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Abstract

Although Inflammatory Breast Cancer (IBC) is a rare and an aggressive type of locally advanced breast cancer with a
generally worst prognosis, little work has been done in identifying the status of non-genomic signaling in the invasiveness
of IBC. The present study was performed to explore the status of non-genomic signaling as affected by various estrogenic
and anti-estrogenic agents in IBC cell lines SUM149 and SUM190. We have identified the presence of estrogen receptor a
(ERa) variant, ERa36 in SUM149 and SUM190 cells. This variant as well as ERb was present in a substantial concentration in
IBC cells. The treatment with estradiol (E2), anti-estrogenic agents 4-hydroxytamoxifen and ICI 182780, ERb specific ligand
DPN and GPR30 agonist G1 led to a rapid activation of p-ERK1/2, suggesting the involvement of ERa36, ERb and GPR30 in
the non-genomic signaling pathway in these cells. We also found a substantial increase in the cell migration and
invasiveness of SUM149 cells upon the treatment with these ligands. Both basal and ligand-induced migration and
invasiveness of SUM149 cells were drastically reduced in the presence of MEK inhibitor U0126, implicating that the
phosphorylation of ERK1/2 by MEK is involved in the observed motility and invasiveness of IBC cells. We also provide
evidence for the upregulation of p-ERK1/2 through immunostaining in IBC patient samples. These findings suggest a role of
non-genomic signaling through the activation of p-ERK1/2 in the hormonal dependence of IBC by a combination of
estrogen receptors. These findings only explain the failure of traditional anti-estrogen therapies in ER-positive IBC which
induces the non-genomic signaling, but also opens newer avenues for design of modified therapies targeting these
estrogen receptors.
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Introduction

Inflammatory Breast Cancer (IBC) is a rare and aggressive form

of locally advanced breast cancer affecting approximately 1–6% of

breast cancer patients in the United States [1]. It is reported by the

National Cancer Institute’s Surveillance, Epidemiology, and End

Results (SEER) that while the incidence of normal breast cancer

has been steadily decreasing, the incidence of IBC continues to be

increasing. SEER further reports that the overall survival rate of

IBC patients is significantly lower than non-IBC stage III breast

cancer [2]. The aggressive characteristic of IBC enables its

malignant cells to invade the dermal lymphatics of the breast,

causing the accumulation of fluids within lymphatic vessels and the

subsequent edematous red swelling of the breast [3]. By its ability

to metastasize rapidly, most IBC tumors are characterized as stage

IIIB at the time of detection [4]. These characteristics coupled

with the relatively poor prognosis makes IBC one of the most

deadly carcinomas.

Since the term IBC was coined by Lee and Tannebaum in

1924, there has been an extensive search for an effective way to

treat this disease. Although many groups have reported that the

prognosis of the disease can be improved by multimodality

treatment, improvement in the overall survival rate is still poor

due to the lack of a major molecular signature [5–7]. Several

studies have found that an alteration in the levels of molecules

such as RhoC, WISP-3 and Caveolin contribute significantly to

IBC progression, but an IBC-specific therapy still remains elusive

[8–11].

IBC is predominantly negative for estrogen receptor a (ERa)

and progesterone receptor (PR) and positive for human epidermal

growth factor receptor 2 (HER2) [12]. The absence of ERa makes

it difficult to treat IBC with traditional antiestrogens such as

tamoxifen. In addition to the wild-type ERa, several groups have

provided evidence for the existence of ERa splice variants. Of the

splice variants, ERa36 has been relatively well studied. ERa36 is

translated from a transcript initiated by a previously unidentified

promoter in the first intron of ERa gene and lacks both AF-1 and

AF-2 transactivation domains present in ERa [13]. ERa36 was

expressed in both ERa positive and negative breast carcinomas

and its expression was reduced with the presence of ERa [14].
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Furthermore, ERa36 has been shown to be capable of supporting

the non-genomic signaling pathways such as ERK and Akt in

endometrial carcinomas and HEK293 cells [15,16]. The search

for an alternate estrogen receptor led to an identification of a novel

G-protein coupled receptor, GPR30 that localized in the plasma

membrane, the cytoplasm and the endoplasmic reticulum [17–19].

