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Abstract

Although the protective effect of transient ureteral obstruction (UO) prior to ischemia on subsequent renal ischemia/
reperfusion (I/R) injury has been documented, the underlying molecular mechanism remains to be understood. We showed
in the current study that 24 h of UO led to renal tubular hypoxia in the ipsilateral kidney in mice, with the accumulation of
hypoxia-inducible factor (HIF)-2a, which lasted for a week after the release of UO. To address the functions of HIF-2a in UO-
mediated protection of renal IRI, we utilized the Mx-Cre/loxP recombination system to knock out target genes. Inactivation
of HIF-2a, but not HIF-1a blunted the renal protective effects of UO, as demonstrated by much higher serum creatinine level
and severer histological damage. UO failed to prevent postischemic neutrophil infiltration and apoptosis induction in HIF-2a
knockout mice, which also diminished the postobstructive up-regulation of the protective molecule, heat shock protein
(HSP)-27. The renal protective effects of UO were associated with the improvement of the postischemic recovery of intra-
renal microvascular blood flow, which was also dependent on the activation of HIF-2a. Our results demonstrated that UO
protected the kidney via activation of HIF-2a, which reduced tubular damages via preservation of adequate renal
microvascular perfusion after ischemia. Thus, preconditional HIF-2a activation might serve as a novel therapeutic strategy
for the treatment of ischemic acute renal failure.
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Introduction

Ischemia and reperfusion injury (IRI) is unavoidable in renal

transplantation, and often causes acute renal failure, which is

associated with prolonged hospitalization and high mortality [1,2].

Novel effective interventional strategies not only help to improve

the clinical outcome, but also promote understanding of renal

pathophysiology.

It was reported [3] that transient ureteral obstruction (UO)

protected the kidney against the subsequent exposure to ischemia

and reperfusion (I/R) insults. This protection was not related to

uremia or humoral factors, since unilateral UO conferred

protection on the ipsilateral kidney, but not the contralateral one

[4]. The authors also reported that prior UO resulted in reduced

postischemic outer medullary congestion and leukocyte infiltra-

tion. These results were very similar to those with preconditional

activation of hypoxia-inducible factors (HIFs) [5,6].

HIFs are master regulators of oxygen homeostasis and stimulate

numerous genes important for energy metabolism, glucose

transport, vasomotor regulation, angiogenic growth and erythro-

poiesis, after activation [7,8]. HIFs are heterodimeric factors

consisting of a constitutive b subunit, HIF-1b and one of three

alternative a subunits, HIF-1a, HIF-2a, and HIF-3a [9,10].

Under normoxic conditions, HIF-a subunits have a very short

half-life. Cells continuously synthesize but rapidly degrade HIF-a
protein. Under conditions of hypoxia, HIF-a is no longer

degraded, and translocates into the nucleus, where it dimerizes

with HIF-1b to form the active HIF complex. HIF activates the

transcription of target genes by binding to hypoxia-response

elements (HREs) in their promoter or enhancer regions [11].

According to recent reports [12], the most widely expressed and

best characterized a subunit in the hypoxic/ischemic kidney is

HIF-1a, and its expression has been described in both tubular and

glomerular epithelial cells. HIF-2a is also induced in the hypoxic

kidney, but is localized in glomerular cells, endothelial cells, and

fibroblasts [13,14]. Importantly, HIF-1a and HIF-2a appear to

regulate distinct subsets of target genes [15].

It has been reported [16] that UO kidneys are hypoxic and

display protein and gene expression changes consistent with HIF

activation, the role of which in the protection of renal IRI has not

been clearly defined so far. In this study, we inactivated HIF-1a
and HIF-2a genes by the Cre-loxP conditional gene disruption

system to create HIF-1a or HIF-2a knockout mice, as well as HIF-

1a/2a double knockout (DKO) mice, and subjected them to
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transient UO followed by renal I/R, to explore the role of HIFs in

the renoprotective effects of UO.

Materials and Methods

Ethic statements
All animal experiments have been conducted according to

standard use protocols, animal welfare regulations and the

institutional guidelines of Shanghai Jiaotong University School of

Medicine and the Regulations for Practice of Experimental

Animals (issued by Scientific and Technical Committee,

P.R.China, 1988). All the procedures described were approved

by the Animal Use and Care Committee of Shanghai Jiaotong

University School of Medicine (approval number: SYKX-2008-

0050). All surgery was performed under sodium pentobarbital

anesthesia. Analgesia used was bupivacaine(0.5%), a long acting

local analgesic, immediately after surgery and only once. Several

drops of bupivacaine were dripped on the suture line after the

muscle layer was closed, and before the closure of skin wound. All

these efforts were made to minimize suffering.

