supplemental Material), and thus it is likely

that there is no efficient algorithm to solve this problem exactly.

The problem of extracting subsets of genes with particular prop-

erties has also been studied in the context of gene expression data.

For example, biclustering techniques are commonly used to

identify subsets of genes with similar expression in subsets of pa-

tients (Cheng and Church 2000; Getz et al. 2000; Tanay et al. 2002;

Murali and Kasif 2003; Segal et al. 2003; Madeira and Oliveira

2004). Other variations, such as finding subsets of genes that

preserve order of expression (Ben-Dor et al. 2003) or that cover

many patients (Ulitsky et al. 2008; Kim et al. 2010), have been

proposed. However, these approaches are not directly applicable to

our problem as we seek a set of genes with few co-occurring mu-

tations, while gene expression studies aim to find groups of genes

with correlated expression.

We describe our approach considering mutation data at the

level of individual genes. However, by adding columns to the

mutation matrix, it is possible to apply our method at the subgene

level by considering mutations in particular protein domains,

structural motifs, or individual residues. (See the Known Mutations

in Multiple Cancer Types section for an example.)

A greedy algorithm for independent genes

A straightforward greedy algorithm for the Maximum Weight

Submatrix Problem is to start with the best pair M9 of genes and

then to iteratively build the set M of genes by adding the best gene

[i.e., the one that maximize W(M)] until M has k genes (see

Methods for the pseudocode of the algorithm). This algorithm is

very efficient, but in general, there is no guarantee that the set M̂

that maximizes W(M) would be identified. However, we show that

the greedy algorithm correctly identifies M̂ with high probability

when the mutation data come from a generative model, that we

call the Gene Independence Model (for proof, see the Supple-

mental Material). In the Gene Independence Model: (1) each gene

g =2 M̂ is mutated in each patient with probability pg, independently

of all other events, with pg 2 [pL, pU] for all g. (2) W(M̂) » m. (3) Each

of the genes in M̂ is important, so there is no single subset of M̂ that

has a dominant contribution to the weight of M̂. Condition 1

models the independence of mutations for genes that are not in

the mutated pathway and is a standard assumption for somatic

single-nucleotide mutations (Ding et al. 2008). Condition 2 en-

sures that the mutations in M̂ cover a large number of patients and

are mostly exclusive. For a formal definition of the Gene Indepen-

dence Model, see the Supplemental Material.

Note that in the Gene Independence Model it is possible for

the genes in M̂ to have observed mutation frequencies that are

identical to those of genes not in M̂, and thus it is impossible to

distinguish the genes in M̂ from the genes not in M̂ using only the

frequency of mutations, for any number of patients.

To assess the implications of this for the utility of the greedy

algorithm on real data, consider the following setting: Observed

gene mutation frequencies are in the range [3 3 10�5, 0.13] (de-

rived from a background mutation rate of the order of 10�6 [The

Cancer Genome Atlas Research Network 2008; Ding et al. 2008]

and the distribution of human gene lengths). If somatic muta-

tions are measured in n = 20,000 human genes and k = jM̂j = 10,

Figure 1. Somatic mutations in multiple patients are represented in
a mutation matrix. Gene sets are identified as exclusive submatrices or
high weight submatrices.
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then approximately m = 2400 patients are required for the greedy

algorithm to identify M̂ with probability at least 1 � 10�4. Even if

somatic mutations are measured in only a subset of genes (including

all the genes in M̂), the bound above does not decrease much. For

example, assuming that n = 600 genes are measured (as it is for re-

cent studies) (The Cancer Genome Atlas Research Network 2008;

Ding et al. 2008), including all the k = 10 genes in jM̂j, approxi-

mately m = 1800 patients are required to identify M̂ with probability

at least 1 � 10�4 using the greedy algorithm. This number of pa-

tients is not far from the range that will be soon be available from

large-scale cancer sequencing projects (International Cancer Ge-

nome Consortium 2010) but is larger than what is available now.

Moreover, we only have shown that the simple greedy algorithm

gives a good solution when the mutation data come from the Gene

Independence Model. This model is reasonable for some types of

somatic mutations (e.g., single-nucleotide mutations) but not

others (e.g., copy-number aberrations).

Markov chain Monte Carlo (MCMC) approach

To circumvent the limitations of the greedy algorithm described

above, we developed a Markov chain Monte Carlo. (MCMC) ap-

proach that does not require any assumptions about the distribu-

tion of the mutation data or about the number of patients. The

MCMC approach samples sets of genes, with the probability of

sampling a set M proportional to the weight W(M) of the set. Thus,

the frequencies that gene sets are sampled in the MCMC method

provides a ranking of gene sets, in which the sets are ordered by

decreasing sampling frequency. Thus, in addition to the highest

weight set, one may also examine other sets of high weight

(‘‘suboptimal’’ sets) that are nevertheless biologically significant.

Moreover, since the MCMC approach does not require any as-

sumptions about independence of mutations in different genes, it

is useful for analysis of copy-number aberrations (CNAs) that

amplify or delete multiple adjacent genes and thus introduce

correlated mutations. Both of these advantages will prove useful in

analysis of real mutation data below.

