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Abstract
Hypertension is an important determinant of cardiovascular morbidity and mortality and has a
substantial heritability, which is likely of polygenic origin. The aim of this study was to assess to
what extent multiple common genetic variants contribute to blood pressure regulation in both
adults and children, and to assess overlap in variants between different age groups, using genome
wide profiling. SNP sets were defined based on a meta-analysis of genome-wide association
studies on systolic (SBP) and diastolic blood pressure (DBP) performed by the Cohort for Heart
and Aging Research in Genome Epidemiology (CHARGE, n=29,136), using different P-value
thresholds for selecting single nucleotide polymorphisms (SNPs). Subsequently, genetic risk
scores for SBP and DBP were calculated in an independent adult population (n=2,072) and a child
population (n=1,034). The explained variance of the genetic risk scores was evaluated using linear
regression models, including sex, age and body mass index. Genetic risk scores, including also
many non-genome-wide significant SNPs explained more of the variance than scores based only
on very significant SNPs in adults and children. Genetic risk scores significantly explained up to
1.2% (P=9.6*10−8) of the variance in adult SBP and 0.8% (P=0.004) in children. For DBP, the
variance explained was similar in adults and children (1.7% (P=8.9*10−10) and 1.4%
(P=3.3*10−5) respectively). These findings suggest the presence of many genetic loci with small
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effects on blood pressure regulation both in adults and children, indicating also a (partly) common
polygenic regulation of blood pressure throughout different periods of life.
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genome-wide association; genome-wide profiling; genetic risk scores; blood pressure;
hypertension

INTRODUCTION
Elevated blood pressure is an important risk factor for stroke and ischemic heart disease, and
is estimated to contribute to half of the global risk for cardiovascular disease 1–2. Anti-
hypertensive treatment has been effective approach in reducing risks of cardiovascular
events in people with hypertension 3.

The heritability of blood pressure levels is estimated to be 30–60% 4–5. Several genes with
large effects have been identified in familial forms of hypertension, including salt-sensitivity
genes 6. However, these explain a relatively small proportion of hypertension in the general
population. Several common genetic variants associated with blood pressure have been
identified through genome-wide association studies in adult populations, only explaining
~1% of the variance of blood pressure 7–8.

Despite the large size of the consortia used for gene discovery, many common variants with
small effects on blood pressure remain unidentified. While their individual associations do
not reach genome-wide significance, in combination these variants may nevertheless explain
a substantial proportion of blood pressure. The extent to which unidentified common
variants explain the missing heritability in blood pressure and other polygenic traits is an
open and important question.

Recently, it has been shown that the presence of multiple variants affecting polygenic traits
can be demonstrated by constructing genome wide prediction models (genetic risk scores) of
common variants 9–10. In a polygenic disease model, the more markers are used in the
model, the better the disease is predicted. Such a model also implies that everybody in the
population carries a substantial number of risk variants with small effects on the disease, but
patients carry more of these variants than non-diseased people. This has been demonstrated
in a recent study of schizophrenia, showing that one can predict disease using both genome-
wide significant and non-significant SNPs, covering a large part of the genome 9.

This approach can also be used to evaluate the evidence of overlap in genes affecting a
continuous outcome as blood pressure, in different age groups. In metabolic diseases, such
as diabetes and blood pressure, there is increasing interest in the role of genetic determinants
of blood pressure and other risk factors of cardiovascular disease in order to improve
prevention of chronic disease and identify targets for therapeutic interventions.