Mice
The Cre/loxP recombination system was used to generate HIF-

1a2/2, HIF-2a2/2, or HIF-1a/2a double knockout mice. Mice

containing loxP-flanked HIF-1a exon 2 (HIF-1aloxP/loxP, stock

number: 007561), loxP-flanked HIF-2a exon 2 (HIF-2aloxP/loxP,

stock number: 008407) and Mx promoter sequence-modified Cre

recombinase gene (Mx-cre, stock number: 003556) were from the

Jackson Laboratory (Bar Harbor, Maine USA). After a mating of

HIF-1aloxP/loxP and Mx-cre strains and a second mating of their

progeny, mice that were homozygous for the HIF-1a floxed allele

and also carried the Mx-cre transgene were generated (Mx+HIF-

1aloxP/loxP). Mx+HIF-1aloxP/loxP mice were then backcrossed to

the Mx2HIF-1aloxP/loxP mice to generate both Mx+ mice

(deletable) and Mx2 littermates (nondeletable). To mutate the

target gene, 8-week old mice were administered intraperitoneal

injections of 400-mg poly deoxyinosinic/deoxycytidylic acid (pIpC)

every 4 days for a total of three injections. Mx+HIF-1aloxP/loxP

mice that had received injections of pIpC were hereafter referred

to as HIF-1a2/2 mice. The generation of HIF-2a2/2 mice and the

matching controls was as described above. Mx2HIF-1aloxP/loxP

and Mx2HIF-2aloxP/loxP mice that had received injections of pIpC

served as controls in all the following experiments and were referred

to as wild-type (WT) mice.

Mx+HIF-1aloxP/loxP mice were then mated with Mx+HIF-

2aloxP/loxP mice. After a second mating of their progeny, mice that

were homozygous for both HIF-1a and HIF-2a floxed allele and

also carried the Mx-cre transgene were selected by genotyping.

Mx+HIF-1aloxP/loxP HIF-2aloxP/loxP mice that had received

injections of pIpC were deficient in both HIF-1a and HIF-2a
genes, hereafter were referred to as double knockout (DKO) mice.

Male mice, 8–14 weeks of age and weighing 20–28 g, were used

in the present study.

Genotyping
Genomic DNA was isolated from tail biopsies. Genotyping was

performed using PCR which had been described previously. The

HIF-1aloxP/loxP and the wild-type alleles were detected using the

following primers: 59- GGAGCTATCTCTCTAGACC -39 and

59- GCAGTTAAGAGCACTAGTTG -39, which generated a

250 bp product in floxed allele and 215 bp product in wild type

[17]. To distinguish HIF-2aloxP/loxP mice from wild type by

multiplex PCR, the primers were as follows: P1: 59-CAGGCAG-

TATGCCTGGCTAATTCCAGTT-39; P2: 59-CTTCTTCCAT-

CATCTGGGATCTGGGACT-39; P3: 59-GCTAACACTGTA-

CTGTCTGAAAGAGTAGC-39. The wild type allele produced a

410-bp fragment (P1 and P2), the 2-loxP allele produced a 444-bp

fragment (P1 and P2), and the 1-loxP allele produced a 340-bp

fragment (P1 and P3) [18]. The Mx-cre transgene was detected

using the primers 59-ACCTGAAGATGTTCGCGATTATCT-

39, and 59-ACCGTCAGTACGTGAGATATCTT-39, which

amplified a 370-bp fragment [19].

Transient unilateral ureteral obstruction (UO)
A transient UO procedure was used as described [3], with

modifications. After anesthesia a midline laparotomy was made.

The left ureter was identified and surrounded by a 7-0 silk suture

1 cm below its renal origin, and then was ligated by tying a one-

loop shoelace knot. The right ureter was left undisturbed. The

suture end, which was left outside the abdominal wall after the

incision was closed, would be slipped and removed 24 h after the

operation to release the ureter from obstruction. 0 (immediately),

2, 4 or 7 days after release of obstruction, these mice were

subjected to renal I/R insults. Sham controls underwent the same

surgical procedures but without tying the knot, hereafter were

referred to as non-UO controls.

Renal ischemia-reperfusion model (IR)
Anesthesia was induced with sodium pentobarbital (60 mg/kg

body weight i.p.). Mice were placed on a temperature-controlled

heating table with a rectal thermometer probe attached to a

thermal feedback controller (ALC-HTP Homeothermic System,

Shanghai Alcott Biotech Co. Ltd, China) to maintain rectal

temperature at 36uC. A warm renal IR model was used as

described [20], with minor modifications. In brief, following a

midline abdominal incision, right nephrectomy was performed.

After intraperitoneal injection of heparin (50 U/kg), left renal

pedicle was localized and clamped for 25 min using an atraumatic

micro-vascular clamp. After inspection for signs of ischemia,

animals were covered with surgical dressing to keep stable

intraperitoneal temperature. After removal of the clamp, restora-

tion of blood flow was inspected visually. Sham controls

underwent same surgical procedures but without vascular

occlusion, hereafter were referred to as non-IR controls. Animals

were killed 6 h or 24 h after reperfusion by exsanguination, to

obtain blood and renal samples for further analyses.

Tissue oxygen partial pressure (tPO2) measurements and
laser doppler flowmetry (LDF) monitoring in kidneys

A large-area-surface O2 probe, which was connected to a tissue

oxygen monitoring system (OxyLab pO2 system, Oxford Op-

tronics, UK), was used for tPO2 monitoring in mouse kidneys, as

described previously [21,22]. Measurements were performed in

both kidneys 24 h after left UO, without release of obstruction.