GPR30 is responsible for its rapid activation of non-genomic

signaling pathway and is involved in the biological processes

including migration, proliferation, adhesion, gene regulation and

invasion of the cancer cells [18–21]. Interestingly, the classical

anti-estrogens such as tamoxifen and ICI 182780 are known to act

as agonists for ERa36 and GPR30. Therefore, these alternate

estrogen receptors are considered to contribute to the tamoxifen

resistance in a variety of tumors [22,23].

Stimulation of the estrogenic non-genomic signaling compo-

nents such as PI3K, Akt and ERK contributes to alterations in

the downstream effectors in a cell-type-specific manner and

causes rapid physiological responses in target tissues [24]. In

spite of the immense importance of non-genomic signaling

pathway in other tumors, little research has been done on its

role in IBC. In the present study, we discovered the presence of

ERa36 and ERb in IBC cells and also found an evidence for

the possible contribution of these variants in the stimulation of

p-ERK1/2 in response to treatment with agonists and

antagonists. Furthermore, we found that this stimulation of p-

ERK1/2 leaded to an enhanced migration and invasiveness of

IBC cells.

Results

Expression status of estrogen receptors in SUM149 and
SUM190 cells

The full-length ERa was negative in the IBC cell lines SUM149

and SUM190 (Fig. 1A), while ERa alternative splicing variant

ERa36 was substantially expressed in the both cell lines (Fig. 1A).

ERb was detectable in both SUM149 and SUM190 cells. As

expected, MDA-MB-231 and SKBR3 cells were positive and

negative for ERb expression, respectively. GPR30 were also

detected in both SUM149 and SUM190 as well as in GPR30-

positive cell lines MCF-7 and MDA-MB-468 (Fig.1A). Immuno-

flourescent labeling followed by visualization through scanning

confocal microscopy revealed that while ERa36 was predomi-

nantly localized in the cytoplasmic compartment in both SUM149

and SUM190 cells, ERb was detected with low expression levels in

the both cytoplasm and nucleus of these cell lines (Fig. 1B). GPR30

was present in both the cytoplasmic and nuclear compartment in

these cells.

Rapid activation of p-ERK1/2 by estrogen receptor
ligands in SUM149 and SUM190 cells

The localization of the estrogen receptors in the cytoplasmic

compartment presented a possibility of the involvement of non-

genomic signaling in these cells. To investigate this possibility,

SUM149 and SUM190 cells were treated with E2 (10 nM) after

maintained in 5% DCC medium for 48 hrs. We noticed a rapid

Figure 1. Estrogen receptor expression profiling in IBC cell lines SUM149 and SUM190. (A) Western blot analysis of ERa36, ERb and GPR30
(B) Immunofluorescent localization of ERa36, ERb and GPR30. Estrogen receptors (green) and DNA (blue) in these cells.
doi:10.1371/journal.pone.0030725.g001
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activation of p-ERK1/2 within 5 min of post E2 treatment in

SUM149 and SUM190 cells (Fig. 2A). However, the phosphor-

ylation of the other MAPKs JNK and p38 were hardly activated

by E2 treatment in SUM149 cells (supplementary Fig. S1). In

addition, Akt phosphorylation did not increased upon E2

treatment. Interestingly, we also found a rapid activation of p-

ERK1/2 in these cells upon treatment with 10 nM of ERb specific

ligand DPN and GPR30-specific agonist G1 (Fig. 2B, C).

However, there was no p-ERK1/2 activation upon the treatment

with 10 nM of ERa-specific ligand PPT (Fig. 2B).