One may argue that many genes regulating blood pressure maintenance are similar across
age groups. We used genome wide profiling to evaluate to what extent multiple common
genetic variants influence blood pressure in adults and secondly and to test whether there is
overlap in genes contributing to blood pressure levels in children and adults, which might
indicate whether there is a common polygenic regulation of blood pressure throughout
different periods of life.
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METHODS
Genome-wide profiling

In genome-wide profiling, for a certain trait, genetic risk scores are constructed using data
from a “discovery sample”. Sets of common variants to calculate genetic risk scores consist
of all SNPs achieving a certain significance threshold (Pdiscovery threshold) in the discovery
sample. In an independent “target sample”, a subject’s genetic risk score is computed across
all SNPs with P-value lower than the Pdiscovery threshold. The subject’s genotype (coded
0/1/2) is multiplied by the regression coefficient for that SNP as estimated in the discovery
sample, and divided by the total number of SNPs in that set. This risk score is calculated for
all subjects in the independent target sample. Subsequently, an unbiased estimate of the
variance explained by the genetic risk score is obtained by evaluating the increase in
explained variance of the trait when adding the genetic risk score to a baseline model
explaining that trait. The method has previously been described in detail 9.

In our study, we used systolic and diastolic blood pressure and hypertension as traits of
interest. The discovery sample was the Cohort for Heart and Aging Research in Genome
Epidemiology (CHARGE) consortium, with a total sample size of 29,136 participants 7. We
used two Dutch target samples; one adult sample (Rotterdam Study III) and one child
sample (Generation R Study).

In the discovery sample, within each cohort of CHARGE, regression models were fitted for
systolic blood pressure (SBP) and diastolic blood pressure (DBP) separately, and allele
dosage, using an additive genetic model. The models were adjusted for sex, age, age squared
and body mass index (BMI). Subsequently, the within-study associations were combined by
prospective meta-analysis. The methods have been described in detail previously 7.

Next, SNPs were selected using the results from the meta-analyses of GWAS on SBP in the
discovery sample, on the basis of their nominal P-value (Pdiscovery) for association with
SBP, using different Pdiscovery thresholds, ranging from 1.0×10−7 to 1.0. Subsequently, these
sets of SNPs, with different Pdiscovery thresholds, were used to calculate the genetic scores in
the target samples. The same was done using the results from the meta-analysis of GWAS
on DBP, creating separate genetic risk scores for DBP.

For each individual in the two independent target samples, the genetic risk scores were
calculated by multiplying the number of risk alleles per SNP (0, 1 or 2) with the effect size
of that SNP in the discovery meta-analysis (weighted approach), summed over all SNPs in
the set and divided by the number of SNPs in the considered set. The calculations of
individual scores for each set of SNPs were performed using the PLINK (v1.07) software,
specifically by “profile scoring” option.

Subsequently, linear regression models were used to test the association between the
individual genetic risk scores and SBP and DBP in the target samples. For subjects using
anti-hypertensive medication, we added 10 mmHg to the observed SBP values and 5 mmHg
to the observed DBP values. Similarly to the discovery analysis the models were adjusted
for sex, age BMI. For analyzing the explained variance for adult hypertension (SBP>=140
mmHg, DBP >=90 mmHg or use of antihypertensive medication) and childhood
hypertension (SBP or DBP > p95 for age, gender and height 11), we used logistic regression.
We performed sensitivity analyses in the adults excluding subjects meeting the criteria for
hypertension in the Rotterdam Study III. We have repeated the main analyses after removing
SNPs in high linkage disequilibrium, using the LD-pruning option in the Plink software12.
We pruned the data considering a window of 200 SNPs, removing one of a pair of SNPs if
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the LD is greater than 0.25, and shifting the window 5 SNPs forward to repeat the
procedure.

For both the Rotterdam Study and the Generation R study, regression analyses were
performed in SPSS 17.0 for Windows (SPSS Inc., Chicago IL, USA). The difference of the
explained variance in the null (without genetic risk score) and alternative model (including a
genetic risk score) was considered as the variance explained by the genetic score. A genetic
risk score with a P-value <0.05 in the model was considered as significantly associated with
the trait. We also assessed the difference between two subsequent models both including a
genetic risk score using the Akaike Information Criterion (AIC) 13.

In the online supplement, we describe the discovery and target samples, their respective data
collection procedures and quality control. The approaches for sensitivity analyses using
unrelated traits as outcome and analysis using randomly selected SNP sets or a SNP set
based on a biological pathway to calculate a genetic risk score are also presented in the
online supplement (please see http://hyper.ahajournals.org).