The basic idea of the MCMC is to build a Markov chain whose

states are the collections of k columns of the mutation matrix A

and to define transitions between the states that differ by one gene.

We use a Metropolis-Hastings algorithm (Metropolis et al. 1953;

Hastings 1970) to sample sets M�G of k genes with a stationary

distribution that is proportional to ecW(M) for some constant c > 0.

At time t, the Markov chain in state Mt chooses a gene w inG and

a gene v inside Mt, and moves to the new state Mt+1 = Mt\{v} [ {w}

with a certain probability. In general, there are no guarantees on

the rate of convergence of the Metropolis-Hasting algorithm to the

stationary distribution. However, we prove that in our case the

MCMC is rapidly mixing (Markov Chain Monte Carlo [MCMC]

Algorithm section), and thus the stationary distribution is reached

in a practical number of steps by our method. The MCMC algo-

rithm is described in more detail in Methods.

Results on simulated mutation data

We first tested the ability of the MCMC algorithm to detect the set

M̂ of maximum weight W(M̂) for different values of W(M̂). We

simulated mutation data starting with a set M of six genes. For each

patient, we mutate a gene (chosen uniformly at random) in M with

probability p1, and if a gene in M is mutated, then with probability

p2 we mutate another gene in M. Thus, p1 regulates the coverage of

M, and p2 regulates the exclusivity of M. The genes not in M are

mutated using a random model based on the observed character-

istics of the glioblastoma data (described below). In particular, we

simulated both single-nucleotide mutations and copy-number

aberrations (CNAs). For the single-nucleotide mutations, genes

were mutated in each patient according to the observed frequency

of single-nucleotide mutations in the glioblastoma data, inde-

pendently of other genes.2 We simulated CNAs by permuting the

locations of the observed CNAs on the genome while maintaining

their lengths. The procedure accounts for the fact that genes that

are physically close on the genome might be mutated together in

the same CNA, resulting in correlated mutations.

We ran the MCMC algorithm on sets of six genes for 107 it-

erations sampling every 104 iterations. Figure 2 reports the ratio

between frequency p(M) at which M is sampled and the maximum

frequency p(maxother) of any other sampled set. Note that the same

value of W(M) is obtained with multiple different settings of the

parameters p1 and p2. For example, with p1 = 0.81 and p2 = 0.04, the

set M has W(W) = 67 (in expectation), and is sampled with fre-

quency threefold greater than any other set.

The sampling ratio increases dramatically with the weight

W(M) of the set.

To test the ability to identify multiple high weight sets of

genes, we simulated mutation data starting with two disjoint sets,

M1 and M2, each containing six genes. For each patient, we mutate

genes in M1 and M2 using the probabilities p1 and p2 as described

above. The sets M1 and M2 correspond to two pathways with ap-

proximate exclusivity. The genes not in M1 or M2 were mutated

using the random model described above. Table 1 shows the fre-

quencies with which various sets are sampled in the MCMC. M1

and M2 are sampled with highest frequency. Moreover, the ratio

of their frequencies is very close to the ratio of their probabilities

in the stationary distribution of the MCMC. If the MCMC is

sampling from the stationary distribution for the two sets M and

M9, the ratio ~p Mð Þ
~p M9ð Þ should be close to e c[W(M) � W(M9)]. In our simu-

lations, ~p M2ð Þ
~p M1ð Þ;0:351, and e c W M2ð Þ�W M1ð Þð Þ;0:368.

Finally, we tested the scalability of our method to data sets

containing a larger number of genes and varying numbers of pa-

tients. We simulated mutation data as described above on 20,000

genes and 1000 patients. The results in this case are very close to

the ones presented above. In particular, M1 and M2 were the two

sets sampled with highest frequency, and the frequency of each

was >30%. Sets other than M1 and M2 were sampled with fre-

quencies <1%. We were still able to identify the sets M1 and M2

when the number of patients was reduced to 150. M1 and M2 were

sampled with frequency 13%, much higher than any other set.

Based on these results, we anticipate that our algorithms would be

useful on whole-exome sequencing studies with a modest number

of patients.

Results on cancer mutation data

We applied our MCMC algorithm to somatic mutations from high-

throughput genotyping of 238 oncogenes in 1000 patients of 17

cancer types (Thomas et al. 2007), and to somatic mutations

identified in recent cancer sequencing studies from lung adeno-

carcinoma (Ding et al. 2008) and glioblastoma multiforme (The

Cancer Genome Atlas Research Network 2008). In the glioblas-

toma multiforme analysis, we include both copy-number aberra-

tions and single-nucleotide (or small indel) mutations, while in the

2For each gene, we used the observed frequency of mutation rather than a fixed
background mutation rate to account for the differences in gene mutation
frequencies observed in the real data.
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lung adenocarcinoma analysis, we consider only single-nucleotide

(or small indel) mutations. The MCMC algorithm samples sets

with frequency proportional to their weights, and thus to restrict

attention to sets with high weight, we report sets whose frequency

is at least 1%. We also reduce the size of the mutation matrix by

combining genes that are mutated in exactly the same patients

into larger ‘‘metagenes.’’