The anti-estrogens 4OHT and ICI are known to inhibit the

response of E2 mediated by ERa. Next, we tested whether these

anti-estrogens could compromise the activation of p-ERK1/2 by

E2 treatment. Interestingly, we found that the treatment of IBC

cells with OHT or ICI, alone or in combination with E2

potentiated the magnitude of p-ERK1/2 stimulation by E2 (10

nM) or DPN (10 nM) (Fig. 3A). In addition, all of E2, 4OHT or

DPN at 1027 to 1029M activated p-ERK1/2 (Fig. 3B). Pretreat-

ment of SUM149 cells with a specific MEK inhibitor U0126

blocked the activation of p-ERK1/2 in response to stimulation

with E2, 4OHT, DPN or G1 in SUM149 cells (Fig. 4A). Confocal

microscopic analysis showed that E2 treatment induced cytoskel-

etal reorganization in SUM149 cells as revealed by actin staining

(Fig. 4B), indicating that the cell mobility might be positively

regulated by E2, which could be effectively blocked by the

pretreatment of MEK inhibitor U0126.

Figure 2. Estrogen receptor ligands induced ERK1/2 phosphorylation in SUM149 and SUM190 cells. (A–C) The cells were maintained in
5% DCC for 48 hours and then treated with E2 (10 nM), DPN (10 nM) or G1 (10 nM) for the indicated times and then ERK1/2 phosphorylation was
analyzed by western blotting. The expression level of total ERK was analyzed for normalization. Error bars indicate standard deviation.
doi:10.1371/journal.pone.0030725.g002
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Activation of p-ERK1/2 promotes motility and
invasiveness of SUM149 cells

Downstream signaling through the activation of p-ERK1/2 has

been implicated in increasing the proliferation and motility in

numerous cancer cell models. Therefore, we initially investigated

whether E2 could stimulate IBC cell proliferation. The treatment

with E2 at different doses (0.1–10 nM) had no effect on the cell

proliferation (Supplementary Fig. S2). We then performed a

Boyden chamber migration and invasion assay. The results

showed that the treatment with E2 (10 nM) or/and 4OHT (100

nM) drastically increased the ability of the SUM149 cells to

migrate and invade into the lower side of the well through the

matrigel (Fig. 5A). To confirm if the observed increase in the

invasiveness of SUM149 cells is mediated by the ERK pathway,

we treated the cells with U0126 (20 mM) alone and in combination

with E2 (10 nM), and a substantial reduction in the migration and

invasion by inclusion of MEK inhibitor U0126 (Fig. 5B).

Activation of p-ERK1/2 in IBC tissues
To validate the proof-of-principle evidence of p-ERK1/2 in IBC

tumors, we examined immunohistochemically p-ERK1/2 expression

in the tissues from five IBC patients using anti-p-ERK1/2 antibody

(Fig. 6A). Three of five tissues displayed nuclear immunostaining of p-

ERK1/2 with strong (#1, #3) and the moderate (#2) intensity, and

two cases were negative or weak staining.

Discussion

ERa is known to be absent in many cases of IBC and its absence

is associated with poor clinical consequences [25–27]. In this

study, we did not detect ERa in both IBC cell line SUM149 and

SUM190, however, we identified the presence of ERa variant,

ERa36. ERa36 was found to be mainly present in plasma

membrane and cytoplasm and to be involved in estrogen non-

genomic signaling [15,28]. Subsequently, ERa36 has been

reported to be potentially involved in the non-genomic signaling

in several cancers including endometrial and gastric cancers

[16,29]. Recently, E2 treatment has been reported to enhance the

cell proliferation of ERa negative cell line, MDA-MB-231 and

MDA-MB-468 through EGFR/Src/ERK signaling pathway [30],

while the cell proliferation of SUM149 and SUM190 were not

affected by E2 treatment, indicating no stimulation of estrogen

mitogenic signaling. However, the migration and invasion were

promoted by E2 treatment in both SUM149 and SUM190 cells,

revealing that the non-genomic estrogen signaling might be

associated with the aggressive characteristic of IBC cells to invade

into lymph node.

