/[

1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

" NIH Public Access
éf};‘ Author Manuscript

2 HEpst

o NATIo

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2011 ; 14(Pt 3): 99-106.

The Relevance Voxel Machine (RVoxM): A Bayesian Method for
Image-based Prediction

Mert R. Sabuncul2 and Koen Van Leemput!:2:3

1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard
Medical School, USA 2Computer Science and Atrtificial Intelligence Laboratory, MIT, USA
SDepartment of Information and Computer Scienc, Aalto University, Finland

Abstract

This paper presents the Relevance Voxel Machine (RVoxM), a Bayesian multivariate pattern
analysis (MVPA) algorithm that is specifically designed for making predictions based upon image
data. In contrast to generic MVVPA algorithms that have often been used for this purpose, the
method is designed to utilize a small number of spatially clustered sets of voxels that are
particularly suited for clinical interpretation. RVoxM automatically tunes all its free parameters
during the training phase, and offers the additional advantage of producing probabilistic prediction
outcomes. Experiments on age prediction from structural brain MRI indicate that RVoxM vyields
biologically meaningful models that provide excellent predictive accuracy.
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1 Introduction

Medical imaging commonly entails relating image content to a clinical or experimental
condition. Traditional univariate approaches, such as voxel-based morphometry [1] or
cortical thickness analysis [2], can generate anatomical maps of the effects by analyzing
each location individually. Multivariate pattern analysis (MVVPA) methods, in contrast, offer
dramatically increased specificity and sensitivity for predicting a clinical or experimental
condition of interest by considering all voxels simultaneously [3-9]. However, studies in the
field of image-based prediction have typically employed generic MVPA methods, such as
Support or Relevance Vector Machines (SVMs/RVMs) [10, 11], which do not take into
account the spatial organization inherent in imaging data.

As demonstrated in the area of semi-supervised learning, significant performance gains can
be obtained by explicitly utilizing the underlying structure of the data at hand [12, 13]. One
approach to achieve this in the context of images is to impose an a priori model on the
covariation of voxel-level measurements — a strategy that has proven powerful for many
computer vision problems [14]. Additional motivation for such models in the context of
image-based prediction is interpretability: rather than a “black box” tool, we are also
interested in understanding and visualizing the key areas that are driving predictions.
Although it is possible to display the workings of generic linear MVPA methods as images
[6], the results are often scattered and hard to interpret biologically [15].




1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Sabuncu and Leemput

2 Model

Page 2

In this paper, we present the Relevance VVoxel Machine (RVoxM), a novel MVPA algorithm
that is specifically designed for making and explaining image-based predictions. It uses a
Bayesian modeling approach and builds largely on existing RVM machinery to obtain not
only good prediction performance, but also sparse solutions. Unlike RVMs, however, where
sparseness is realized by discarding many of the samples, i.e., subjects in the training
dataset, our approach removes most of the voxels, retaining only those voxels that are
relevant for prediction. Furthermore, our model encourages spatial clustering of these
“relevance voxels” and computes predictions as linear combinations of their content,
yielding results that are both biologically plausible and intuitive to interpret. Compared to
related efforts that incorporate spatial context within the SVM framework [15], our method
inherits all the usual advantages of RVMs over SVMs, including the benefits of probabilistic
outcomes and the automatic tuning of all free parameters.

We test RVoxM on the problem of estimating the age of healthy subjects from structural
brain MRI scans, and show that it achieves high accuracy using a pattern of “relevance
voxels” that easily lends itself to biological interpretation.

We use a generative model similar to the one of RVM [11]. Let t denote a real-valued target
variable (e.g., age) that we aim to predict from image data, and x; a voxel-level measurement
(e.g., gray matter density) at the voxel indexed by i. We define a Gaussian conditional

. N (1o -1
distribution for 7 (1%, W.8) =N (1ly () .8 ) with variance p~1 and a mean that is given by
the linear model

M
y(x) :mey+w0:wa,
i=1 (1

where w = (wg ... wy)T are adjustable “weights” encoding the strength of each voxel's
contribution to the prediction, x = (1, Xy, ... , Xm) " denotes the vectorized image the
prediction is based on, and M is the number of voxels. For notational convenience, we
include an extra “voxel” to account for the bias, wy,.

For reasons that will soon become clear, we further assume a zero-mean Gaussian prior
distribution over w:

P (Wla, ) =N (wl0.P™"),

where P isa (M + 1) x (M + 1) precision (inverse covariance) matrix defined as

P=diag (ao, - - ,,,) +1K.

