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Purpose: Image thresholding and gradient analysis have remained popular image preprocessing

tools for several decades due to the simplicity and straight-forwardness of their definitions. Also,

optimum selection of threshold and gradient strength values are hidden steps in many advanced

medical imaging algorithms. A reliable method for threshold optimization may be a crucial step to-

ward automation of several medical image based applications. Most automatic thresholding and

gradient selection methods reported in literature primarily focus on image histograms ignoring a

significant amount of information embedded in the spatial distribution of intensity values forming

visible features in an image. Here, we present a new method that simultaneously optimizes both

threshold and gradient values for different object interfaces in an image that is based on unification

of information from both the histogram and spatial image features; also, the method works for

unknown number of object regions.

Methods: A new energy function is formulated by combining the object class uncertainty measure,

a histogram-based feature, of each pixel with its image gradient measure, a spatial contextual fea-

ture in an image. The energy function is designed to measure the overall compliance of the theoreti-

cal premise that, in a probabilistic sense, image intensities with high class uncertainty are

associated with high image gradients. Finally, it is expressed as a function of threshold and gradient

parameters and optimum combinations of these parameters are sought by locating pits and valleys

on the energy surface. A major strength of the algorithm lies in the fact that it does not require the

number of object regions in an image to be predefined.

Results: The method has been applied on several medical image datasets and it has successfully

determined both threshold and gradient parameters for different object interfaces even when some

of the thresholds are almost impossible to locate in the histogram. Both accuracy and reproducibil-

ity of the method have been examined on several medical image datasets including repeat scan 3D

multidetector computed tomography (CT) images of cadaveric ankles specimens. Also, the new

method has been qualitatively and quantitatively compared with Otsu’s method along with three

other algorithms based on minimum error thresholding, maximum segmented image information

and minimization of homogeneity- and uncertainty-based energy and the results have demonstrated

superiority of the new method.

Conclusions: We have developed a new automatic threshold and gradient strength selection algo-

rithm by combining class uncertainty and spatial image gradient features. The performance of the

method has been examined in terms of accuracy and reproducibility and the results found are better

as compared to several popular automatic threshold selection methods. VC 2012 American Association
of Physicists in Medicine. [DOI: 10.1118/1.3668058]
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I. INTRODUCTION

Extraction of multilayer knowledge embedded in two- and

higher-dimensional images has remained a front line

research topic over the last few decades.1–6 Availability of a

wide spectrum of medical imaging techniques7 including

MR, ultrasound, computed tomography (CT), PET, and

x- and c-rays has further intensified the image processing

needs for computerized knowledge mining in the huge image

dataset produced on daily basis. Facilitated by the simplicity

and straight-forwardness of definition, image thresholding

and gradient analysis have remained popular preprocessing

tools in several medical imaging applications,8–13 in particu-

lar, those involving object classification and quantitative

analysis of geometry, shape, and motion. Also, other imag-

ing processing techniques including interpolation, filtering,

and registration may facilitate from prior knowledge of

gradients and intensity threshold intervals. Also, selection

of optimum values for threshold and gradient parameters

is a hidden step in many advanced medical imaging
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algorithms,14,15 or, at least it helps automation of such algo-

rithms. For example, the knowledge of average tissue inten-

sity along with the gradient strength for a given tissue

interface should bring momentous improvements in different

boundary-, region-, and shape-based segmentation methods.

Automatic selection of a robust and accurate threshold pa-

rameter has remained a challenge in image segmentation.

Over the past five decades, many automatic threshold

selection methods have been reported in literature.16–35 In

late 80’s, Sahoo et al.16 published a survey of optimum

thresholding methods while Lee et al.17 reported results of

a comparative study of several thresholding methods.

Glasbey18 published results of another comparative study

involving eleven histogram-based thresholding algorithms.

A relatively recent survey of thresholding algorithms for

change detection in a surveillance environment has been pre-

sented by Rosin and Ioannidis.36 Among early works on

automatic thresholding, Prewitt and Mendelson19 suggested

using valleys in a histogram, while Doyle20 advocated the

choice of median. Otsu21 developed a thresholding method

maximizing between-class variance. Tsai24 proposed a

choice of threshold at which resulting binary images have

identical first three moments where the ith moment is defined

by the sum of pixel intensity values raised to the ith power.

Later works on thresholding methods have utilized entropy

of original and thresholded images to construct an optimiza-

tion criterion. For example, Pun25 maximized the upper

bound of posterior entropy of histogram. Wong and Sahoo’s

method26 selects optimum threshold that maximizes

posterior entropy subjected to certain inequality constraints

characterizing the uniformity and shape of segmented

regions. Pal and Pal27 utilized joint probability distribution

of neighboring pixels which they further modified28 using a

new definition of entropy. Kapur et al.29 proposed a thresh-

olding method by maximizing the sum of entropies of seg-

mented regions and a similar method was reported by

Abutaleb30 that maximizes 2D entropy. The method by

Brink31 maximizes the sum of entropies computed from two

autocorrelation functions of thresholded image histograms.