Known mutations in multiple cancer types

We applied the MCMC algorithm to mutation data from Thomas

et al. (2007), who tested 238 known mutations in 17 oncogenes in

1000 patients of 17 different cancer types. Two hundred ninety-

eight of the patients were found to have at least one of theses

mutations, and a total of 324 individual mutations were identified.

To perform our analysis, we built a mutation matrix with 298 pa-

tients and 18 mutation groups. These mutation groups were de-

fined by Thomas et al. (2007) and grouped together mutations that

occurred in the same gene, in the same functional domain of the

encoded protein (e.g., kinase domain mutations or helical domain

mutations of PIK3CA), or when a distinct phenotype was corre-

lated with a specific mutation (e.g., the T790M mutation of EGFR

known to be correlated with resistance to EGFR inhibitors). We ran

the MCMC algorithm on sets of size k, for 2 # k # 10. In each case,

we ran the MCMC for 107 iterations and sampled a set every 104

iterations. All sets sampled with frequency at least 1% in this and

all later experiments are reported in Supplemental Material D.

We perform a permutation test to assess the significance of

the results: The statistic is the weight W(M) of the set, and the null

distribution was obtained by independently permuting the mu-

tations for each mutation group among the patients, thus pre-

serving the mutation frequency for each mutation group. We use

the observed frequency of mutation rather than a fixed back-

ground mutation rate because we want to assess the significance of

coverage and exclusivity of a set of mutation groups given the

frequency of mutation of the single mutation groups in the set.3

We identify a set of eight mutation groups (BRAF_600-601, EGFR_

ECD, EGFR_KD, HRAS, KRAS, NRAS, PIK3CA_HD, PIK3CA_KD)4 that

is altered in 280/298 of the patients (94%) with at least one muta-

tion and has a total of 295 mutations (p < 0.01). The mutated genes

are part of well-known cancer pathways (Fig. 3). There are many sets

of size k = 10 that contain the set of size k = 8 above and also have

high weight (see the Supplemental Material). In particular, there are

two sets of size k = 10 that are altered in 287/297 (95%) of the pa-

tients and have a total of 302 mutations (p < 0.01). These two sets

include the above eight mutation groups and (JAK2, KIT) and

(FGFR1, KIT), respectively. We tested each pair of genes for mutual

exclusivity with the (one-tailed) Fisher’s exact test. No pair of genes

showed significant mutual exclusivity, with minimum q-value 0.492.

Thus, a standard test does not report any of the mutation groups

identified by our method.

Lung adenocarcinoma

We next analyzed a collection of 1013 somatic mutations identi-

fied in 623 sequenced genes from 188 lung adenocarcinoma pa-

tients from the Tumor Sequencing Project (Ding et al. 2008). In

total, 356 genes were reported mutated in at least one patient. We

ran the MCMC algorithm for sets of size 2 # k # 10. When k = 2, the

pair (EGFR, KRAS) is sampled 99% of the time. This pair is mutated

in 90 patients with a coverage overlap v(M) = 0, indicating mutual

exclusivity. When k = 3, the triplet (EGFR, KRAS, STK11) is sam-

pled with frequency 8.4%. For k $ 4, no set is sampled with fre-

quency >0.3%. The pairs (EGFR, KRAS) and (EGFR, STK11) are the

most significant pairs in the mutual exclusivity test performed in

Ding et al. (2008), and thus it is not surprising that we also identify

them. However, the pair (KRAS, STK11) is not reported as significant

using their statistical test. Thus, the coverage and mutual exclusivity

of the triplet (EGFR, KRAS, STK11) is a novel discovery.

We performed a permutation test, as described in the Known

Mutations in Multiple Cancer Types section, to compare the sig-

nificance of (EGFR, KRAS) and (EGFR, KRAS, STK11). The P-values

obtained are 0.018 and 0.005, respectively. Thus, the triplet (EGFR,

KRAS, STK11) is at least as significant as the pair (EGFR, KRAS). The

three genes EGFR, KRAS, and STK11 are all involved in the regu-

lation of mTOR (Fig. 4), whose dysregulation has been reported as

important in lung adenocarcinoma (Ding et al. 2008). In particu-

lar, STK11 down-regulates the mTOR pathway, and mTOR activa-

tion has been reported as significantly more frequent in tumors

with gene alterations in either EGFR or KRAS (Conde et al. 2006).

This supports the hypothesis that all three genes are upstream

regulators of mTOR, explaining their observed exclusivity of

mutations.

To identify additional gene sets, we removed the genes EGFR,

KRAS, STK11 and ran the MCMC algorithm again on the remain-

ing genes. We sample the pair (ATM, TP53) with frequency 56%,

and compute that the weight of the pair is significant (p < 0.01).