Here, a = (ag, ... , o) and A are hyperparameters, and K is a fixed, positive-semidefinite
matrix that encourages local spatial smoothness of w. In particular, we use K = YTY, where
Y is a sparse matrix in which each row corresponds to a pair of neighboring voxels in the
image. For neighboring voxels {i, j}, the corresponding row has zero entries everywhere
expect for the i"and j" column, which have entries —1 and 1, respectively. Re-writing the
prior as
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shows that it encodes a preference for models that are both sparse and spatially clustered:
we explicitly seek models that explain t through a small collection of image patches that
easily lend themselves to neuroscientific interpretation. Indeed, the fact that there is an
individual hyperparameter o; associated with each voxel's weight w; is responsible for
achieving sparsity in those weights — as we shall see, estimating the o;'s automatically sets
many of them to very large values, forcing the corresponding weights to zero and therefore
“switching off” the contribution of many voxels. Importantly, we also explicitly take the
spatial structure of image data into account by penalizing large entries in the vector Yw,
which represent large differences between the weights of neighboring voxels. Thus, we
encode a preference for spatial clusters of “switched-on” voxels, as these are both
biologically more plausible and easier to interpret than speckles of isolated voxels scattered
throughout the image area.

3 Hyperparameter Estimation

Given training data in the form of a set of N input-target pairs {x,, t,,},’:’:1 where X, represents
the n" training image and t,, the corresponding target variable, our first goal is to determine
the values of the hyperparameters o, A, and . Using type-11 maximum likelihood, we
estimate the hyperparameters by maximizing the marginal likelihood function obtained by
integrating out w:

n=1

N
p (tho a& /Lﬁ) =fw ( H p (rnlxm W,B)) P (W|Q'. A) dW

= (L) exp (4l XwiP) Lrexp (~ 1w Pw) dw
_Mexp (_%tTr—lt)’

T e

(2)

where t = (ty, ..., t\)T, X = [Xq, ..., xy] T is the N x (M + 1) “design” and matrix, and we
have the N x N matrix I" given by

r=p'1+xp'x’.

We take a “coordinate-ascent” approach to search for the hyperparameters that maximize
Eq. (2). Fixing A, B, and {a} for all j # i, differentiating the log of Eq. (2) w.r.t o;, equating
to zero and rearranging yields the following update:

H; (3)

where

u=pEX"y, z:(ﬁXTX+P)"],
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and A is defined as A = P~1 — =, Similarly, fixing a and B, differentiating w.r.t A, and
rearranging yields the following update equation for A:

trace (AK)/I
78 RN )

/lnew:

Finally, an update for § can be computed using the same approach:

N
lly — Xul>+trace (XEXT) ©)

new __

Optimization now proceeds by cycling through these equations. We monitor the value of the
objective function of Eq. (2) and terminate the algorithm when the increase over the
previous iteration is below a certain tolerance. Although currently we have no theoretical
guarantees that the presented update equations indeed increase the objective function at each
iteration, we have not encountered any situation where this was not the case during the
course of our experiments.

4 The RVoxM Learning Algorithm

In practice, we find that most o;'s tend to grow to infinity during the optimization process,
effectively clamping the corresponding weight w;'s to zero and removing those voxels from
the model. We exploit this fact to obtain a greedy learning algorithm that is fast enough to
be applied to large 3-D image volumes, using two computational tricks.

First, each time one of the a;'s exceeds a certain (very large) value, the corresponding voxel
is pruned from the model and computations continue based on the remaining voxels only, in
a manner similar to the RVM learning algorithm in [11]. Second, we use a multi-resolution
approach commonly employed in image processing applications (e.g., [16]). We first
construct a pyramid representation of the training images, where each level consists of
lower-resolution images computed by subsampling the images from the previous resolution.
The algorithm then starts by learning the hyperparameters for the lowest resolution images,
propagates them down for the initialization of the next level, and so forth until the final
resolution level is reached; voxels that were pruned at the previous level remain so at the
current level as well.

Although this greedy algorithm prevents voxels from re-entering once they have been
removed, our experiments suggest that it works quite well in practice.

5 Using RVoxM to Make Predictions

Once we have learned the hyperparameters o*, A*, and p* from the training data, we can
make predictions about the target variable t for a new input image x by evaluating the
posterior

p(x, X, t,a", 1", ") :pr (1%, w,8%) p (WX, t,a@", ") dw.

