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Abstract

The characterization of pharmacokinetic and biodistribution profiles is an essential step in the development process of new
candidate drugs or imaging agents. Simultaneously, the assessment of organ function related to the uptake and clearance
of drugs is of great importance. To this end, we demonstrate an imaging platform capable of high-rate characterization of
the dynamics of fluorescent agents in multiple organs using multispectral optoacoustic tomography (MSOT). A spatial
resolution of approximately 150 mm through mouse cross-sections allowed us to image blood vessels, the kidneys, the liver
and the gall bladder. In particular, MSOT was employed to characterize the removal of indocyanine green from the systemic
circulation and its time-resolved uptake in the liver and gallbladder. Furthermore, it was possible to track the uptake of a
carboxylate dye in separate regions of the kidneys. The results demonstrate the acquisition of agent concentration metrics
at rates of 10 samples per second at a single wavelength and 17 s per multispectral sample with 10 signal averages at each
of 5 wavelengths. Overall, such imaging performance introduces previously undocumented capabilities of fast, high
resolution in vivo imaging of the fate of optical agents for drug discovery and basic biological research.
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Introduction

Macroscopic near-infrared fluorescence (NIRF) imaging has

been widely applied to studies of biodistribution of various optical

agents in basic biological and pharmaceutical research [1],

enabled by the low tissue absorption of light in the near-infrared

(NIR) wavelength region and the sensitivity of fluorescence

detection. Fluorescent agents vary from fluorescent proteins [2]

through a multitude of targeted agents [3], to enzyme-activatable

fluorescent probes [4,5]. However, macroscopic NIRF imaging

has limitations. Simplistic epi-illumination implementations pro-

duce surface-weighted images that do not accurately reveal deep-

tissue activity [6]. Tomographic implementations produce quan-

titative, volumetric results, but at the expense of image acquisition

times in the range of tens of minutes, unsuitable for capturing fast-

changing signals [7]. In any case, the spatial resolution of purely

optical methods degrades rapidly with imaging depth: whole-

mouse optical imaging generally results in resolutions in the order

of millimeters [6].

It is the high scattering of light in tissues that degrades spatial

resolutions in optical imaging at increasing depths. This barrier

can, however, be overcome by adding ultrasound detection to

optical excitation in exploitation of the photoacoustic effect; that is,

using optoacoustic imaging [8,9]. Here, diffuse light heats local

absorbers in the tissue, causing thermal expansion and giving rise

to pressure waves, which can be detected by ultrasound

transducers on the animal’s skin surface. Suitable image

reconstruction techniques then result in a spatial map of the

absorbed energy [10]. By parallel detection using a multi-element

ultrasound transducer array [11,12,13], real-time imaging capa-

bilities as known from ultrasound imaging can be achieved,

allowing the fast imaging we present here.

By using multiple excitation wavelengths, we resolve specific

sources of absorption, whether tissue-intrinsic, like hemoglobin, or

exogenous imaging agents (e.g. fluorescent dyes), by means of

uniquely identifying their spectral absorption signatures [14].

Multispectral optoacoustic tomography (MSOT) has previously

been applied to specific imaging of fluorescent proteins in model

organisms [15], dye-enhanced kidney vascularization in mice [11]

and targeted fluorescent agents and blood oxygenation in mouse

brain tumors [16]. In addition to the detection of fluorescent dyes,

optoacoustic techniques are uniquely capable of visualizing other

light-absorbing materials, in particular those with absorption in

the near-infrared, for example, gold nanorods [13] or carbon

nanotubes [17].

We present MSOT as an in vivo imaging tool in studies of

pharmacokinetics and biodistribution. To this end we imaged, in

mice, with high temporal resolution, the disappearance rate of the

near-infrared dye indocyanine green (ICG) from the circulation

and its time-resolved uptake in the liver and gallbladder.

Additionally, to demonstrate imaging of renal clearance, we

visualized the uptake of a carboxylated fluorescent dye in different
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regions of the kidney. We extracted concentration-based metrics

from our imaging data that showed the time-resolved signal curves

in particular regions of interest.