The involvement of GPR30 in the non-genomic signaling is

found in both ER-positive and -negative breast cancer cells [18].

The activation of p-ERK1/2 by the treatment of GPR30-specific

agonist G1 also suggested the involvement of GPR30 in the non-

genomic signaling cascade in IBC cells. The fact that GPR30

Figure 3. Effect of traditional antiestrogen treatment in SUM149 and SUM190 cells. (A) Effect of 4-hyroxytamoxifen (4OHT) and ICI 182780
(ICI) on E2-induced ERK1/2 phosphorylation. The cells were maintained in 5% DCC for 48 hours and then pretreated with or without ICI (100 nM) or
4OHT (100 nM) for1 hour before the treatment with or without E2 (10 nM). ERK1/2 phosphorylation was analyzed by western blotting. (B) Effect of
dose dependent treatment of E2, 4OHT and DPN in SUM149 cells. The cells were maintained in 5% DCC for 48 hrs and then E2, 4OHT or DPN were
treated at three concentrations (1, 10, 100 nM) of for 5 min. Error bars indicate standard deviation.
doi:10.1371/journal.pone.0030725.g003
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localized in the nucleus than in the cytoplasm in the IBC cells

might suggest its lower contribution in activating non-genomic

signaling by the GPR30 pathway. However, it has been shown

that the nuclear localized GPR30 could also participate in the

non-genomic signaling [31]. Kang et al. have shown that G1 is

also able to stimulate ERa36 [23]. Furthermore, they have shown

that the non-genomic signaling pathway through p-ERK1/2 is

directly mediated by ERa36 but not by GPR30, because the

activities of GPR30 promoted by estrogen were due to its ability

to induce ERa36 expression. However, it remains possible that

both receptors can play a crucial role in the non-genomic

signaling pathway. Although we did not investigate whether G1

treatment upregulated the expression of ERa36 in these cells,

there might be another layer of cross-talk between the GPR30

and ERa36 rather than the regulation of ERa36 protein

expression by GPR30 as the primary mechanism of the noted

non-genomic signaling.

In the IBC cells, the involvement of ERs in the non-genomic

signaling seems to be more complicated due to the expression of

ERb in addition to the expression of ERa36 and GPR30. The

involvement of ERb in the non-genomic signaling pathway has

been shown in several cancer cell lines [32,33]. The rapid

activation of p-ERK1/2 by treatment with ERb-specific ligand

DPN in IBC cells suggested a possible contribution of ERb in

the non-genomic signaling. Recent data from the uterine

carcinosarcoma suggests a possible combined role of ERb and

GPR30 in the non-genomic signaling [34]. In addition, co-

ordinated regulation of GPR30 and ERb in endometrial cells

upon E2 treatment also leads to an increased expression of

GPR30 mRNA through ERb [35]. Taken together, these data

provide us the possibility that all of GPR30, ERa36 and ERb
might be involved in the non-genomic signaling through a net-

work of cross-talks among ERs in IBC cells. However, further

studies must investigate these possibilities.

We also found that 4OHT and the pure antiestrogen ICI also

failed to block the E2-mediated activation of p-ERK1/2 in IBC

cells. The antiestrogens including tamoxifen, 4OHT and ICI

have been reported to act as agonists for ERa36 and GPR30 in a

variety of cancer cells [15,36–39]. One of potential mechanisms

which causes antiestrogen-resistant in some breast cancers could

be the stimulation of anti-estrogen signaling pathways via ERa36

[15]. Since expression of ER/PR is generally lower in IBC cells

[25,40,41], such agents are not used for IBC therapeutics. Our

findings presented here raise a new possibility that ERa variant

ERa36, ERb and GPR30 might be potentially targeted for IBC

therapeutic. In this context, a recent study has shown that estriol

could act as a GPR30 antagonist by inhibiting the GPR30-

mediated activation of p-ERK1/2 in ERa-negative breast cancer

cells [42]. Search and discovery for the other antiestrogens and

antagonists including estriol to block non-genomic signaling

components through ERs could provide novel insights into the

therapeutic strategy for IBC patients. In addition, we have

shown IBC non-genomic signaling function including the

migration and the invasiveness of SUM149 cells via estrogen-

and antiestrogen-mediated p-ERK1/2 activation (Figure 6B).