Li and Lee’s method32 minimizes relative cross entropy or

Kullback-Leibler distance between original and thresholded

images. Kitler and Illingworth33 developed a thresholding

method by minimizing segmentation errors defined from an

information-theoretic perspective, while Dunn et al.34 used a

uniform error criterion. Leung and Lam35 developed a

method that maximizes segmented image information

derived using an information-theoretic approach and demon-

strated that their method is better than the methods based on

minimum and uniform errors.33,34 Sahoo et al.37 developed a

thresholding method using Renyi’s entropy that includes

both maximum entropy as well as entropic correction meth-

ods. Zenzo et al.38 introduced the notion of “fuzzy entropy”

and demonstrated its application to image thresholding using

a functional cost minimization approach. Oh and Lindquist39

developed an indicator kriging based two-class segmentation

algorithm for two- and three-dimensional images character-

ized by a stationary and isotropic two-point covariance

function. Recently, several image thresholding methods40,41

have been reported using Tsallis entropy42 that generalizes

the Boltzmann-Gibbs-Shannon statistics describing thermo-

statistical properties of nonextensive systems. Tizhoosh43

developed an image thresholding algorithm using type II

fuzzy subsets where the range of membership function is the

power of [0,1] interval. Bazi et al.44 developed a two-class

image thresholding method using expectation-maximization

under the assumption of a generalized Gaussian distribution

for each class. Image thresholding algorithms have also been

studied in the context of document and handwritten image

processing.45–50

Although, Wong and Sahoo,26 and Pal and Pal27,28 incor-

porated some spatial image information in their methods,

others are mostly histogram-based techniques. One common

shortcoming of a purely histogram-based approach is that it

fails to utilize a significant amount of information embedded

in image features formed by spatial arrangements of inten-

sity values. Often, it is not possible for a human observer to

select a threshold in an image just from its histogram without

seeing the original image. On the other hand, the image may

contain clear partitions of different objects or tissue regions

and it may only be a trivial task to select the threshold from

the image. This observation inspired us to develop a method

that directly makes use of impressions created on the image

by different object interfaces. In our previous work,51 we

introduced the theory of class uncertainty and demonstrated

its relation with interfaces of multiple objects regions in an

image. The theory of class uncertainty and intensity homoge-

neity was combined in the minimization of homogeneity- and
uncertainty-based energy thresholding algorithm.51 The

method captures the fuzziness caused by blurring or by the

ubiquitous partial voluming effect introduced by an imaging

device and utilizes this fuzziness in optimum thresholding

by relating it to class uncertainty. Class uncertainty is

byproduct information of object classification and it’s often

ignored in the context of computer vision and imaging appli-

cations. In our previous work, it was demonstrated that high

class uncertainty, commonly associated with intermediate in-

tensity values between two object classes, appears at the vi-

cinity of object or tissue interfaces in an image. This

observation provides a unique theory of relating histogram-

based information with image-derived features.

Our previously published optimum thresholding algorithm51

suffers from two limitations—(1) an ad hoc rank-based

approach was used for image gradient feature normalization

which may shift the fulcrum as the amount of edginess varies

across images and (2) it fails to capture varying intensity

contrasts at different tissue interfaces. Here, we solve these

two major problems by simultaneously optimizing both gra-

dient and threshold parameters. The new method neither

needs any prior assumption on image gradient values nor it

requires the number of object regions in an image and yields

optimum values of threshold and gradient parameters for dif-

ferent object interfaces. Specifically, in this paper, a new

energy is designed as a function of both intensity and gradi-

ent parameters and new algorithms are developed to auto-

matically detect optimum pairs of threshold and gradient

parameters on the energy surface. Simultaneous optimization
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of threshold and gradient parameters enables selection of dif-

ferent optimum gradient for different tissue interfaces. Also,

in this paper, we present an experimental setup to quantita-

tively examine both accuracy and reproducibility of the new

thresholding method on several medical image data sets

including repeat scan multidetector CT images of cadaveric

ankles specimens and compare its performance with Otsu’s

method21 which has become a popular technique for auto-

matic thresholding. Also, the performance of the new

method has been compared with three other thresholding

methods based on minimum error thresholding,33 maximum

segmented image information35 and minimization of homo-

geneity- and uncertainty-based energy.51

II. THEORY

Image thresholding may be considered as a classification

task where a considerable amount of object/class informa-

tion is embedded in spatial arrangements of intensity values

forming different object regions in an image. In most image

segmentation or classification approaches, the primary aim is

to determine the target region or class to which an image

point or an element may belong. However, often, an impor-

tant piece of information relating to the confidence level or

conversely, the uncertainty of segmentation/classification is

overlooked. The central theme of the paper is to utilize this

“class uncertainty” as a feature to facilitate an automatic

threshold and gradient selection method. First, we introduce

the principle of the class uncertainty theory in Sec. II A

which will be followed by formulation of a new energy func-

tion for simultaneous optimization of threshold and gradient

parameters.