Materials and Methods

Ethics statement
Procedures involving animals and their care were conducted in

conformity with institutional guidelines and with approval from

the Government of Upper Bavaria (agreement number 55.2-1-54-

2531-64-08).

Imaging Agents
ICG (Pulsion Medical Systems, Germany) was selected due to its

well-studied characteristics. It is an FDA approved, water-soluble,

inert anionic tricarbocyanine dye that has been established as a

tool to investigate a variety of different clinical endpoints such as

hepatic function [18]. IRDye800-CW (Li-Cor) carboxylate is a

near infrared dye that is water soluble and is rapidly excreted,

unmetabolized, to a large extent by the kidneys [19]. The

absorption spectra of the utilized agents (Fig. 1) show peaks in the

near-infrared wavelength range.

40 nmol ICG and 20 nmol IRDye800-CW were diluted in

saline and injected intravenously in a total volume of 100 ml to

achieve final blood concentrations of approximately 20 mM and

10 mM, respectively.

Experimental MSOT imaging system
We employed an experimental MSOT setup that has been

described elsewhere in detail [11,13]. It is capable of acquiring,

reconstructing and displaying cross-sectional images through mice

at a rate of 10 frames-per-second. Excitation in the near-infrared

(700 nm–950 nm) is provided by a tunable optical parametric

oscillator (OPO) pumped by an Nd:YAG laser (Opotek Inc.,

Carlsbad, CA). The laser pulse duration is below 10 ns and the

pulse repetition frequency is 10 Hz. Light is coupled into a custom

fiber bundle (CeramOptic Industries, Inc., East Longmeadow,

MA) that is divided into 10 output arms, which serve to illuminate

the mouse from multiple angles on the imaging plane. A custom-

made piezocomposite ultrasonic transducer array (Imasonic SAS,

Voray, France) with 64 elements and a central frequency of

5 MHz is used for detection. The elements are arranged in one

row forming a spherical concave array covering 172u with a

mechanical focal distance of 4 cm. The dimensions of the

transducer array allow it to be considered as being cylindrically

focused on one cross-sectional slice. A custom-built acquisition

system with a total of 64 channels, a sampling rate of 40 million

samples per second and 12 bit digital resolution records the time-

resolved optoacoustic signals. Both the transducer array and fiber

outputs are submerged in a water bath. Mice are placed in a

horizontal position in a holder with a thin polyethylene membrane

to prevent direct contact with water and allow acoustic coupling

between mouse and transducer array. The laser beams and

ultrasonic transducer array are in fixed position for all data

acquisitions, whereas the mouse can be translated through the

imaging plane using a linear stage (IAI Industrieroboter GmbH,

Germany) to enable imaging of multiple transverse slices.

Image reconstruction
Images were reconstructed using either a backprojection

formula [8], which is particularly useful for fast reconstructions

displayed on the imaging system during measurements, or a

model-based approach [10] for offline analysis.

Spectral unmixing
After image reconstruction, linear spectral unmixing was

applied to resolve signals from ICG [20]. For each pixel in the

image, the method fits the total measured optoacoustic spectrum

to the known absorption spectra of the dye and oxy- and

deoxyhemoglobin, which are expected to be the dominant

absorbers in biological tissue. The fitting is performed using

least-squares on the set of linear equations resulting from the

multispectral measurements (1 equation per wavelength mea-

sured). The initial pressure distribution that underlies optoacoustic

images is proportional to local light fluence in addition to the

absorption properties, i.e.:

p0 xð Þ!w xð Þma xð Þ,

where p0 denotes the initial pressure at a point in space x, Q is the

fluence in Jm22 and ma is the absorption coefficient in cm21. The

equation used for spectral unmixing, for each pixel, is therefore of

the form:

wma lið Þ~w
XN

j~1

ej lið Þcj ,

where li is the wavelength, Qma is the optoacoustic response for

that pixel, ej is the wavelength-dependent absorption coefficient

per concentration for the absorber represented by the spectral

component j, and cj is the local concentration of that absorber. The

unknown quantities solved for by least-squares are then Qcj for

j = 1..N. Note that the images must be corrected for possible

wavelength-dependent fluctuations in laser excitation energy, so

that Q is independent of wavelength. Additionally, the wavelength-

dependence of the fluence due to the absorption spectrum of the

tissue should either be corrected for or assumed to be negligible if

sufficiently near to the skin surface.