ATM and TP53 are known to directly interact (Khanna et al. 1998),

and both genes are involved in the cell cycle checkpoint control

(Chehab et al. 2000). Moreover, these genes have no known role in

mTOR regulation (Fig. 4), consistent with the observation that

their mutations are not exclusive with those in the triplet above.

Note that the pair (ATM, TP53) was not sampled with high fre-

quency before removing EGFR, KRAS, and STK11. The reason is

that the coverage of (ATM, TP53) is not as high as other pairs in the

Figure 2. Ratio between the sampled frequency p(M) of the maximum
weight set, and the maximum frequency p(maxother) of any other set in
the sample for different values of W(M).

3Using the background mutation rate, some mutation groups would be
reported as significantly mutated when considered in isolation (because of their
significant coverage). Thus, larger sets of mutation groups containing these
individually significant mutation groups would also be reported as significant,
even if the pattern of mutations in the set is not surprising after conditioning on
the observed frequency of mutations of single mutation groups.

4The suffix of the mutation group identifies the positions of mutations in the
gene, as in BRAF_600-601, or the mutated functional domain of the encoded
protein, which is ECD for extracellular domain mutations, KD for kinase do-
main, and HD for helical domain, as described in Thomas et al. (2007).
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triplet: for example, the pair (EGFR, KRAS) covers 90 patients (with

a coverage overlap of 0), while the pair (ATM, TP53) covers 76

patients (with a coverage overlap of 1). Although the exclusivity of

both sets is high, their coverage is low (<60%), suggesting that

these gene sets are not complete driver pathways. We hypothesize

that the coverage is low because (1) somatic mutations were mea-

sured in only a small subset of genes; (2) only single-nucleotide

mutations and small indels in these genes were measured, and other

types of mutations (or epigenetic changes) might occur in the ‘‘un-

mutated’’ patients. Either of these would reduce the coverage or

imply that mutations in a superset of these genes were not measured.

We examined the overlap between the patients with muta-

tions in (ATM, TP53) and those with mutations in (EGFR, KRAS,

STK11). We found that the overlap was not significantly different

from the expected number in a random data set, suggesting that

mutations in these two sets are not exclusive. This is consistent

with our model, in which the two sets are part of two different

pathways. While neither of these sets is mutated in >60% of the

patients, this does not imply that they are not part of important

cancer pathways, for the same reasons regarding incomplete

measurements outlined above.

Glioblastoma multiforme

We also applied the MCMC algorithm to 84 glioblastoma multi-

forme (GBM) patients from The Cancer Genome Atlas (The Cancer

Genome Atlas Research Network 2008). Somatic mutations in

these patients5 were measured in 601 genes. A total of 453 somatic

single-nucleotide mutations were identified, and 223 genes were

reported mutated in at least one patient. In addition, array copy

number data were available for each of these 601 genes in every

patient. We recorded a gene as somatically mutated in a patient if it

was part of a focal copy-number aberration identified in The

Cancer Genome Atlas Research Network (2008), discarding copy-

number aberrations for which the sign of aberration (i.e., ampli-

fication or deletion) was not the same in at least 90% of the sam-

ples. Note that copy-number aberrations (even focal aberrations)

typically encompass more than one gene, and the boundaries of

such aberrations vary across patients. Since we only collapse genes

into ‘‘metagenes’’ if they are mutated in exactly the same patients,

we will not collapse all of the genes in focal copy-number aberra-

tions into a ‘‘metagene’’ if the genes in the aberrations vary across

patients. Thus, the genes in overlapping, but not identical, aber-

rations will remain separate in our analysis. If our algorithm selects

any of these genes in a high weight set, it might select the gene (or

genes) that is altered in the largest number of patients, a behavior

that is similar to ‘‘standard’’ copy-number analysis methods that

select the minimum common aberration. We ran the MCMC al-

gorithm sets of sizes k (2 # k # 10) for 107 iterations, and sampling

one set every 104 iterations.

For k = 2, the pair of genes sampled with the highest frequency

is (CDKN2B, CYP27B1), sampled with frequency 18%. For k = 3, the

most frequently sampled set is (CDKN2B, RB1, CYP27B1), sampled

with frequency 10%. The second most sampled pair (frequency

11%) was CDKN2B and a metagene containing six genes,6 and the

second most sampled triplet (frequency 6%) was CDKN2B, RB1,

and the same metagene. Moreover, the mutational profile of

CYP27B1 was nearly identical to a metagene: CYP27B1 is mutated

in all of the same patients as the metagene plus one additional

patient with a single-nucleotide mutation in CYP27B1. Because of

this one extra mutation, CYP27B1 was not merged into the meta-

gene. Furthermore, the six genes in the metagene are adjacent on

the genome and are mutated by a copy-number aberration (am-

plification) in all patients. This amplification also affects CYP27B1,

which is adjacent to these genes. The amplification was previously

reported, and the presumed target of the amplification is the gene

CDK4 (Wikman et al. 2005). Thus, it is likely that the triplet

(CDKN2B, RB1, CDK4) is the triplet of interest, and the somatic

mutation in CYP27B1 identified in one patient does not have

a biological impact. This example shows one of the advantages of

the MCMC method: It allows one to identify additional ‘‘sub-

optimal’’ genes sets of high weight and those whose weight is close

to the highest. We performed a permutation test, as described in

the Known Mutations in Multiple Cancer Types section, to com-

pare the significance of (CDKN2B, CDK4) and (CDKN2B, CDK4,

RB1). The P-values obtained are 0.1 and <10�2, respectively.