The inferior pole of the kidney was punctured using a 22-gauge

needle and the O2 probe was inserted to a depth of 3 mm. Since

the O2 probe measured oxygenation along the shaft of the

catheter, i.e., away from the tip, it was actually sampling from a

depth of 2 mm. We established in preliminary experiments that

such an insertion depth enabled measurement of tPO2 within

renal outer medulla. The measurement began 30 minutes after the

probe was inserted and continued for 10 minutes. The values of

ten minutes collected by the probe were expressed as a mean pO2

value (mmHg) over the period of observation. The core

temperature was maintained at 36uC throughout the procedures.

It’s worth notice that core body temperature control is very

important to the measurement. The oxygen tension levels vary a
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lot, and tend to be lower without maintaining the normal body

temperature.

For renal tissue blood perfusion monitoring, a pO2/Flow Bare-

Fibre sensor, which was connected to an OxyLab LDF instrument

(Oxford Optronix, UK), was inserted into renal outer medulla to

enable monitoring of continuous microvascular blood flow, as

described previously [22]. The measurement began 30 minutes

after the probe was inserted and continued for 10 minutes with the

core temperature maintained at 36uC. The values of ten minutes

collected by the probe were expressed as a mean value of blood

perfusion units (BPU) over the period of observation. Baseline

renal blood flow was obtained by monitoring the microvascular

blood flow in the right kidney before UO or sham procedures.

After the initiation of reperfusion, the blood flow in the left kidney

was measured at the indicated time points, and the mean value

versus the baseline result was defined as relative renal perfusion.

Biochemical analyses
Arterial blood was collected by direct puncture of arteriae aorta.

Serum creatinine (Cr) was measured with a standard clinical

automatic analyzer (Siemens Dade behring dimension xpand).

Histology and histomorphological scoring of acute
tubular injury

Kidney tissues were fixed in 10% neutral buffered formalin

overnight, dehydrated, embedded in paraffin and sectioned at

5 mm. For histological analysis, sections were stained with Periodic

Acid-Schiff (PAS). Samples were analyzed for tubular cell necrosis,

tubular dilation, intratubular cell detachment, and cast formation

(original magnification 6200) and were all evaluated in a blinded

manner by a nephropathologist. Abnormalities were graded by a

semiquantitative histomorphological scoring system from 0 to 4, as

described previously [23]. At least 3 fields per section were

evaluated.

Polymorphonuclear leukocyte infiltration (MPO activity)
Renal sections were processed for immunohistochemical

localization of myeloperoxidase (MPO, polyclonal rabbit antibody;

Novus Biologicals, NBP1-42591), and were then visualized with

diaminobenzadine (DAB) and counterstained with hematoxylin.

Polymorphonuclear leukocyte (PMN) infiltration was scored

semiquantitatively on a scale of 1 (none) to 4 (severe), as described

previously [24].

Terminal deoxynucleotidyl transferase-mediated 29-
deoxyuridine 59-triphosphate nick-end labeling assay
(TUNEL)

Apoptotic cells in formalin-fixed, paraffin-embedded kidney

tissue sections were identified with ApopTagTM Fluorescein In

Situ Apoptosis Detection Kit S7110 (Chemicon International),

according to the manufacturer’s protocol. Cells with nuclear

positive staining by fluorescent antibodies for DNA fragmentation

were visualized directly by a fluorescence microscopy and counted

(original magnification 6400). At least 3 fields per section were

examined.

Quantitative western blot analysis
Western blot analysis of HIF-1a and HIF-2a was performed as

described previously [25]. Nuclear extracts were isolated from

harvested whole kidneys using NE-PER Nuclear and Cytoplasmic

Extraction Reagents (Product Number 78833, Pierce Biotechnol-

ogy, Inc., USA.), supplemented with Complete Protease Inhibitor

Cocktail Tablets (Roche, Indianapolis, IN). Nuclear protein

fractions were electrophoresed on 10% SDS-PAGE under

reducing conditions and transferred to a nitrocellulose membrane

(Whatman) by standard procedures. Membranes were blocked

with LI-COR blocking buffer (LI-COR Biosciences, Lincoln, NE).

Membranes were then incubated with the same blocking solution

containing rabbit polyclonal primary antibodies against HIF-1a
(1:500, NB100-479, Novus Biologicals) and HIF-2a (1:500, ab199,

Abcam). After washing, membranes were incubated at room

temperature for 1 h in TBS/0.05% Tween 20 buffer with the

IRDye800 secondary antibodies (1:10000; LI-COR Biosciences)

and then washed again in TBS/0.05% Tween 20 for 3 times. The

blot was visualized using an Odyssey infrared imaging system (LI-

COR Biosciences). Samples were corrected for background and

quantified using Odyssey software. All values were normalized to a

loading control TATA binding protein (TBP, 1:2000, ab818,

Abcam) and expressed as fold increase relative to control.

For heat shock protein (HSP)-27 measurements, harvested

kidneys were homogenized and lysed with cell lysis buffer, which

contained 1 protease inhibitor cocktail tablet per 10 mL of Lysis

Reagents (Complete; Roche, Indianapolis, IN). Solutions were

then clarified by centrifugation (25 minutes at 16,000 g). Solubi-

lized proteins were then resolved on a 10% SDS-polyacrylamide

gel and transferred to nitrocellulose membranes (Whatman). After

blocked with LI-COR blocking buffer, blots were incubated with

anti-HSP-27 (1:500, #2442, Cell Signaling Technology, Inc.) and

anti-b-actin (1:2000, Santa cruz biotechnology, inc.) antibodies.