RESULTS
Demographic data of the CHARGE consortium have been published previously 7. Table 1
shows the baseline characteristics for the Rotterdam Study III (RS-III) and the Generation R
Study. The median age in RS-III was 56.0 years (95% range: 47.7 – 62.3), in the Generation
R Study the median age was 6.0 years (95% range: 5.8 – 6.7).

Figures 1a and 1b show the increase in explained variance of SBP by the genetic risk scores
for a range of different Pdiscovery thresholds, in the adult and child target samples,
respectively. When considering risk scores based on sets of SNPs with low P-values in the
discovery sample (up to Pdiscovery <1.0×10−4), the risk scores significantly explained up to
0.3% of variance in SBP in adults (P=0.01). These scores were non-significant in children,
increasing the explained variance by 0.1% (P=0.305). When adding more SNPs using
greater Pdiscovery thresholds, the variance explained by the genetic risk scores increased, in
both adults and children. Adding genetic risk scores based on SNPs with a Pdiscovery of <0.1,
increased the explained variance of the model significantly with 1.2% in adults
(P=9.6*10−8). In 6 year old children, the risk score based on SNPs with Pdiscovery of <0.3
significantly increased the explained variance of the model by 0.8% (P=0.004). The increase
in explained variance in children was less pronounced compared to adults, but showed a
similar pattern as the adult population.

Figures 2a and 2b show the proportion of explained variance of DBP for the various genetic
risk scores. The difference between adults and children considering genetic risk scores based
on sets of SNPs with a low P-value in the discovery sample (up to Pdiscovery <1.0×10−4),
was more marked. The SNP sets explained up to 0.3% (P = 0.006) of the variance of DBP in
the adult population but no variance in DBP was explained in children (P = 0.544). The
genetic risk score based on SNPs with a Pdiscovery <0.3 increased the explained variance
significantly by 1.7% (P=8.9*10−10) when the score was added to the baseline model.
Again, in children, a similar pattern was observed. The same genetic risk score (Pdiscovery
threshold <0.3) significantly increased the explained variance of DBP by 1.4%
(P=5.2*10−5), almost a similar increase as in adults.

Genetic risk scores for systolic and diastolic blood pressure also were associated with
hypertension in adults explaining up to 2.1% (P=2.0*10−9, using Pdiscovery <0.3) of the
variance in hypertension in an adult population (Figure 3a and 3b). Adult based genetic risk
scores for systolic and diastolic blood pressure did not significantly explain additional
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variance in childhood hypertension (see Supplement figure S1a and S1b, please see
http://hyper.ahajournals.org).

To illustrate that these results were not due to chance, we tested whether the blood pressure
based risk scores predicted also variation in intracranial volume (in adults) and head
circumference (in children). Figures S2a/b and S3a/b show that the genetic risk scores for
SBP and DBP did not explain variance of these unrelated traits significantly (please see
http://hyper.ahajournals.org). Furthermore, we created random genetic risk scores of
sufficient size (~565k SNPs, similar to the SNP set with Pdiscovery < 0.3) and evaluated the
additional explained variance. The random genetic risk scores showed a significant increase
in explained variance when added to the baseline model (see Table 2). The additional
explained variance from the random genetic risk scores was 0.1–0.4% lower as compared to
the original genetic risk scores (see Table 2). We also tested whether a set of SNPs from a
biological pathway would lead to a higher increase in explained variance than SNP sets with
a low P-discovery threshold. We used SNPs in the FGF (fibroblast growth factor) pathway
as described by Tomaszewski et al 14. This genetic risk score did not explain additional
variance in all phenotypes except for adult hypertension based on the systolic blood pressure
score (increase in explained variance 0.3, P=0.014, see Table 3).

