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Abstract
Disulfide bonds between Cys residues in adjacent strands of parallel β-sheet are rare among
proteins, which suggests that parallel β-sheet structure is not stabilized by such disulfide
crosslinks. We report experimental results that show, surprisingly, that an inter-strand disulfide
bond can stabilize parallel β-sheet formed by an autonomously folding peptide in aqueous
solution. NMR analysis reveals that parallel β-sheet structure is terminated beyond the disulfide
bond, which causes deviation from the extended backbone conformation at one of the Cys
residues.
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Helices and sheets are dominant structural motifs within proteins, but these secondary
structures are generally not very stable in isolation, particularly for linear peptides of ≤ 20
residues. Helical conformations (α, 310 and π) and β-sheets can be stabilized via
crosslinking, i.e., macrocycle formation, involving side chains and/or the backbone.1,2 This
structural fortification strategy is observed among biological proteins and peptides, with
cyclization most commonly achieved via disulfide formation between cysteine side chains.3
Other crosslinking modes are found among natural polypeptides as well, and an even wider
variety has been explored in synthetic systems.4 Polypeptides generated via ribosomal
biosynthesis and not modified post-translationally, however, are limited to disulfide
crosslinks, which can form spontaneously under mildly oxidizing conditions.

Bioinformatics analysis of antiparallel β-sheets reveals that pairs of disulfide-linked Cys
residues often occur at non-hydrogen bonded positions that are aligned on adjacent strands5

(Figure 1). This observation and geometric considerations suggest that such inter-strand
crosslinks can stabilize antiparallel β-sheet secondary structure, a hypothesis that has been
supported by numerous studies with designed β-hairpins that fold in aqueous solution.6 In
contrast, disulfide crosslinks between adjacent strands are very rare within parallel β-
sheets,5f–h,7 which suggests that disulfide-based macrocyclization should destabilize
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autonomously folding parallel β-sheets. We report the first test of this hypothesis. Our
experiments lead to the surprising discovery that an interstrand disulfide can stabilize
parallel β-sheet secondary structure to one side along the strand direction; however, the
parallel sheet cannot propagate beyond the disulfide position.

Our experimental design builds upon guidelines we have previously developed for creating
short peptides that can form two-stranded parallel β-sheets in aqueous solution.8 Use of an
autonomously folding β-sheet rather than a full-fledged protein is intended to avoid the
influence of a specific tertiary context; therefore, our findings should reflect the intrinsic
conformational behavior of parallel β-sheet secondary structure. The diamine segment D-
prolyl-1,1-dimethyl-1,2-diaminoethane (D-Pro-DADME) promotes but does not enforce β-
sheet interactions between peptide segments linked in parallel. Peptide 1-SH (Figure 2) is
related to a molecule previously used to assess the thermodynamics of parallel β-sheet
formation in aqueous solution.8c The two Cys residues, near the N-terminus of each strand,
enable oxidative cyclization to generate 1-SS. 2D NMR analysis reveals multiple NOEs
between protons on residues that are not adjacent in sequence for both forms of 1, and in
each case all NOEs are consistent with the expected parallel β-sheet folding pattern.9 NOE-
restrained molecular dynamics calculations for 1-SS (based only on NOEs and the CNS
force field; no coupling-constant or H-bond constraintswere used) suggest canonical parallel
β-sheet interactions between the segments bounded by the D-Pro-DADME unit and the Cys
residues, i.e., between DFIQV on the upper strand (as drawn) and VLYRR on the lower
strand (Figure 3). The β-sheet structure appears to be present throughout the hairpin, up to
the location of the disulfide. Only the Cys residue of the lower strand, however, is part of the
β-sheet; a kink is observed at the other Cys, which indicates that β-sheet secondary structure
is terminated at this point.

Fraying at the open ends of autonomously folding hairpins has previously been noted,8a,10

but the NMR data suggest that the deviation from local β-sheet structure we observe at the
disulfide position in 1-SS is not attributable to fraying. Comparisons among the 10 lowest-
energy structures from the NOE-restrained dynamics calculations for 1-SS indicate an
overall RMSD of 1.1 ± 0.4 Å. Similar RMSD values are obtained for comparisons focused
on just a single Cys residue in either strand (1.0 ± 0.3 and 1.1 ± 0.5 Å, respectively, for the
top and bottom Cys residues as drawn in Figure 2). If these Cys residues were frayed
relative to the core of the β-sheet, then the Cys RMSD values should be larger than the
overall RMSD.

For a residue that participates in β-sheet secondary structure, the α-proton chemical shift
(δCαH) is generally downfield of the position expected for that residue in an unfolded
(“random coil”) state.11 We have shown that δCαH data can be used to assess parallel β-
sheet population for molecules such as 1-SH,8c–e which are anticipated to equilibrate rapidly
between folded and unfolded states on the NMR time scale. This analysis requires two
reference compounds, one to provide δCαH values for the fully unfolded state and another to
provide δCαH values for the fully folded state. The former goal is achieved by replacing D-
Pro in the diamine linker with L-Pro,8a and the latter goal is achieved by backbone
cyclization with a diacid linking segment.8c,d,9

We used this approach to estimate the extent of parallel β-sheet folding in 1-SH and 1-SS by
focusing on four ‘indicator residues’, Ile and Gln in the upper strand and Tyr and the more
N-terminal Arg in the lower strand (Figure 2). These residues provide four independent
measurements of parallel β-sheet population, and each is sufficiently isolated from the
variable C-terminal portion of its strand to be free of chemical shift influences induced by
covalent changes. For 1-SH, δCαH values for all four indicator residues are significantly
down-field of the δCαH values in the unfolded reference peptide (Figure 4), which is

Almeida et al. Page 2

J Am Chem Soc. Author manuscript; available in PMC 2013 January 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



consistent with the NOE data in indicating substantial parallel β-sheet formation. However,
the indicator δCαH values for 1-SH do not differ significantly from the corresponding values
for 1-SS or the fully folded reference peptide, which makes it impossible to determine
whether interstrand disulfide formation enhances parallel β-sheet stability.