After incubation with secondary antibodies, blots were developed

as described above. HSP-27 expression levels were normalized to

b-actin expression levels.

Statistics
All values were reported as the mean 6 standard deviation

(SD). Data were analyzed with a one-way ANOVA with

subsequent Student-Newman-Keul’s test or Student’s t-test where

applicable. Statistical significance was set at P,0.05.

Results

UO led to renal tubular hypoxia
Since UO causes blockage of urine flow from the kidney and

thus induces a high pressure state within the intrarenal

Figure 1. Effect of 24 h UO on renal tissue oxygen partial
pressure (tPO2) level. WT mice were subjected to either non-UO
sham surgery or left UO. After 24 hours, bilateral renal tPO2

measurements were performed without release of UO. There were 5
mice in each group. Values were expressed as mean 6 SD. *, p,0.05
versus the other three groups. L, left kidney; R, right kidney.
doi:10.1371/journal.pone.0029876.g001
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microstructures, we hypothesized that UO might change the

balance between local oxygen supply and consumption, and lead

to hypoxia. To confirm this, we employed OxyLab pO2 system,

which had a proven record of success in a variety of applications

[26–30], to evaluate the renal tissue oxygenation after UO.

The left and right kidneys in non-UO control mice manifested

similar tissue oxygen tensions in outer medulla 24 h after the sham

operation, which were comparable with the baseline levels derived

from those without prior operations (data not shown). Left UO

didn’t change the tPO2 level in the right kidney, but led to a fall

from 28.5461.47 to 19.3562.67 mmHg of the oxygen tension in

the ipsilateral kidney 24 hours later (Figure 1).

24 hours of UO caused an accumulation of HIF-2a, but
not HIF-1a

To determine whether the hypoxic state induced by UO could

lead to accumulation of HIF-1a and HIF-2a, and how long this

accumulation could persist after release of obstruction, we

evaluated renal HIF-1a and HIF-2a protein levels by quantitative

western blot analyses on day 0 (immediately), day 2, day 4 and day

7 after release of obstruction.

Kidneys from non-operated controls or non-UO sham-

operated mice had barely detectable levels of HIF-1a and

HIF-2a, whereas left kidneys from UO mice had much higher

HIF-2a levels on day 0 (24 h after initiation of obstruction),

which were even further up-regulated on day 2, and then

decreased on day 4. One week after release of UO, HIF-2a was

still maintained at a relatively high level (Figure 2). HIF-1a levels

remained unchanged, similar to those of non-UO controls at all

tested time points. These results suggested that renal hypoxia

resulted from UO selectively up-regulated HIF-2a and the

biological effects of UO might be mediated by HIF-2a, rather

than HIF-1a.

Inactivation of HIF-2a, rather than HIF-1a, neutralized the
renoprotective effects of UO

Inactivation of target genes was confirmed by immunoblot

analyses. The accumulation of HIF-2a in kidney after UO or UO

plus I/R procedures was largely diminished by the Mx-Cre/loxP

recombination system (Figure 3). To confirm whether UO

provided protection against IRI after release of obstruction in

WT mice, as described previously [3], renal pedicle of the

Figure 2. Effect of 24 h UO on renal HIF-1a/2a expression. WT mice were exposed to either sham-operation or left UO, which continued for
24 hours, and then was released. The left kidneys were harvested immediately (d0), 2, 4 or 7 days after release of obstruction (n = 4 at each time
point). Immunoblot analyses of HIF-1a and HIF-2a in left kidneys were then performed and co-detection of TBP was performed to assess equal
loading. HIF protein bands were quantified and normalized to TBP. Data were expressed as mean 6 SD, and the mean value obtained from non-
operated control mice was arbitrarily defined as 1. *, p,0.05 versus sham-operated controls; **, p,0.05 versus all the other groups. C, non-operated
controls; S, sham-operated controls.
doi:10.1371/journal.pone.0029876.g002

Figure 3. HIF-2a levels in HIF-2a2/2 and WT mouse kidneys. A, HIF-2a2/2 mice or their wild-type littermates were exposed to left UO, which
continued for 24 hours, and then was released. 2 days after release of UO or at the corresponding time point in the non-UO sham-operated mice, the
left kidneys were harvested and subjected to immunoblot analyses of HIF-2a and co-detection of TBP as a loading control. B, Mice were also exposed
to I/R procedures before the harvest of the left kidneys to evaluate the HIF-2a levels 6 hours after the initiation of reperfusion. HIF-2a protein bands
were quantified and normalized to TBP. There were 4 mice in each group and data were expressed as mean 6 SD. The mean value obtained from
sham-operated WT mice was arbitrarily defined as 1. *, p,0.05 versus all the other 3 groups.
doi:10.1371/journal.pone.0029876.g003
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previously obstructed kidney was clamped for 25 min after right

nephrectomy, and then was allowed for 24 h of reperfusion.