It can be shown that this distribution is a Gaussian with mean

u'x (7)
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1 T
and variance 7= *X =X where pand X are given by Eg. (4) in which a, A, and  have been
set to their optimized values o*, A*, and p*.

In the remainder, we will use the maximum a posteriori (MAP) value given by Eq. (7) to
make predictions about t, which corresponds to the linear prediction model of Eq. (1) in
which the voxels' weights w have been set to p. It is worth emphasizing that in many voxels
i = 0 (because their o; was set to infinity) — we call the remaining voxels the “relevance
voxels” as these are the only ones effectively used to predict the target variable t.

6 Experimental Results

We applied RVoxM to the problem of estimating a person’s age from a brain MRI scan.
This problem has attracted recent attention [17-19] since it provides a novel perspective for
studying healthy development and aging patterns, while characterizing pathologic deviations
in disease.

We used a collection of T1-weighted scans from 336 cognitively normal subjects (age range
18-93 years), available through the OASIS dataset?. We processed all the MRI scans with
SPM82, using default settings, to obtain spatially aligned gray matter maps for each subject.
The gray matter density values (tissue probabilities modulated by the Jacobian of the non-
linear warp) were used as the voxel-level measurements X; in the remainder of the
experiment. To assess generalization accuracy, we split the data into two arbitrary® halves
that are age and sex matched (43.7 + 23.8 years, 62.5% female). We employed each group to
train the RVoxM, which was then applied to the complementary group for testing. All
reported results are averages across the two training/testing sessions.

In addition to RVoxM, we used two other methods as benchmarks. The first method,
referred to as “RVM?”, is another approach for estimating age from structural MRI [19]. It
uses a principal component analysis (PCA) to achieve a dimensionality-reduced
representation of the image data, and subsequently applies a linear RVM algorithm in the
resulting feature space. We used the optimal implementation settings that were described in
[19] and a public implementation of RVM’. The second benchmark (“RVoxM-NoReg")
was an implementation of RVoxM with no spatial regularization, i.e., with the
hyperparameter A intentionally clamped to zero. A comparison with the latter benchmark
gives us an insight into the effect of spatial regularization on the results.

Fig. 1 (top left) illustrates the root mean square error achieved with the three algorithms. On
average, RVoxM vyields the best accuracy with a root mean square error of less than 9.5
years; Fig. 1 (bottom left) plots the age predicted by RVoxM for each subject versus the
subject’s real age. Fig. 1 (top right) plots the average difference between the individual-level
prediction errors (square of predicted age minus true age) obtained by RVoxM and the other
two methods. On average, RVoxM achieves a statistically significantly smaller prediction
error at the individual-level. RVoxM also attains the highest correlation (r-value) between
the subjects' real age and predicted age among all three methods: 0.92 for RVoxM vs. 0.90
and 0.91 for RVM and RVoxM-NoReg, respectively.8

4http://WWW.oasis-brains.org. 1.5T Siemens Vision scanner, 1><1><1.25mm3, MPRAGE.
5http://www.fiI.ion.ucl.ac.uklspm/software/sme/
Simply based on the alphabetical ordering of the anonymized filenames
http://www.vectoranomaly.com/downloads/downloads.htm
8\We note that [19] reported slightly better correlation values for RVM (r = 0.92), which is probably due to the increased sample size
(N =550) and/or different data.

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2012 January 26.


http://www.oasis-brains.org
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.vectoranomaly.com/downloads/downloads.htm

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Sabuncu and Leemput

7 Conclusi

Page 6

Fig. 2 shows p, RVoxM's estimated voxel weights, for each of the two training sessions.
Recalling that the prediction on new data is simply the linear product between p and the test
image (Eq. (7)), the value of p at a specific voxel reflects the contribution of that voxel to
the prediction. It can be appreciated that most voxels have a zero contribution (i.e., the
model is sparse), and that the “relevance voxels” (with a non-zero contribution) occur in
clusters, providing clear clues as to what parts of the gray matter are driving the age
prediction process. Furthermore, the relevance voxels exhibit an overall very similar pattern
across the two training sessions, providing evidence that these patterns are likely to be
associated with the underlying biology and can be interpreted. We leave the interpretation of
these relevance voxel patterns to future work.

on

In this paper, we proposed a novel Bayesian framework for image-based prediction. The
proposed method yields a model where the predicted outcome is a linear combination of a
small number of spatially clustered sets of voxels. We developed a computationally efficient
optimization algorithm, RVoxM, to learn the properties of this model from a training data
set. While RVoxM is not guaranteed to find the global optimum, our empirical results
suggest that it finds a good solution in practice. Experiments on age prediction from
structural brain MRI indicate that RVoxM derives excellent predictive accuracy from a
small pattern of voxels that easily lends itself to neuroscientific interpretation.