Our present study suggests that in addition to ERs-targeted

agents, the drugs which specifically inhibit ERK1/2 might prove

to be effective in IBC, either as a single agent or in combination

with targeted therapeutics to evolve an effective anti-IBC

therapeutic strategy.

Materials and Methods

Cell culture and reagents
SUM149 and SUM190 were obtained from Asterand, plc

(Detroit, MI) and maintained in Ham-F-12 (1:1) medium

supplemented with 5% Fetal Bovine Serum (FBS), 5 mg/ml

insulin, 1 mg/ml hydrocortisone and 10 mM HEPES. SUM149

cell line is obtained from the primary ductal carcinoma of the

breast from a patient with a locally advanced disease while

SUM190 is obtained from poorly differentiated inflammatory

breast carcinoma. Breast cancer cell lines MDA-MB-231, MDA-

MB-468 and MCF-7 were purchased from the American Type

Culture Collection (Manassas, VA) and maintained in maintained

in DMEM-F12 (1:1) supplemented with 10% FBS. Estradiol (E2)

and 4-hydroxytamoxifen (4OHT) were purchased from Sigma-

Aldrich (St. Louis, MO). The ERa-selective agonist propyl-

pyrazole-triol (PPT), ERb-selective agonist diarylpropionitrile

(DPN) and the ER antagonist ICI 182780 (ICI) were purchased

from TOCRIS (Ellisville, MO). The GPR30-specific agonist G1

was purchased from Merck KGaA (Darmstadt, Germany). MEK

inhibitor U0126 was obtained from Promega (Madison, WI). The

following antibodies were used: ERa (Bethyl Laboratories,

Montgomery, TX); ERb (Oncogene Research Products, San

Diego, CA); phospho-p42/p44 ERK/MAPK (Cell Signaling,

Beverly, MA); ERK1, ERK2, (Santa Cruz Biotechnology, Santa

Cruz, CA); GPR30 (MBL International,Woburn,MA); hERa36

antibody was kind gift from Dr. ZhanoYi Wang (Creighton

University Medical School, Omaha, NE).

Figure 4. Effect of MEK inhibitor U0126 on p-ERK1/2 activation
and cytoskeletal remodeling induced by estrogen receptor
ligands and antiestrogens. (A) Blocking of E2, DPN, 4OHT or G1
induced ERK1/2 phosphorylation in SUM149 cells by U0126. The cells
were maintained in 5% DCC for 48 hours and then pretreated with or
without U0126 (20 mM) for 15 min before treatment with or without E2
(10 nM), DPN (10 nM), 4OHT (10 nM) and G1 (10 nM) for 5 min. ERK1/2
phosphorylation was analyzed by western blotting. (B) Blocking of E2-
induced cytoskeletal change in SUM149 cells by U0126. The cells were
maintained for 48 hours in 5% DCC and then pretreated with U0126
(20 mM) before the treatment with or without E2 (10 nM) for 5 min. The
cells were fixed and labeled with fluorescently conjugated phalloidin
(for filamentous actin, red) and DAPI (for DNA). White-dotted areas in
upper panels were magnified in lower panels.
doi:10.1371/journal.pone.0030725.g004
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Cell extracts and immunoblotting
To prepare cell extracts, the cells were grown in 5% DCC