Compared with non-UO controls, UO significantly improved

renal function, as indicated by much lower serum Cr concentra-

tions (Figure 4A). Ischemia imposed at all tested time points after

release of UO resulted in significant decrease in Cr levels, but the

profoundest decrease was seen on day 2. This was in line with the

HIF-2a induction pattern after UO. To investigate the role of

HIFs in the protective effects of UO, HIF-1a2/2, HIF-2a2/2 and

DKO mice were subjected to the same procedures as described

above. Although all these mice manifested similar Cr levels to WT

mice without UO procedures, UO preconditioning led to

discrepancies among different strains. HIF-1a2/2 mice also

benefited from UO as WT mice did, but HIF-2a2/2 and DKO

mice were much more susceptible to IR injury after UO.

The result of Cr levels was reinforced by histological

observations. Tubular damage was assessed by PAS staining.

Both WT and HIF-1a2/2 mice that were subjected to UO plus IR

manifested much mitigated tubular injury, compared with non-

UO plus IR renal sections. In contrast, both HIF-2a2/2 and

DKO mice had much severer renal damage, even though they

were also pretreated with UO (Figure 4B). Histological abnor-

malities of renal sections from all tested time points after UO were

scored and shown in Figure 4C. UO preconditioning significantly

decreased histological scores in WT and HIF-1a2/2 sections,

whereas the effects of UO were neutralized to a great extent by

HIF-2a or double knockout. Histomorphological scores of tubular

damage correlated well with the serum Cr results.

These results demonstrated that renal resistance against

ischemia conferred by UO was dependent on the timing of

Figure 4. UO-mediated renoprotective effects were negated by HIF-2a knockout. Mice were exposed to either non-UO sham-operation or
left UO, which continued for 24 hours, and then was released. At different time points (0 d, 2 d, 4 d, 7 d) after release of UO, animals were subjected
to right nephrectomy, followed by IR (25 min of left renal ischemia and 24 h of reperfusion) or non-IR sham operation. A, concentrations of serum
creatinine 24 h after the initiation of reperfusion. B, representative renal PAS-stained sections from mice of UO 2 d group and their non-UO controls
(original magnification6200). Sections from HIF-1a2/2, HIF-2a2/2 and DKO mice in non-IR groups had no positive manifestations (similar to those of
WT non-IR mice) and were not shown. C, abnormalities based on PAS-stained sections was graded by a semiquantitative histomorphological scoring
system from 0 to 4. All mice in non-IR groups had no tubular damage (histomorphological score: 0, data not shown). Data were expressed as mean 6
SD from 6–8 animals per genotype. *, p,0.05 versus WT mice that were treated with the same procedures.
doi:10.1371/journal.pone.0029876.g004
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ischemia relative to release of UO, which was in line with the

accumulation of HIF-2a. And HIF-2a, rather than HIF-1a
knockout neutralized most protective effects of UO. Thus the

renoprotective effects of UO should be attributed to the

transcriptional responses induced by HIF-2a, rather than HIF-1a.

The role of HIFs in UO-mediated reduction of
postischemic neutrophil infiltration

IR results in neutrophil recruitment, and neutrophil-mediated

renal injury is an important component of renal IR injury [31].

Previous report [3] has indicated that the protective effects of UO

were related to a reduction of the postischemic tissue MPO

activity. To clarify the role of HIFs in this process, renal sections

from different strains were also immunostained for MPO activity.

Figure 5 showed that prior UO prevented most of the postischemic

increase in MPO activity in WT mice, as well as in HIF-1a2/2

mice. This dissociated HIF-1a from UO mediated reduction of

neutrophil infiltration. However, HIF-2a or double knockout

negated the effects of UO on MPO activity, indicating that HIF-

2a played a big part in reducing neutrophil infiltration.

The role of HIFs in UO-mediated prevention of apoptosis
To evaluate the role of HIFs in apoptosis induction in the setting

of UO-mediated renoprotection, TUNEL assay was used to detect

apoptotic cells in renal sections from different strains of mice. Renal

IR without UO induced similar degrees of apoptosis in all the

strains, showing that without pretreatment, neither HIF-1a nor

HIF-2a participated in apoptosis induction or prevention. Apo-

ptotic cells were reduced to a great extent by UO preconditioning in

WT and HIF-1a2/2 mice. However, UO didn’t manifest such an

obvious effect in HIF-2a2/2 or double knockout mice (Figure 6A).

The degree of renal tubular apoptosis was also quantified and

graphically presented in Figure 6B, to show the overall effects of UO

on apoptosis prevention at all tested time points.