In a strictly normotensive population the additional explained variance of the genetic risk
score including the most significant SNPs (Pdiscovery-threshold 1.0×10 7) increased, while
the risk scores with more liberal Pdiscovery-thresholds had a lower additive explained
variance compared to the original analysis. Results of sensitivity analyses are shown in the
supplement (figure S4a and S4b). We repeated the main analyses after removing SNPs in
high linkage disequilibrium. The pattern was similar to the original analysis, but the
explained variance was lower. Including more SNPs in the genetic risk score increased the
variance explained by that score. The results of these analyses are shown in the supplement
(Figure S5a/b, S6a/b and S7a/b, please see http://hyper.ahajournals.org).

DISCUSSION
Our findings indicate that, in addition to the blood pressure variants now identified, large
numbers of common genetic variants affecting blood pressure remain to be identified, and
that these variants explain a significant part of the variance in blood pressure in adults and
children. These non-significant, unidentified SNPs together explain a larger part of the
variance than the genome wide significant SNPs only. We also showed that adult based
genetic risk scores explained variance in blood pressure in children. This indicates not only
that there is a polygenic effect on blood pressure in children, but more importantly, it
indicates that there is overlap in variants involved with blood pressure maintenance in adults
and children and that these variants act in throughout life.

In this study, we did not remove any SNPs that are in high linkage disequilibrium with each
other. Pruned analyses, as presented in the Supplemental Material, do not change our
conclusion that adding more non-genome wide significant SNPs to genetic risk scores
increases the variance explained by these scores. However, as expected, removing SNPs by
LD pruning results in a reduction of the variance explained. Since SNPs in LD are removed
randomly, in many cases informative SNPs are taken out of the analyses. Therefore a pruned
analysis is expected to underestimate the true effect on the explained variance by the genetic
risk scores.

The additive explained variance of genetic risk scores on blood pressure is maximizing
around the Pdiscovery-threshold of 0.3 and does not increase with more liberal thresholds.
This genetic risk score includes over 550k SNPs. This result suggests that SNPs with a
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Pdiscovery-value lower than 0.3 in the discovery sample add to the explained variance of
blood pressure and that many common variants associated with blood pressure regulation
have not been identified yet. SNPs with a Pdiscovery higher than 0.3 are unlikely to be
associated with blood pressure. Genetic risk scores of a similar size, consisting of randomly
selected SNPs, still resulted in a significant increase in explained variance when added to the
baseline model without a genetic risk score. The increase in explained variance based on the
random genetic risk scores was lower than the increase based on the original genetic risk
score models, although this difference was small and statistically significant in only half of
the presented phenotypes. This result suggests that a sufficiently large number of SNPs tags
many genes throughout the genome which influence blood pressure regulation. These
findings are in line with our hypothesis that blood pressure is polygenic trait and that there
are many more genes involved with blood pressure than are found so far in genome wide
association studies. Currently, the advantage of using genetic risk scores based on SNPs
selected on their P-value in a GWAS discovery sample, as compared to genetic risk scores
based on a random set of SNPs, seems to be limited. Larger GWAS discovery samples with
identification of new common and rare SNPs might lead to higher explained variance.

Although there have been several mutations described causing dominant, monogenic, forms
of hypertension and more of such rare variants may still be undiscovered 6, our results
support the hypothesis that hypertension is a polygenic disease, which is in part explained by
a large number of genes regulating blood pressure. In our adult population, genetic risk
scores including large numbers of SNPs, explain the largest proportion of variance in blood
pressure, indicating the involvement of multiple genes in blood pressure regulation.

Risk scores containing highly significant SNPs, identified in large scale genome wide
association meta-analyses in adults 7–8, were significantly associated with in blood pressure
in adults, but not in children. There are several explanations possible for this finding,
including a smaller number of subjects and lower power in the children cohort. However,
this finding might also indicate that the genome wide significant SNPs found so far are
related to late-onset pathology. It has been long hypothesized that there is a common
polygenic regulation of blood pressure in adults and children. This is the first study showing
evidence of such a mechanism.