Therefore, the triplet (CDKN2B, CDK4, RB1) is at least as significant

as the pair (CDKN2B, CDK4). CDKN2B, RB1, and CDK4 are part of

the RB1 signaling pathway (Fig. 5), and abnormalities in these

genes are associated with shorter survival in glioblastoma patients

(Backlund et al. 2003). Thus, our method identifies a triplet of

genes with a known association to survival rate directly from the

somatic mutation data.

For k $ 4, no set is sampled with frequency $0.2%. We re-

moved the set (CDKN2B, CDK4, RB1) from the analysis and ran the

MCMC algorithm again. The pair (TP53, CDKN2A) is sampled with

frequency 30% (p < 0.01). This pair is part of the p53 signaling

pathway (Fig. 5). As discussed in the Lung Adenocarcinoma sec-

tion, the fact that this pair is sampled with high frequency only

after removing (CDKN2B, CDK4, RB1) is likely due to the fact that

not all genes and mutations in the pathways have been measured,

resulting in different coverage for the two pathways. Finally,

removing both (CDKN2B, CDK4, RB1) and (TP53, CDKN2A), we

identify the pair (NF1, EGFR) sampled with frequency 44% (p < 0.01).

NF1 and EGFR are both part of the RTK pathway (Fig. 5), which is

involved in the proliferation, survival, and translation processes.

Discussion
We introduce two algorithms for finding mutated driver pathways

in cancer de novo using somatic mutation data from many can-

cer patients. Our algorithms, called De novo Driver Exclusivity

(Dendrix), find sets of genes that are mutated in many samples

(high coverage) and that are rarely mutated together in the same

patient (high exclusivity). These properties model the expected be-

havior of driver mutations in a pathway, or a ‘‘subpathway.’’ We de-

fine a weight on sets of genes that measures how well a set exhibits

Table 1. MCMC results on simulated data

M1 M2 maxother avgother

~pð�Þ 24.5 8.6 0.9 1.6 3 10�4

W(�) 80 78 73 56

~p Mið Þ is the frequency of Mi, ~p maxotherð Þ is the maximum frequency with
which a set different from M1 and M2 is sampled, and ~p avgother

� �
is the

average frequency with which a set different from M1 and M2 is sampled.

5Mutations were measured in 91 patients, but we removed seven patients who
were identified as hypermutated in The Cancer Genome Atlas Research Net-
work (2008). These patients have higher observed mutation rates, presumably
due to defective DNA repair.

6Genes in the metagene are TSFM, MARCH9, TSPAN31, METTL21B (also known
as FAM119B), METTL1, CDK4, and AGAP2 (also known as CENTG1).
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these two properties. We show that finding the set M of genes with

maximum weight is computationally difficult, derive conditions

under which a greedy algorithm gives optimal solutions, and devel-

op a Markov chain Monte Carlo (MCMC) algorithm to sample sets

of genes in proportion to their weight. Furthermore, we prove that

the Markov chain converges rapidly to the stationary distribution.

We applied our MCMC approach to three recent cancer se-

quencing studies: lung adenocarcinoma (Ding et al. 2008), glio-

blastoma (The Cancer Genome Atlas Re-

search Network 2008), and multiple cancer

types (Thomas et al. 2007). In the latter

data set we identify a group of eight mu-

tations in six genes that are present at least

once in a large fraction of patients and are

largely exclusive. In the first two data sets,

we identified groups of two to three genes

with those properties. These gene sets in-

clude members of well-known cancer

pathways including the Rb pathway, the

p53 pathway, and the mTOR pathway. In

the glioblastoma data, the mutations in

the three genes that we identify have

been previously associated with shorter

survival (Backlund et al. 2003). Notably,

we discover these pathways de novo from

the mutation data without any prior bi-

ological knowledge of pathways or in-

teractions between genes. However, it is

also important to note that some of the

genes that were measured in these data

sets were selected because they were known

to have a cancer phenotype, and thus there

is some ascertainment bias in the finding

that individual genes (or groups of genes)

are mutated in many samples.

The results on the Thomas et al.

(2007) data and on simulated data illus-

trate that our algorithm is able to identify relatively large sets of

genes with high coverage and high exclusivity. However, in the

lung adenocarcinoma and glioblastoma data, the size of gene sets

that we identify is relatively modest. It is not yet possible to con-

clude whether this is a real phenomenon or a consequence of li-

mited data. For example, the number of patients and genes in these

studies is relatively small, and the types of mutations that were

measured was not comprehensive. For example, we examined only

Figure 3. (A) High weight submatrix of eight genes in the somatic mutations data from multiple cancer
types (Thomas et al. 2007). (Black bars) Exclusive mutations; (gray bars) co-occurring mutations. (B) Location
of identified genes in known pathway. Interactions in the pathway are as reported in Ding et al. (2008).