Postobstructive expression of HSP-27 was compromised
by HIF-2a knockout

The up-regulated expression of HSP-27 by UO, and the

protective effects of HSP-27 on renal IRI have been described

[3]. However, the regulatory mechanism of HSP-27 overexpression

in this setting has not been established so far. To gain insight into the

relationship between HIFs and HSP-27, we analyzed renal

expression of HSP-27 in wild-type and the genetically engineered

mice 2 days after release of UO, as well as 6 hours after ischemic

insult. As compared with non-UO controls (Figure 7A), UO led to

markedly up-regulated HSP-27 levels in WT and HIF-1a2/2 mice,

but failed to induce the same expression enhancement in HIF-2a2/

2 and DKO mice (Figure 7B). Moreover, while IRI without UO

failed to induce different HSP-27 levels among the four groups

(Figure 7C), a marked up-regulation of postischemic HSP-27

level was observed in WT and HIF-1a2/2 kidneys that were

treated with UO plus IR procedures. However, in HIF-2a2/2

Figure 5. Effect of UO on post-ischemic polymorphonuclear
leukocyte (PMN) infiltration in different strains. At different time
points (0 d, 2 d, 4 d, 7 d) after release of UO, animals were subjected to

renal IR, and then the left kidneys were harvested and immunostained
for MPO activity. A, representative renal sections from mice of UO 2 d
group and their non-UO controls (original magnification 6200).
Sections from HIF-1a2/2, HIF-2a2/2 and DKO mice in non-IR groups
had no PMN infiltration and were not shown. B, PMN infiltration was
scored on a scale of 1–4. The results of different strains at all tested time
points were presented. All mice that were subjected to non-IR sham
operation had no PMN infiltration and the results were not shown. Data
were expressed as mean 6 SD from 6–8 animals per genotype. *,
p,0.05 versus WT mice that were treated with the same procedures.
doi:10.1371/journal.pone.0029876.g005
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and DKO kidneys, UO led to much blunted up-regulation of

postischemic HSP-27 level (Figure 7D).

UO led to much better postischemic recovery of renal
blood flow, which was totally negated by HIF-2a
knockout

To assess the possibility that UO and HIF-2a may act to protect

the vascular function and facilitate renal microcirculation

following ischemia, renal blood flow in the outer medulla was

measured in WT and HIF-2a2/2 mice after the initiation of

reperfusion. Baseline microvascular flow, which was obtained from

the right kidneys prior to UO or sham operations, was comparable

between WT and HIF-2a2/2 mice. As shown in Figure 8A, after

the initiation of reperfusion, renal blood flow didn’t recover to the

baseline level until 12 hours after reperfusion. But in those with

UO preconditioning the blood flow recovered so fast that we

called it ‘‘an immediate recovery’’. However, the ‘‘immediate

recovery’’ can only be seen in WT mice. No differences could be

observed between UO and sham groups in HIF-2a knockout mice

(Figure 8B). These data suggested that HIF-2a was not a regulator

of basal renal hemodynamics, but preconditional activation of

HIF-2a helped the endothelium to face the acute ischemic

challenge and greatly improved the reperfusion efficiency.

Discussion

Since ischemic acute renal failure continues to be associated

with a very high mortality rate in humans, it is important to

understand the endogenous processes the kidney uses to protect

itself. Several studies provided evidences for a critical role of HIF-1

in the protective effects of ischemic preconditioning in multiple

organs [32–34]. It was also reported [5,35] that preconditional

pharmacological or genetical activation of HIFs before patholog-

ical insult activated a self-defense mechanism and ameliorated

ischemic acute renal failure. Park et al. reported [3] that prior

transient UO led to markedly alleviated injury in subsequent renal

I/R, but the authors did not correlate this phenomenon with the

activation of HIFs. It was known that UO was associated with a

reduction in renal blood flow and resulted in renal tubular hypoxia

[36,37], and it was also reported [16,38] that UO led to activation

of HIFs. So we had reasons to speculate that the renoprotective

effects conferred by UO might be associated with activation of

HIFs. Since the transcriptional response to hypoxia was primarily

mediated by two hypoxia-inducible factors, HIF-1 and HIF-2, we

set out to explore the role of the two HIFs in the renoprotective

effects of UO.

We first determined whether transient ligation of the ureter

could cause renal hypoxia and accumulation of HIF-a protein in

kidney tissues. Previous report [16] has suggested that UO was

associated with a reduction in renal tubular oxygen tensions

24 hours after ligation. In that study tissue hypoxia was detected

using pimonidazole hydrochloride, which formed protein adducts

only in cells that experienced an oxygen level of approximately 1%

O2, or lower. Here we used a quantitative method, which was

based on the principle of oxygen quenching of fluorescence, to

Figure 6. Effect of UO on apoptosis induction in different
strains. A, TUNEL assay showed positive nuclear staining by
fluorescent antibodies for DNA fragmentation in apoptotic cells in

representative renal sections from mice of UO 2 d group and their non-
UO controls (original magnification 6400). Sections from sham-
operated (non-IR) HIF-1a2/2, HIF-2a2/2 and DKO mice manifested no
positive staining (data not shown). B, a summary of the quantitative
analysis of apoptotic cells per field. All mice that were subjected to non-
IR sham operation had no apoptotic cells (data not shown). Data were
expressed as mean 6 SD from 6–8 animals per genotype. *, p,0.05
versus WT mice that were treated with the same procedures.
doi:10.1371/journal.pone.0029876.g006
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reveal the influence of 24 h UO upon the renal tissue oxygen level.

The results demonstrate that 24 h of UO leads to a mild hypoxic

state in the ipsilateral kidney, and thus transient UO and the

following recanalization put the kidney through a hypoxia and re-

oxygenation cycle, which makes UO an atypical kind of hypoxic

preconditioning.