An alternative approach to spectral decomposition in MSOT is

blind unmixing [21]. In this work, Principal Component Analysis

(PCA) was used to track the injected IRdye800-CW in the kidneys.

Figure 1. Absorption spectra of fluorescent agents ICG with
albumin (green) and IRDye800-CW as measured in a spec-
trometer.
doi:10.1371/journal.pone.0030491.g001
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PCA identifies the directions in multivariate data that represent

maximum variance. A transform to these newly found basis vectors

allows identification of different spectral signatures in the dataset.

An advantage of this approach is that it does not require any a priori

information regarding the absorbers present in the sample.

Ratio normalization
In order to make a meaningful comparison of agent

concentration across measurements spanning over a longer time

period, we normalize the results from the unmixing procedure by

the total signal strength per pixel, i.e.:

wcagent

w
PN

j~1

cj

~
cagent

PN

j~1

cj

:

The result is a measure of the relative agent concentration per

pixel, independent of differences in signal because of fluence

variations due to attenuation inside the tissue or variations in laser

energy over time.

Fast MSOT animal imaging
We used a total of 10 adult CD1 mice, which were

anaesthetized with 2% Isofluorane throughout the experiments.

We chose 5 excitation wavelengths per experiment based on the

maxima and minima in the absorption spectra of the imaging

agents and tissue absorbers (ICG: 700 nm, 730 nm, 760 nm,

800 nm, 850 nm; CW800-COOH: 700 nm, 730 nm, 760 nm,

774 nm, 850 nm).

MSOT imaging was performed according to the following

experimental protocol:

N Multispectral imaging prior to injection

N Imaging at peak agent absorption wavelength during injection

N Multispectral imaging post injection continuously for 20–

30 minutes

Multispectral imaging was performed with 50 signal averages

(laser pulses) per wavelength for liver and kidney imaging and 10

signal averages for circulation imaging to allow a more finely

resolved time axis during the fast decay. We injected doses of

40 nmol for ICG and 20 nmol for CW800-COOH. The imaged

slices were: a region in the either the lower abdomen or neck with

visible blood vessels for the characterization of ICG in the

circulation (3 mice), the liver at a slice where the gallbladder is also

visible (3 mice), and a slice through the kidneys (4 mice).

Validation by fluorescence cryoslicing
For validation of agent biodistribution, mice (total of 4) were

injected in the same way as for the MSOT experiments and then

euthanized by cervical dislocation at the relevant time points. The

animals were then embedded in an optimal cutting temperature

compound (Sakura Finetek Europe B. V., Zoeterwonde, NL) and

frozen to 280uC. We then performed ex vivo validation using

fluorescence cryoslicing imaging (FCSI) [22]. Similarly to the

MSOT imaging geometry, FCSI sliced the frozen mice in the axial

dimension, at a 500 mm micron pitch, and recorded color and

fluorescence images from each slice. The FCSI system is based on

a cryotome fitted with selectable excitation and emission filters and

CCD-based detection. Fluorescence images were captured using a

785 nm longpass emission filter to resolve the biodistribution of

the injected ICG and IRDye800-CW.

Results

Circulating ICG
We performed in vivo imaging of a slice through the lower

abdomen to characterize the circulation kinetics of ICG (Fig. 2).

Several small blood vessels are visible in the MSOT images

(Fig. 2a)—we selected a region of interest (ROI) corresponding to

the ischiatic vein. After linear spectral unmixing for the absorption

of ICG and subsequent ratio normalization, we plotted the mean

value of the resulting signal amplitude inside the ROI (Fig. 2b).