We examined a second design that was intended to manifest a lower folding propensity in
order to assess the thermodynamic impact of an inter-strand disulfide on parallel β-sheet
stability. The sequence of 2-SH/2-SS (Figure 5) differs at several points from that of 1-SH/
1-SS. Two changes are particularly noteworthy: (1) the Cys residues occur at the N-termini
of the strands in 2, rather than adjacent to the N-termini in 1, and (2) a cross-strand Ile-Tyr
pairing that was intended to provide a hydrophobic driving force for folding of 1 has been
replaced by a Ser-Tyr pairing, which should be less conducive to parallel β-sheet formation.
2D NMR analysis suggests qualitatively that 2-SH and 2-SS display smaller extents of
parallel β-sheet folding relative to 1-SH and 1-SS, because the number of inter-strand NOEs
is smaller for both forms of 2 than for either form of 1.9 Nevertheless, the 2D NMR data for
2-SH and 2-SS indicate adoption of the expected parallel β-sheet conformation, in the
population of molecules that is folded, because all NOEs involving protons from
sequentially non-adjacent protons are consistent with this conformation.9

The extent of parallel β-sheet folding for 2-SH and 2-SS in aqueous solution was estimated
based on δCαH data, via comparisons with appropriate fully-folded and fully-unfolded
reference peptides.8e,9 Following the approach used for series 1, we focused on δCαH data
from four indicator residues, Ser and Gln in the upper strand and Tyr and the more N-
terminal Arg in the lower strand. At each position, δCαH values show a steady downfield
movement in the order: unfolded reference, 2-SH, 2-SS, folded reference (Figure 6a). This
consistent trend qualitatively suggests that neither version of 2 is fully folded, and, more
important, that disulfide formation causes an increase in the extent of parallel β-sheet
formation. δCαH-based population analysis9 provides a reasonably consistent conclusion
across the four indicator positions, suggesting that 2-SH is ~20% folded and that 2-SS is
~70% folded in 9:1 H2O:D2O, pH 3.8, 100 mM sodium deuterioacetate buffer (buffer pH
was not corrected for isotope effects) at 4°C (Figure 6b). These folded state population
values can be converted to Gibbs free energy of folding (ΔGF) based on a two-state
conformational model, random coil vs. parallel β-sheet conformation.8c–e Data from the four
indicator residues indicate a ΔΔGF value of −1.1 ± 0.1 kcal/mol, which shows that the
interstrand disulfide in 2-SS provides significant stabilization to the parallel β-sheet
conformation.

Previous bioinformatics analysis suggested that interstrand disulfide crosslinks are not well
accommodated in parallel β-sheet secondary structure,5f–h,7 and this conclusion is supported
by our experimental findings with autonomously folding peptides, since the backbone kinks
at the disulfide. However, our studies reveal an unexpected insight: an interstrand disulfide
can stabilize parallel β-sheet secondary structure that forms in the C-terminal direction
relative to the Cys residues. Covalent bonding between Cys side chains appears to require
that the backbone deviate from the extended conformation, at least in one strand, which
prevents the sheet from propagating through the disulfide position in our peptides. Overall
these results suggest that interstrand cystine crosslinks can both stabilize and define the
extent of parallel β-sheet secondary structure in designed peptides and proteins.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Disulfide bonds between Cys in adjacent strands of (a) anti-parallel β-sheet, in non-
hydrogen bond positions, and (b) parallel β-sheet.
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Figure 2.
Chemical structure of peptide 1-SH. Cysteine residues are shown in red.
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Figure 3.
NMR-based structural analysis of 1-SS based on data obtained for 2.5 mM peptide in 100
mM deuterioacetate, pH=3.8, 4°C: (a, b) two views of the overlay of the 10 structures with
lowest calculated energies from NOE-restrained molecular dynamics simulations; (c, d) two
views of the average minimized structure. RMSD among backbone atoms is 1.1 ± 0.4 Å.
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Figure 4.
1H NMR chemical shift data for protons attached to Cα (δCαH) of indicator residues in the
unfolded reference peptide (UF1), 1-SH, 1-SS and the folded reference peptide (FF1).
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Figure 5.
Chemical structure of peptide 2-SH. Cysteine residues are shown in red. Indicator residues
are denoted by arrows.
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Figure 6.
(a) 1H NMR chemical shift data for protons attached to Cα (δCαH) of indicator residues in
the unfolded reference peptide (UF2), 2-SH, 2-SS and the folded reference peptide (FF2).
(b) Percent folding calculated for 2-SH and 2-SS based on data obtained for 2.5 mM peptide
in 100 mM deuterioacetate, pH 3.8, 4°C.
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