Although previous study [16] has demonstrated stabilization of

HIF-1a and HIF-2a protein in UO kidneys, a kind of continuous

UO, which lasted for 8 days, rather than transient UO, was

employed in that study. Our data revealed that transient UO,

which lasted for only 24 hours, triggered a robust and long-lasting

HIF-2a (rather than HIF-1a) accumulation, which continued for

over a week and peaked on day 2 after release of obstruction.

Previous sublethal hypoxia induces tolerance to subsequent

hypoxic/ischemic insults in a process known as ischemic

preconditioning or hypoxic preconditioning, in which HIF-1 has

been well confirmed as a key transcription protein [32,39]. HIF-2

has seldom been reported to engage as a participant in hypoxic

preconditioning. Our results demonstrate that prior transient UO,

as an atypical kind of hypoxic preconditioning, also features

activation of an atypical molecular mediator.

To gain further insight into the role of HIFs in UO-related renal

protection and to establish whether this relation is causal, we used

a well established model of unilateral renal I/R in mice with

conditional knockout of HIF-a isoform(s). As was reported, prior

transient UO resulted in profound protection against ischemic

injury after release of obstruction in WT mice. Inactivation of

HIF-2a, rather than HIF-1a, greatly neutralized the renoprotec-

tive effects of UO, as indicated by higher creatinine level, severer

histological damage and leukocyte infiltration, much more

apoptotic cells, as compared with those in WT and HIF-1a2/2

mice. HIF-1a/2a double-knockout mice manifested quite similar

degree of injury to HIF-2a2/2 mice, showing that there wasn’t a

compensatory effect between HIF-1a and HIF-2a in this setting.

But why is HIF-2a, rather than HIF-1a up-regulated and

playing a key role in this setting? The tPO2 measurements have

shown that UO decreases the renal tissue oxygen level from

approximately 30 mmHg to 20 mmHg. So, unlike ischemic

preconditioning, which involves total cessation of renal blood

flow, UO is a kind of ‘‘long-lasting but mild’’ hypoxic

preconditioning. It has been reported [40] that HIF-2a stabiliza-

tion can be detected in well-vascularized regions and at higher O2

tensions (5%, mild hypoxia) than HIF-1a (below 1%, extreme

hypoxia). The temporal patterns of the two HIF-a subunit

accumulation are also different. HIF-1a is stabilized acutely,

whereas HIF-2a protein gradually accumulates and remains

stabilized over longer periods of hypoxia, governing prolonged

hypoxic gene activation. While HIF-1a and HIF-2a share

significant sequence homology, have similar domain architecture

and undergo the same proteolytic regulation [41], this study in the

context of UO-mediated renoprotection again demonstrates

significant differences in the biological characteristics of these

two isoforms.

Our results also demonstrated that without UO precondition-

ing, HIF-1a or 2a knockout didn’t lead to altered ischemic renal

damage. This was inconsistent with previous observations which

demonstrated that a genetic reduction in HIF-1a or HIF-2a led to

severer injury [42,43]. This may be explained by the different gene

targeting techniques that were employed. In the previous reports,

a systematic knockdown of target genes by standard gene targeting

in ES cells led to heterozygous deficiency for HIF-1a or HIF-2a
throughout ontogeny, which may lead to developmental defect,

especially in vasculature. However, in this study the gene

inactivation was induced by pIpC injection in adult animals, and

Figure 7. Effect of HIF-1a/2a inactivation on postobstructive and postischemic expression of HSP-27. Western blot analysis of HSP-27 in
left kidneys of mice subjected to non-UO sham operation (A) or 24 h UO followed by recanalization (2 days) (B). Additional mice were subjected to
non-UO procedures, followed by 25 min of left renal ischemia and 6 h of reperfusion (C), or UO 2 d, followed by the same IR procedures (D).
Codetection of b-actin was performed to assess equal loading. Protein bands were quantified, and the relative density of protein bands obtained
from sham-operated WT mice was arbitrarily defined as 1. Graph showed data acquired from 4 independent experiments for each mouse strain. *,
p,0.05 compared with WT mice.
doi:10.1371/journal.pone.0029876.g007
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the extent of target gene deletion by Mx-Cre was approximately

50,60% in the kidney, which comprised a relatively small

proportion of interferon-responsive cells [44]. So, although this

technique led to homozygous deficiency for target genes in

interferon-responsive cells, there were still quite a proportion of

renal cells with intact target genes.

HSP-27 functions as an anti-apoptotic molecule and prevents

cell death by a wide variety of agents that cause apoptosis [45].

HSP-27 also reduces the inflammatory responses by decreasing

production of cytokines and adhesion molecules, reducing

leukocyte-endothelial interactions, and mitigating congestion in

the outer medulla [3]. Selective renal overexpression of human

HSP-27 reduces renal IRI [46]. So, HSP-27 plays a role in the

protection against IRI [47,48]. However, expression of HSP-27 is

only transiently induced in response to the stress events, after

which expression levels fall drastically, thus allowing only for

overexpression when its cytoprotective properties are required.