It has been shown in literature that blood pressure tracks from childhood to adulthood 15.
This study indicates that genes are explaining a part of the blood pressure tracking over life.
We show that the same set of genes, based on an adult discovery sample, explain part of the
variation in blood pressure in both adults and children. We also showed that these SNP sets
explain variation in hypertension in adults, indicating also a polygenic origin of
hypertension. It has been shown that high blood pressure in childhood predisposes to
hypertension in adulthood 16. Adult based genetic risk scores do not explain variance in
childhood hypertension in children significantly. This fits with the common view that causes
of juvenile hypertension are different from adult hypertension 11.

The percentage of explained variance by genetic risk scores is still low, although the
heritability has been shown to be substantial 4, yet compared to the variance explained by
the genome wide significant SNPs on blood pressure found so far, there is a 4–5 fold
increase in explained variance of blood pressure in our target samples.

In the coming years the variance explained by polygenic models may be improved further,
using technology, such as whole genome sequencing, which can be used to identify low
frequency variants. We used common variants only (MAF >0.01) to create genetic risk
scores. Low frequency variants may add to the variance explained by these genetic risk
scores. Also, we assumed an additive model, similar to the discovery analysis. We have to
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recognize that the biology of the genes involved in blood pressure regulation and possible
interactions between these genes are unknown. Another possibility would be to construct
genetic risk scores based on SNPs included in candidate biological pathways. A genetic risk
score including SNPs from the FGF signaling pathway 14 seemed to explain a larger
proportion explained variance in hypertension as compared to a genetic risk score including
a similar number of SNPs, based on the previous top SNPs from the GWAS. This indicates
that prior knowledge on biological models and underlying mechanisms might improve the
explained variance by genetic risk scores. Alternative methods of constructing genetic risk
scores may be better when further research reveals more of the underlying genetic biology
of blood pressure regulation.

Specific common variants that are associated with blood pressure still need to be identified.
Much research is still needed to identify more and specific genes associated with blood
pressure regulation in adults. If these common variants overlap with blood pressure
regulation in children, they could provide clues for early etiology of hypertension.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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PERSPECTIVES

At this stage, individual prediction is not yet feasible. Without a doubt, the prediction of
blood pressure will improve and might contribute to predicting high blood pressure in the
future. Genetic profiling might be a way of identifying subgroups at genetically high risk
for increased blood pressure at a population level 17, but whether it will be enough for
personalised medicine and early treatment of people at risk for high blood pressure (and
possibly also other risk factors for cardiovascular disease), remains to be determined. Our
study shows that this may require the identification of many more common variants with
small effects on blood pressure.
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Figure 1. Increase in explained variance in systolic blood pressure by genetic risk scores
Bars represent the increase in explained variance (%) of systolic blood pressure, when
adding the genetic risk scores for different p-value thresholds, to the base line model for
systolic blood pressure including BMI, sex and age as covariates. The baseline model
explained 12.8% and 5.2 % of the variance in systolic blood pressure for adults and children
respectively. We evaluated the difference in explained variance between two subsequent
models by calculating the Akaike Information Criterion (AIC) of each model. The difference
in AIC follows a χ2 distribution with one degree of freedom, from which the P-value was
derived.
* p < 0.05
** p < 0.001
1a. Rotterdam Study III
1b. Generation R Study
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Figure 2. Increase in explained variance in diastolic blood pressure by genetic risk scores
Bars represent the increase in explained variance (%) of diastolic blood pressure, when
adding the genetic risk scores for different p-value thresholds, to the base line model for
diastolic blood pressure including BMI, sex and age as covariates. The baseline model
explained 8.4% and 1.4 % of the variance in diastolic blood pressure for adults and children
respectively. We evaluated the difference in explained variance between two subsequent
models by calculating the Akaike Information Criterion (AIC) of each model. The difference
in AIC follows a χ2 distribution with one degree of freedom, from which the P-value was
derived.
* p < 0.05
** p < 0.001
2a. Rotterdam Study III
2b. Generation R Study
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Figure 3. Increase in explained variance in hypertension by genetic risk scores
Bars represent the increase in explained variance (%) of hypertension in adults (SBP>140,
DBP>90 or the use of anti hypertensive medication), when adding systolic and diastolic
genetic risk scores for different p-value thresholds, to the base line model for systolic blood
pressure including BMI, sex and age as covariates. The baseline model explained 15.9% of
the variance in hypertension in adults. We evaluated the difference in explained variance
between two subsequent models by calculating the Akaike Information Criterion (AIC) of
each model. The difference in AIC follows a χ2 distribution with one degree of freedom,
from which the P-value was derived.
* p < 0.05
** p < 0.001
3a. Systolic blood pressure scores
3b. Diastolic blood pressure scores
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Table 1