Figure 4. (A) High weight submatrices of two and three genes in the lung adenocarcinoma data. (Black bars) Exclusive mutations; (gray bars) co-
occurring mutations. Rows (patients) are ordered differently for each submatrix, to illustrate exclusivity and co-occurrence. (B) The location of gene sets in
known pathways reveals that the triplet of genes codes for proteins in the mTOR signaling pathway (light gray nodes), and the pair (ATM, TP53)
corresponds to interacting proteins in the cell cycle pathway (dark gray nodes). Interactions in the pathway are as reported in Ding et al. (2008).
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single-nucleotide (and small indel) mutations in lung adenocar-

cinoma, and these plus copy-number aberrations in the glioblas-

toma data. Other types of mutations, such as rearrangements, or

even epigenetic changes could alter the function or expression of

genes. In addition, considering mutation data at the level of in-

dividual genes might reduce the power to distinguish driver mu-

tations from passenger mutations. Thus, it would be interesting to

analyze the other data sets at ‘‘subgene’’ resolution to distinguish

mutations at particular amino acid residues. We have shown that our

algorithms are useful at a finer scale of resolution by introducing

additional columns to the mutation matrix that correspond to pro-

tein domains, structural motifs, or other parts of a protein sequence.

The algorithms we presented assumed the availability of rea-

sonably accurate mutation data. While the ability to measure so-

matic mutations from next-generation DNA sequencing data or

microarrays is becoming more routine, there remain challenges in

the identification of somatic mutations from these data with the

incorrect prediction of somatic mutations (false positives) and the

failure to identify genuine mutations (false negatives) (Meyerson

et al. 2010). One particular source of false negatives is the hetero-

geneity of many tumor samples, which often include both normal

cell admixture and subpopulations of tumor cells with potentially

different sets of mutations. False negatives are a particular problem

with samples with low tumor cellularity. Although the algorithms

we propose are able to handle some false positives and false neg-

atives, high rates of these errors would reduce the exclusivity and

coverage, respectively, of a driver pathway. Moreover, this problem

will be compounded if the genes in a driver pathway are mutated

only in a subpopulation of tumor cells.

Our algorithms could be improved in several ways. First, we

could include additional information in the scoring of mutations

and gene sets. In the present analysis, we considered each muta-

tion to have one of two states—mutated or normal. Extending our

techniques to use additional information about the functional

impact, or expression status, of each mutation is an interesting

open problem. Second, alternative weight functions W(M) could

be considered. For example, the inclusion of patient-specific mu-

tation rates might provide a more refined way to analyze hyper-

mutated patients. However, we note that some of our analytical

results (e.g., the rapid mixing of the MCMC algorithm) relied on

the particular form of the weight function W(M ), and these results

would also require modification to maintain similar performance.

Finally, the performance of our algorithm in complex situations

involving multiple, overlapping high weight sets of genes requires

further analysis. It is not yet clear whether such complex situations

arise in cancer mutation data.

Our algorithms will be useful for analysis of whole-genome or

whole-exome sequencing data from large sets of patients, and we

anticipate that with these comprehensive data sets it will be pos-

sible to identify larger sets of driver genes. Such data sets will soon

be available from The Cancer Genome Atlas (TCGA) and other

large-scale cancer sequencing projects. We expect that the de novo

techniques introduced here will complement existing methods for

assessing enrichment of mutations in known pathways. As larger

cancer data sets become available, it will be interesting to compare

the exclusive gene sets identified by our techniques to known

cancer pathways. A key question in the analysis of these larger data

sets is whether mutual exclusivity of driver mutations in genes in

the same pathway is a widespread phenomenon, or whether it is

a feature of particular genes, pathways, or cancer types. We antic-

ipate that our algorithms will be helpful in addressing this ques-

tion. In addition, it would be interesting to extend these ideas to

other types of cancer genomics data, such as epigenetic alterations

and structural aberrations. Finally, an intriguing future direction is

to generalize these techniques to analyze combinations of (rare)

germline variants in genetic association studies.

Methods

Complexity of the problem
The problems we are interested in are the Maximum Coverage
Exclusive Submatrix Problem and the Maximum Weight Sub-
matrix Problem (see Results for their definition). We show that

Figure 5. (A) High weight submatrices of two and three genes in the glioblastoma data. (Black bars) Exclusive mutations; (gray bars) co-occurring
mutations. Rows (patients) are ordered differently for each submatrix, to illustrate exclusivity and co-occurrence. (B) Location of identified genes in known
pathways. Interactions in pathways are as reported in The Cancer Genome Atlas Research Network (2008).
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these problems are computationally difficult (for proof, see the
Supplemental Material).