The time between two complete multispectral measurements

(black dots) is approximately 17 s in this case. By a simple

exponential decay fitting for the ICG disappearance rate (dashed

Figure 2. Imaging ICG in the circulation. a) Optoacoustic image of cross-sectional slice at 800 nm excitation (grayscale) and MSOT image of ICG
signal (green) for a portion of the same slice. These images correspond to the first multispectral data point after injection. The selected ROI is outlined
in red. b) Plot of the mean ICG signal value inside the ROI for each multispectral data point (black dots) and corresponding exponential decay fit
(dashed line).
doi:10.1371/journal.pone.0030491.g002
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line in Fig. 2b) we obtained a value for the circulation half-life

measured in the selected blood vessel of 1 minute 32 seconds.

Liver and gallbladder uptake of ICG
ICG injected systemically binds to plasma proteins and is

removed from the circulation by the liver. We imaged this uptake

in the liver using two techniques: before, during and directly after

injection we continuously acquired images at the full rate of 10

frames per second at 800 nm (near the absorption peak of ICG) to

capture the initial rapid change in signal levels with maximum

time resolution. Following this, we imaged multispectrally over a

longer period of time (approximately 30 minutes) to capture

further changes in the specific ICG signal. To extract a metric of

relative ICG concentration, we selected two ROIs, one in the liver

and one in the gallbladder (see outlines in Fig. 3a). Analysis of the

liver ROI during and directly after injection yields a clear picture:

the signal increases over its original level with increasing agent

concentration (Fig. 3b). Note that the plotted data shows strong

oscillations. These almost periodic spikes in the data correspond

exactly to the breathing cycle of the mouse as verified by analysis

of the captured image sequence. As the sampling rate is much

higher than the breathing rate in this case, it is possible to smooth

the data by neglecting those images where the mouse moves away

from its normal position. For the multispectral data, the relative

concentration measures obtained using linear spectral unmixing

and ratio normalization show differing signal curves for the liver

and gallbladder as their respective functions were visualized over a

period of approximately 30 mins (Fig. 3d).

Renal clearance of CW800-COOH
Injected IRDye800-CW carboxylate is rapidly filtered by the

kidneys. PCA unmixing revealed the biodistribution of the injected

agent over time as shown in the green overlays in Fig. 4a. The

grayscale background in Fig. 4a represents the component with an

absorption spectrum corresponding to oxygenated hemoglobin,

showing vascular structures. The imaged slice shows both kidneys.

A representative cryosection with annotations is provided in

Fig. 4b, a fluorescent overlay indicates the biodistribution of the

dye 15 minutes after injection to validate the images produced by

MSOT. Additionally, to validate the changes in distribution seen

over time in the MSOT images, we compared the kidney

fluorescence distribution in mice sacrificed after approximately

2 minutes 30 seconds and 15 minutes respectively (Fig. 4c). As in

the MSOT images, the IRDye800-CW signal moves inwards

Figure 3. Liver and gallbladder uptake of ICG. a) Optoacoustic images through the liver. Grayscale image (left) showing anatomy and ROIs for
liver (red) and gallbladder (yellow) analysis. b) FCSI image: fluorescence from ICG overlaid in green on color photograph of cryosection of a mouse
sacrificed 10 minutes after injection, showing signal in the liver and gallbladder c) Plot of the signal increase in the liver ROI at 800 nm during single
wavelength imaging of the ICG injection. Oscillations are mainly due to breathing motion. The scale is normalized to the maximum value. d) Specific
(unmixed) signal from ICG after injection in the liver (black) and gallbladder (blue) ROIs. Each curve is normalized to its own maximum value.
doi:10.1371/journal.pone.0030491.g003
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towards the ureter over time. Note that the temporal resolution

associated with sacrificing animals so soon after injection is not

sufficient for more finely resolved ex vivo validation. This is because

of the challenges involved in quickly halting all relevant

physiological action, such as the heartbeat.

The images indicate different dynamics in different areas of the

kidneys, where two regions of interest (ROI) have been highlighted

in the last time point shown. The region corresponding to the

renal cortex (Fig. 4a, orange), where filtration occurs, shows a fast

pick-up in the signal curve after injection (Fig. 4d). Individual

multispectral measurements acquired with a rate of approximately

2 per minute are shown as dots while the solid line represents a fit

to an analytical function. The second ROI marked in black is

located in the renal pelvis, where elimination towards the ureter

takes place. Black dots and the respective fit (Fig. 4d) indicate a

delayed and slower signal pick-up. The combination of these two

curves clearly suggest that two dependent processes are being

imaged, firstly the filtration of agent in the cortex and subsequently

the excretion towards the ureter.