Park et al. reported that UO induced an increase of HSP-27

expression [3]. But why HSP-27 was up-regulated after UO has

not been clarified. HSP-27 was reported to be regulated by

hypoxic signaling through HIF-1 activation in the retina and to

protect the retina from ischemic injury [49]. Our results are

significant, not only because we reconfirmed the relation between

HIF and HSP-27 expression in another organ, but also because it

was the first time HIF-2 activation was demonstrated to be also

associated with HSP-27 up-regulation. Although HSP-27 may

take a big part in UO-mediated renoprotection, it is unlikely that

HSP-27 alone is responsible for all the protective effects. Further

studies should clarify whether HIF-regulated hypoxia responsive

genes besides HSP-27 are increased in the kidney in response to

acute urinary tract obstruction, and whether they are vital to the

prevention of renal IRI.

As was reported, HIF-2a was not expressed in renal tubular

cells, but in peritubular endothelial cells and fibroblasts [13,14].

Then how does HIF-2a protect against renal tubular damage?

Although the renal tubular epithelial cell injury that occurs

during an ischemic event undoubtedly plays a key role in ischemic

renal injury, there is growing evidence that renal vascular

endothelial injury and dysfunction are even more important

factors in initiating and extending renal tubular epithelial injury

[50,51]. Lack of adequate renal cortical-medullary reperfusion

may be more deleterious than the classical ‘‘reperfusion injury’’

secondary to oxygen and nitrogenous free radical formation

[52,53]. Medullary endothelial cell injury and dysfunction may

also contribute to the inflammatory response, because endothelial

cells in the medullary region, but not the cortex, express surface

markers important in lymphocyte activation [54].

Measurement of blood flow changes in the microcirculation

using LDF has well proved to be a reliable method for the

assessment of endothelial function [55,56]. So, to explore the

possible influence of UO upon postischemic renal endothelial

function and the role of HIF-2a in this setting as well, we used

LDF to evaluate the renal microcirculatory recovery after I/R

insult. In WT mice with UO preconditioning, blood flow in renal

outer medulla approached the pre-ischemic level much more

rapidly than those without UO pretreatment. However, inactiva-

tion of HIF-2a totally negated the effects of UO preconditioning,

indicating that activation of HIF-2a by UO reduced renal IR

injury via preservation of vital vascular functions and medullar

blood flow.

Based on initial reports showing high levels of expression of

HIF-2a mRNA in endothelial cells and some highly vascularized

tissues, HIF-2a was also referred to as endothelial PAS domain

protein 1 (EPAS1) [57]. HIF-2a is actually very important for

hypoxic adaptation of the vasculature, which is supported by the

observations that HIF-2a has a stronger transactivation activity

than HIF-1a on the promotor of vascular endothelial growth

factor (VEGF) [58,59], and overexpression of HIF-2a, but not

HIF-1a, was found to enhance expression of the endothelial

tyrosine kinase receptor Tie2 [57,60]. We have correlated HIF-2a
activation with up-regulated HSP-27. In fact, an increase in the

HSP-27 levels in infected endothelial cells has been demonstrated

to correlate well with their resistance to apoptosis under

reoxygenation [61].

Previous report [43] using systematic but heterozygous HIF-2a
knockdown mice has demonstrated that in the setting of renal IR,

there was a specific role of HIF-2a in endothelial cells, but not in

inflammatory cells. The authors indicated that HIF-2a knockdown

mice were more susceptible to renal IRI, because of peritubular

capillary loss and decreased expression of antioxidative stress genes

Figure 8. Effect of UO on postischemic recovery of intra-renal
microvascular blood flow in WT and HIF-2a2/2 mice. WT (A) or
HIF-2a2/2 mice (B) were subjected to either non-UO sham surgery or
left UO, before which baseline renal blood flow was obtained by
monitoring the microvascular blood flow in the right kidney. 2 days
after release of obstruction, the left kidney was subjected to 25 min of
ischemia immediately after right nephrectomy was performed. After the
initiation of reperfusion, the blood flow in the left kidney was measured
at the indicated time points, and the mean value versus the baseline
value was defined as relative renal perfusion. Graph showed data
acquired from 4–6 independent experiments for each mouse strain at
each time point. *, p,0.05 between UO-IR and sham-IR groups.
doi:10.1371/journal.pone.0029876.g008
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in endothelial cells. In our study, since interferon expression can be

induced in endothelial cells[62], and thus floxed target genes can

be inactivated homozygously in renal endothelial cells in adults by

the Mx-Cre/loxP recombination system [63] without damaging

vascular development, these results give further evidence of the

crucial role of HIF-2a in the protection against endothelial

dysfunction in acute ischemic renal injury.

These results have significant research implications. Since 24 h

of UO leads to HIF-2a stabilization without the induction of HIF-

1a, UO can be widely employed in the research work concerning

the role of HIF-2a in various renal diseases besides ischemic acute

renal failure, for example, nephrotoxic acute kidney injury,

radiocontrast nephropathy, and acute glomerulonephritis. Our

findings may also be of importance to clinical practice. Although

UO is not a feasible way to reduce clinical renal IRI, the strong

protective effects of UO can be obtained by pharmaceutical

activation of HIF-2a. And since the two HIFs can be stabilized

under different conditions and mediate different adaptive

responses to hypoxia, it might be a viable therapeutic option that

exogenous influences could be developed to mimic both processes

and create a synergistic effect in attenuating renal IRI.
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