Theorem 1. The Maximum Coverage Exclusive Submatrix Problem is
NP-hard.

Theorem 2. The Maximum Weight Submatrix Problem is NP-hard.
Note that our weight W(M) is only one possible measure of

the trade-off between coverage and exclusivity. For example, an-
other approach is to minimize the maximum number of genes that
co-occur in a patient. The associated problem remains computa-
tionally difficult as shown in Kuhn et al. (2005) (with additional
generalizations in Dom et al. 2006).

A greedy algorithm and Gene Independence Model

We propose the following greedy algorithm for the Maximum
Weight Submatrix problem.

Greedy ðkÞ :

1: M = g1; g2f g)pair of genes that maximizes W fg1; g2gð Þ:
2: For i = 3; . . . ; k do :

að Þ Let g� = arg maxg W M [ gf gð Þ:
bð Þ M)M [ g�f g:

3: return M:

The time complexity of the algorithm is O(n2 + kn) = O(n2). We
analyze the performance of the algorithm on mutation matrices
generated from the following Gene Independence Model.

Definition 1. Let A be an m 3 n mutation matrix such that M̂ is the
maximum weight column submatrix of A and jM̂j = k. The matrix A
satisfies the Gene Independence Model if and only if:

1. Each gene g =2 M̂ is mutated in each patient with probability pg,
independently of all other events, with pg 2 [pL, PU] for all g.

2. WðM̂Þ is V mð Þ, i.e., WðM̂Þ= rm for a constant r, 0 < r # 1.
3. For all ‘, any subset M � M̂ of cardinality |M| = ‘ satisfies

W Mð Þ # ‘+d
k WðM̂Þ, for a constant 0 # d < 1.

We show that the greedy algorithm above will produce the optimal
solution with high probability for any mutation matrix generated
from the Gene Independence Model, when the number of rows
(patients) is sufficiently large.

Theorem 3. Suppose e > 0 and A is an m 3 n mutation matrix gen-
erated from the Gene Independence Model that satisfies

m $ 1 +
e
2

� �
log n

3 max
2r

k
� 2 pU � p2

L

� �� ��2

;
r 1� dð Þ

k
� pU +

4rpL

k

� ��2
( )

:
ð1Þ

Then the greedy algorithm identifies the m 3 k column submatrix
M̂ with maximum weight W M̂

� �
with probability at least 1� 2n�e.

For proof of Theorem 3, see the Supplemental Material.

Markov chain Monte Carlo (MCMC) algorithm

The basic idea of MCMC is to build a Markov chain whose states are
the possible configurations and to define transitions between
states according to some criterion. If the number of states is finite
and the transitions are defined such that the Markov chain is er-
godic, then the Markov chain converges to a unique stationary
distribution. The Metropolis-Hastings algorithm (Metropolis et al.
1953; Hastings 1970) gives a general method for designing tran-
sition probabilities that gives a desired stationary distribution on
the state space. However, the Metropolis-Hastings method does

not guarantee fast convergence of the chain, which is a necessary
condition for practical use of this method. In fact, if the chain
converges slowly, then it may take an impractically long time be-
fore the chain samples from the desired distribution. Defining
transition probabilities so that the chain converges rapidly to the
stationary distribution remains a challenging task. Despite signif-
icant progress in recent years in developing mathematical tools for
analyzing the convergence time (Randall 2006), our ability to an-
alyze useful chains is still limited, and in practice, most MCMC
algorithms rely on simulations to provide evidence of convergence
to stationarity (Gilks 1998).

We use a Metropolis-Hastings algorithm to sample sets M�G

of k genes with a stationary distribution that is proportional to
e cW(M) for some c > 0, and we show that the resulting chain con-
verges rapidly.

Initialization: Choose an arbitrary subset M0 of k genes in G

(the set of all genes).

Iteration: For t = 1, 2,. . ., obtain Mt+1 from Mt as follows:

1. Choose a gene w uniformly at random fromG.
2. Choose v uniformly at random from Mt.
3. Let P Mt ;w; vð Þ = min 1; e cW Mt� vf g+ wf gð Þ�cW Mtð Þ� 	

.7

4. With probability P(Mt, w, v) set Mt+1 = M� {v} + {w}, else Mt+1 = Mt.

It is easy to verify that the chain is ergodic with a unique stationary
distribution

p Mð Þ= e cW Mð Þ

+ R2Mk
e cW Rð Þ ;

where Mk = M�G : Mj j = kf g. The efficiency of this algorithm de-
pends on the speed of convergence of the Markov chain to its
stationary distribution. We are able to analyze the mixing time of
the chain because we do not restrict the set of states that the chain
can visit, focusing instead on the desired stationary probabilities of
the various states.

Let P t
I;M be the transition probability from initial state I to

state M in t steps of the Markov chain. We measure the distance
between the distribution of the chain at time t and the stationary
distribution by the variation distance between the two distributions:

DI Mð Þ= 1

2
+

M2Mk

Pt
I;M � p Mð Þ




 


:
The e-mixing time of the chain is

t eð Þ= max
I

min tjDI Mð Þ # ef g:

A chain is rapidly mixing if t(e) is bounded by a polynomial in the
size of the problem (m and n = jGj in our case) and log e�1.