Discussion

We have demonstrated MSOT as a tool for fast pharmacoki-

netics and biodistribution imaging of optical agents. The use of

fluorescence in biomedical research is ubiquitous, ranging from

fluorescent proteins through targeted agents to enzyme-activatable

probes. Epi-illumination NIRF imaging is commonly used for

biodistribution studies in vivo. However, such methods produce

surface-weighted images where the high degree of photon

scattering in tissue obstructs the true agent distribution, particu-

larly in deeper organs. Tomographic approaches like fluorescence

molecular tomography (FMT) solve this problem by producing

quantitative 3D images in mice, but serial data collection results in

long acquisition times of several tens of minutes per image [7]. In

our implementation of MSOT, as demonstrated in the presented

data, we are able to capture single wavelength images at 10

frames/s and multispectral data sets within seconds: in our

experiment measuring ICG in the circulation, 1 s per wavelength

was required for acquisition using 10 signal averages and

approximately 3 s per wavelength change. This time could be

further reduced: the OPO wavelength is tuned by mechanically

scanning a crystal—faster scanning would reduce the acquisition

time. The amount of signal averaging to use is a matter for further

investigation. In our studies, signal averaging is primarily used to

avoid excessive waiting times for wavelength changes. Ideally, one

multispectral data point would be captured within such a short

time that significant changes in agent concentration could not

occur. Thereafter, multiple points could be binned or smoothed

together to increase the detection sensitivity to the required level.

A further application area for MSOT in biodistribution studies

could be the imaging of non-fluorescent photo-absorbing materi-

als, in particular those with absorption in the near-infrared, for

example, gold nanorods [13] or carbon nanotubes [17].

The experimental MSOT implementation presented here does

have limitations. Probably the most significant of these involves the

2-dimensional nature of the system—it is capable of imaging only

1 transverse slice at a time. While the animal holder can be

translated to a different slice position automatically for imaging of

different regions, doing this during experiments sacrifices temporal

resolution in cases where more than one organ should be imaged

simultaneously. Future development work in small animal MSOT

imaging systems will aim to image a larger volume at a time,

Figure 4. Kidney imaging. a) Time series of images visualizing the biodistribution of IRdye800 in green on logarithmic scale overlaid on the
vasculature. Both channels are the result of spectral unmixing. b) Cryoslice image after approximately 15 minutes with overlaid fluorescence as a
verification of the MSOT results. c) A comparison of fluorescence distribution in the kidneys of mice sacrificed after approximately 2 minutes
30 seconds after injection and 15 minutes after injection. Note the changes in distribution similar to the time series shown in a). d) Temporal
evolution of signal (each normalized to their smoothed maxima) in the regions of interest highlighted in the rightmost image, orange showing a
region in the renal cortex that displays early and steep signal pickup and black indicating a region in the renal pelvis where probe accumulation is
delayed and has a smoother profile. Time points of the images in a) are marked using vertical lines.
doi:10.1371/journal.pone.0030491.g004
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potentially solving this problem using more detector elements in a

3-dimensional arrangement. Regarding the use of the technique in

larger animals, the primary limitation is the penetration depth of

light.

One of the critical steps in the drug discovery process is the

safety and toxicity evaluation of novel pharmaceuticals. As the

major metabolic and excretory organs, liver and kidneys are of

much concern in these trials. It is therefore highly important to

develop a fast, noninvasive tool to assess liver and kidney function.

MSOT can be used to not only determine the biodistribution of a

multitude of injected agents, but it can be used in conjunction with

organ-specific dyes such as ICG and IRDye800-CW to acquire a

general assessment of organ function. Comparisons between the

kinetics of ICG/IRDye800-CW clearance before and after drug

treatment, for example, could be used to quickly assess organ

function and drug-related acute toxicity. Clinical applications of

high speed MSOT imaging are realistic: it is worth noting, for

example, that the characterization measurements of ICG in the

circulation could be performed on blood vessels in humans with

minimal additional effort.
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