medium for the period of 48 hrs and then treated with either E2

(10 nM), DPN (10 nM), PPT (10 nM) or G1 (10 nM). When

indicated, ICI (1.0 mM) or 4OHT (1.0 mM) was added 1 hr before

and MEK inhibitor U0126 (20 mM) was added 15 min before

ligand treatment. The cells were washed once with PBS and then

lysed in radioimmunoprecipitation assay buffer [50 mmol/l Tris-

HCl (pH 7.5), 150 mmol/l NaCl, and 0.5% 16protease inhibitor

cocktail (Roche Applied Science, Indianapolis, IN)] for 10 minutes

on ice. The cell lysates were centrifuged at 13,000 rpm for 10 min

at 4uC. The cell lysates containing an equal amount of protein

were then resolved on a sodium dodecyl sulfate-polyacrylamide gel

(8% acrylamide), transferred to a nitrocellulose membrane, probed

with the appropriate antibodies, and developed using the ECL

detection reagent (Amersham Pharmacia Biosciences, Piscataway,

NJ).

Immunoflourescent labeling and confocal microscopy
The cellular localization of proteins was determined by indirect

immunofluorescence labeling. SUM149 and SUM190 cells were

grown on sterile glass coverslips in 5% DCC media for 48 hrs,

fixed in 4% paraformaldehyde, permeabilized in 0.1% Triton X-

100, and blocked in 5% normal goat serum-PBS. The cells were

incubated with the primary antibodies for 1 hr, washed thrice in

PBS, and then incubated with goat anti-mouse or goat anti-rabbit

Figure 5. E2-induced SUM149 cell migration and invasion. (A) For migration, the cells (2 6 104 cells) were added on the lower side of a
Boyden chamber and incubated for 14 hours. Then the cells that passed through the filters were fixed, stained, and counted (left). For invasion, the
cells (1 6 105 cells) were added to the lower side of a matrigel coated Boyden chamber and incubated for 20 hours. Then the cells that invaded
through the matrigel were fixed stained and counted (right). (B) The E2-induced migration and invasion was blocked by treatment with U0126. Error
bars indicate standard deviation.
doi:10.1371/journal.pone.0030725.g005
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secondary antibodies conjugated with Alexa 488 from Molecular

Probes (Eugene, OR). For actin cytoskeletal staining, phalloidin

conjugated with Alexa 546 was used (Molecular Probes). The

DNA dye DAPI was used as nuclear stain (blue).

Matrigel invasion and migration assays
To quantify the cell migration potential of IBC cells, the cells

were grown in 5% DCC media for 48 hrs. The cells were then

trypsinised for collection, washed in PBS, resuspended in 0% DCC

medium containing 0.1% BSA, and loaded into the upper well of

an uncoated Boyden chamber (BD Biosciences) at a concentration

of approximately 3.36104 cells/well. The lower side of the

separating filter was filled 0.2% DCC medium containing 0.1%

BSA. The cells were fixed after about 16 hrs and the cells which

had successfully migrated were stained and counted manually.

The same protocol was followed for measuring the invasion

potential with principal differences being the use of Matrigel-

coated Boyden chamber (BD Biosciences) and loading of 16105

cells/well.

Immunohistochemistry
Deparaffinized sections were subjected to antigen retrieval by

boiling the sections in 10 mM citric acid buffer (pH 6.0) for

10 min. Sections were then incubated with rabbit p-ERK1/2

antibody (Cell Signaling) at 4uC overnight, followed by incubation

with EnVision (Dako, Carpinteria, CA) for 1 hour at room

temperature. Immunostained sections were lightly counterstained

with hematoxylin, dehydrated in graded ethanol, cleared in

xylene, and mounted with the use of the peramount mounting

medium.

Supporting Information

Figure S1 Phosphorylation of Akt, JNK and p38 upon E2
treatment in SUM149 cells. The cells were maintained in 5%

DCC for 48 hours and then treated with E2 (10 nM) and then Akt,

JNK and p38 phosphorylation were analyzed by western blotting.

(TIF)

Figure S2 Cell proliferation of SUM149 with E2 treat-
ment. The cells were plated in 6-well plates and treated with E2

the next day. The cell growth was determined by counting cell

number using a Coulter Counter.

(TIF)
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