We show that there is a nontrivial interval of values for c for
which the chain is rapidly mixing (for proof, see the Supplemental
Material). Our proof uses a path coupling argument (Bubley and
Dyer 1997). In path coupling, we define coupling only on pairs of
adjacent states in the Markov chain. Let Mt and M9

t be the states of
two copies of the Markov chain at time t, and assume that
Mt = M9

t + zf g � yf g (thus, the two states are adjacent in the Markov
chain). We use the following coupling: Assume that the first chain
chooses w 2 G and v 2 Mt in computing the transition to Mt+1. The
second chain uses the same w, and if v 2 Mt \ Mt+1, it also uses the
same v. Otherwise, if in the first chain v = y, then the second chain
uses v = z. If P M9

t ;w; v
� �

# P Mt ;w; vð Þ and the first chain performs
a switch, then the second chain performs a switch with probability

7For ease of notation in this section, given sets A and B, we denote their dif-
ference by A� B = {x|x2 A and x ; B}, and their union by A + B = {x|x2 A or x2 B}.
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P M 9
t ;w; v

� �
=P Mt ;w; vð Þ. If P M9

t ;w; v
� �

$ P Mt ;w; vð Þ, then the sec-
ond chain performs a switch whenever the first chain does, and
when the first chain did not perform a switch the second chain
switches with probability P M9

t ;w; v
� �

� P Mt ;w; vð Þ. Our analysis
applies the following simple version of path coupling adapted to
our setting (see Bubley and Dyer 1997; Mitzenmacher and Upfal
2005):

Theorem 4. Let ft = Mt �M9
t



 

, and assume that for some constant
0 < b < 1, E[ft+1|ft = 1] # b, then the mixing time

t eð Þ #
k log ke�1

� �
1� b

:

Using the above, we prove the following convergence result for
our chain.

Theorem 5. The MCMC is rapidly mixing for some c > 0.
Theorem 5 gives a range of values of c where the resulting

chain will converge rapidly. We explored different values of c, and
use the c = 0.5, which we found empirically to give the best trade-
off between the exploration of different sets and the convergence
to sets with high weight W(M) on simulated data. We use c = 0.5 for
both the experiments on both simulated data and real cancer
mutation data described below.

Extension to multiple sets of mutated genes

There are multiple capabilities that a cell has to acquire in order to
become a cancer cell; for example, Hahn and Weinberg (2002)
describe six capabilities. Thus, we expect that a small number of
pathways will be mutated, and in each pathway the mutations in
the corresponding genes will have both high exclusivity and high
coverage. We aim to recover sets of genes in each of these path-
ways. If the sets of genes in each pathway are disjoint, then an
iterative procedure will suffice: Once we identify a set M with high
weight, we remove the genes in M from the analysis and look for
high weight sets in the reduced mutation matrix. Thus, if two sets
M1 and M2 of genes are disjoint and have high weight, then the
iterative procedure finds both, because exclusivity is required only
within and not between sets. If, instead, M1 and M2 have genes in
common, then removing one of them could remove part of an-
other. If the intersection is small, we will still be able to identify the
remaining part of the other set. The problem of identifying two sets
M1 and M2 of genes that both have high exclusivity and high
coverage (but with no exclusivity between them) and have
a number of genes in common is an interesting open problem.

Cancer data

In all tumor patients we consider, we use both single-nucleotide
mutations and small indels reported in the original studies
(Thomas et al. 2007; The Cancer Genome Atlas Research Network
2008; Ding et al. 2008). For glioblastoma patients, we also consider
focal copy-number aberrations identified in the original study
(The Cancer Genome Atlas Research Network 2008), discarding
copy-number aberrations for which the sign of aberration (i.e.,
amplification or deletion) was not the same in at least 90% of the
samples.

We reduce the size of the mutation matrix by combining
genes that are mutated in exactly the same patients into larger
‘‘metagenes.’’ For example, suppose there exists a set S = {g1, g2} of
two genes that are mutated in the same set of patients. Two sets X
and Y with X\Y = {g1} and X\Y = {g2} satisfy W(X) = W(Y). Thus,
both sets have the same probability. The same result holds when
|S| > 2. To improve the efficiency of the MCMC sampling procedure,
we replace a maximal set of genes T = {g1, g2,. . .} that are mutated in

the same patients with a single ‘‘metagene’’ gT whose mutations are
the same patients. Copy-number aberrations typically encompass
more than one gene, and the boundaries of such aberrations vary
across patients. Since we only collapse genes into metagenes if they
are mutated in exactly the same patients, we will not collapse all of
the genes in a copy-number aberration into a metagene if the genes
in the metagene vary across patients.

Software

A Python implementation of Dendrix (De novo Driver Exclusivity)
is available at http://cs.brown.edu/people/braphael/software.html.
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