Subject characteristics of the Generation R Study and the Rotterdam Study III

Characteristics Rotterdam Study III (n = 2,078) Generation R Study (n = 1,034)

Age (yrs) 56.0 (47.7 – 62.3) 6.0 (5.8 – 6.7)

Female (%) 56.1 52.2

BMI (weight(kg)/length(cm)2) 26.9 (21.6 – 36.7) 15.9 (13.9 – 18.4)

Mean systolic blood pressure (mmHg) 132.7 (19.2) 102.5 (8.1)

Mean diastolic blood pressure – (mmHg) 82.6 (11.1) 60.5 (7.2)

Subjects with hypertension (%)* 47.3

Subjects using anti-hypertensive medication (%) 20.8

Children referred to nephrology for hypertension (%)† 0.5

Prevalent Type 2 Diabetes (%) 7.3

Serum total cholesterol (mmol/l) 5.6 (1.1)

HDL cholesterol (mmol/l) 1.5 (0.5)

Values are means (sd) or medians (95%-range)

*
Adults: Defined as SBP>140mmHg, DBP>90 mmHg or use of anti-hypertensive medication

Children: SBP or DBP >95th percentile for gender, age and height 12

†
Children were referred to pediatric nephrology department when the lowest blood pressure measurement was higher than the P99 for their gender,

length and age 12.
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Table 2

Additional explained variance by a random genetic risk score versus original genetic risk score

Additional explained variance

Phenotype
Random genetic risk score

(%)
Original genetic risk score

(%) P-value for difference

Adult systolic blood pressure (Rotterdam Study III) 1.0 † 1.2 † 0.07

Adult diastolic blood pressure (Rotterdam Study III) 1.3 † 1.7 † 0.01

Child systolic blood pressure (Generation R) 0.7 * 0.8 * 0.49

Child diastolic blood pressure (Generation R) 1.4 † 1.6 † 0.10

Hypertension – SBP scores (Rotterdam Study III) 1.1 † 1.4 † 0.02

Hypertension – DBP scores (Rotterdam Study III) 1.7 † 2.1 † 0.01

*
P value < 0.05

†
P value < 0.001

Random Genetic risk score – Genetic risk score calculated on SNP set containing ~565k SNPs which were randomly selected out of the discovery
meta-analysis, irrespective of their P-value for association.

Original genetic risk score – Genetic risk score calculated on a SNP set with a Pdiscovery threshold of 0.3. This SNP set contains ~565k SNPs and
showed the largest increase in explained variance.

The P-value for difference between the models was obtained by calculating the difference in Akaike Information Criterion between the random

model and the original model. This difference follows a χ2 distribution with 1 degree of freedom
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Table 3

Additional explained variance by a genetic risk score based on FGF-signaling pathway 14.

Phenotype Additional explained variance by signaling pathway genetic risk score (%)

Adult systolic blood pressure (Rotterdam Study III) 0.1

Adult diastolic blood pressure (Rotterdam Study III) 0.0

Child systolic blood pressure (Generation R) 0.1

Child diastolic blood pressure (Generation R) 0.1

Hypertension – SBP scores (Rotterdam Study III) 0.3 *

Hypertension – DBP scores (Rotterdam Study III) 0.1

*
P value < 0.05
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