Although we have used a regression model in this paper, it is straightforward to extend the
technique to probabilistic classification by introducing a logistic sigmoid function [11]. In
future work, we thus intend to apply RVoxM to also predict dichotomous outcomes (e.g.,
diagnosis), in addition to continuous ones.

References

1. Ashburner J, Friston KJ. Voxel-based morphometry-the methods. Neuroimage. 2000; 11(6):805—
821. [PubMed: 10860804]

2. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance
images. PNAS. 2000; 97(20):11050. [PubMed: 10984517]

3. Cox DD, Savoy RL. Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and
classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage. 2003; 19(2):
261-270. [PubMed: 12814577]

4. Davatzikos C, et al. Detection of prodromal Alzheimer's disease via pattern classification of MRI.
Neurobiology of aging. 2008; 29(4):514. [PubMed: 17174012]

5. Fan Y, Batmanghelich N, Clark CM, Davatzikos C. Spatial patterns of brain atrophy in MCI
patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline.
Neuroimage. 2008; 39(4):1731-1743. [PubMed: 18053747]

6. Kloppel S, et al. Automatic classification of MR scans in Alzheimer’s disease. Brain. 2008; 131(3):
681. [PubMed: 18202106]

7. Magnin B, et al. Support vector machine-based classification of Alzheimers disease from whole-
brain anatomical MRI. Neuroradiology. 2009; 51(2):73-83. [PubMed: 18846369]

8. Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview.
Neurolmage. 2009; 45(1):S199-S209. [PubMed: 19070668]

9. Pohl, K.; Sabuncu, M. Information Processing in Medical Imaging. Springer; 2009. A unified
framework for mr based disease classification; p. 300-313.

10. Cortes C, Vapnik V. Support-vector networks. Machine learning. 1995; 20(3):273-297.

11. Tipping ME. Sparse bayesian learning and the relevance vector machine. Journal of Machine
Learning Research. 2001; 1:211-244.

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2012 January 26.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Sabuncu and Leemput

12

13.

14.

15.

16.

17.

18.

19.

Page 7

Batmanghelich, N., et al. IPMI. Springer; 2009. A general and unifying framework for feature
construction, in image-based pattern classification; p. 423-434.

Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning
from labeled and unlabeled examples. The Journal of Machine Learning Research. 2006; 7:2399-
2434,

Li, SZ. Markov random field modeling in image analysis. Springer-Verlag New York Inc; 2009.
Cuingnet R, et al. Spatial prior in SVM-based classification of brain images. Proceedings of SPIE.
2010; 7624:76241L.

Thevenaz P, et al. A pyramid approach to subpixel registration based on intensity. Image
Processing, IEEE Transactions on. 2002; 7(1):27-41.

Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007; 38(1):95-113.
[PubMed: 17761438]

Dosenbach NUF, et al. Prediction of Individual Brain Maturity Using fMRI. Science. 2010;
329(5997):1358. [PubMed: 20829489]

Franke K, Ziegler G, Kloppel S, Gaser C. Estimating the age of healthy subjects from T1-weighted
MRI scans using kernel methods: Exploring the influence of various parameters. Neurolmage.
2010; 50(3):883-892. [PubMed: 20070949]

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2012 January 26.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Sabuncu and Leemput Page 8

@
S

IS
@

o
=]

=)
—
—

3 &

©

Root Mean Square Error (years)
—
—
Difference bw. Mean Sq. Error yearf)

@

)
o

RVM RVoxM RVoxM-NoReg A B

Predicted Age (years)
@
=)

20 80 100

Real Age (years)
Fig. 1.

Top Left: Average root mean square error for the three MVPA methods. Top Right: Average
difference between subject-level prediction errors, measured as square of real age minus
predicted age. (A) Error of RVM minus error of RVoxM. (B) Error of RVoxMNoReg minus
error of RVoxM. Error bars show standard error of the mean. Bottom Left: Scatter plot of
age estimated with RVoxM versus real age.
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Fig. 2.

Relevance voxels (in blue) for predicting age, overlaid on the average gray matter density
image across all subjects. Brighter blue indicates a higher absolute value, and thus a higher
relevance for prediction. Top row: Model from training on the first half of the data. Bottom
row: Model from training on the second half of the data.
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