II.A. Principle of class uncertainty

In this section, we define class uncertainty based on priors

and describe its relation with the gradient feature derived

from spatial distribution of image intensity values. Let us

consider a simple example of Fig. 1 containing an object and

a background region with their prior intensity distributions.

Image points with intensity value of either t1 or t2 will be

classified as object points; however, the class uncertainty

values for these two cases are significantly different. Specifi-

cally, points with intensity value t1 should possess signifi-

cantly high class uncertainty as compared to those points

with intensity value t2. The relation between class uncer-

tainty and image features may be better understood with the

help of a real image. Figure 2 illustrates the idea on an image

slice from a lower abdominal CT data set of a patient. The

image depicts several regions including fat/skin, bladder,

muscles and bone which are partially separable using inten-

sity thresholding. Three threshold values are manually

picked on the intensity histogram [Fig. 2(b)] of the CT image

slice [Fig. 2(a)] among which two thresholds, namely, th1

and th2 separate meaningful tissue regions [Figs. 2(c) and

2(e)] while th3 is intentionally selected as a bad threshold

not representing any meaningful tissue region [Fig. 2(g)]. It

may be noted that class uncertainty images corresponding to

thresholds th1 and th2 trace respective tissue boundaries

[Figs. 2(d) and 2(f)] while that for the wrong threshold th3

does not and the uncertainty image shows high values all

over the homogeneous region [Fig. 2(h)].

An important observation in the above example is that

when proper thresholds are selected to separate different tis-

sue regions, corresponding class uncertainty maps depict

interfaces among respective regions. On the other hand,

when a visually incorrect threshold is selected, the class

uncertainty map no longer describes a region boundary. This

correlation between the two independently defined features

lays the theoretical foundation for our method which is

stated in the following postulate.51

Postulate 1. In an image with fuzzy boundaries, under op-

timum partitioning of object classes, intensities with high

class uncertainty appear around object boundaries.

Although it is difficult to prove or disprove the postulate

because of its nature, its validity may be justified on real-life

images as demonstrated in Fig. 2 and the other experimental

results presented in this paper.

Here, we formulate the mathematical expression for class

uncertainty from priors using Bayes’ rule6 and Shannon and

Weaver’s entropy equation.52 An image may be described

FIG. 1. An illustration of the relationship among prior

class distributions and class uncertainty for a two-class

problem. It may be noted that class uncertainty is maxi-

mum around the threshold selected under minimum

error criterion. Image points with intensity values of ei-

ther t1 or t2 are classified as object points. However, the

class uncertainty associated with points having inten-

sity t1 is significantly higher than that for points with

intensity t2.
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by its intensity function f : Zn ! R where Z denotes the set

of integers and R denotes the set of real numbers. In most

acquired digital images, intensity values are readily available

at points with integral co-ordinates which are called a

“pixel” in two-dimension (2D) and a “voxel” in three-

dimension (3D); we denote the set of all pixels or voxels in

an image as C. In this paper, we use “point” to refer to a

pixel or a voxel and denote a point by a vector whose

elements denote coordinates along different axes. Let

FO � C and FB � C represent the hypothetical true object

and background regions, respectively, in an image. Let

pAðgÞjA ¼ O or B denote the prior probability distribution

for object/background region defined as follows:

pAðgÞ ¼ Pð f ðpÞÞ ¼ gjp 2 FAÞ; (1)

where P represents “probability,” p denotes an image point,

and g is a given intensity value. Let h denote the density for

object points so that 1� h is the density for background points.

Therefore, the probability of any point p having intensity value

g, denoted by pðgÞ, may be expressed as follows:

pðgÞ ¼ hpOðgÞ þ ð1� hÞpBðgÞ: (2)

Using the above priors, the posterior probabilities are defined

by Bayes’ rule, i.e.,

Pðp 2 FOj f ðpÞ ¼ gÞ ¼ hpOðgÞ
pðgÞ ; and

Pðp 2 FBj f ðpÞ ¼ gÞ ¼ ð1� hÞpBðgÞ
pðgÞ (3)

Finally, the class uncertainty measure51 h:< ! ½0; 1� at a

point p with intensity value g is defined as the entropy of the

above two posterior probabilities which is defined by the

Shannon and Weaver’s entropy equation52 as follows:

hðgÞ ¼ � hpOðgÞ
pðgÞ log

hpOðgÞ
pðgÞ �

ð1� hÞpBðgÞ
pðgÞ

� log
ð1� hÞpBðgÞ

pðgÞ (4)

Here, the idea is to model the prior probability distributions

pO and pB and the density parameter h as a function of the

selected threshold t and the gradient parameter r. Thus, the

class uncertainty map of an image varies as a function of

threshold t and gradient parameter r; we use ht;rðgÞ to

denote the threshold and gradient-dependent class uncer-

tainty function. The methods for computing prior probability

distributions pO and pB and the density parameter h for a

given pair ðt; rÞ of threshold and gradient values are

described in Sec. III.

Previously, Saha and Udupa51 showed the use of class

uncertainty and Postulate 1 for optimum threshold selection

and later Saha et al.53 demonstrated its use for improving the

performance of a Snake-based segmentation algorithm.

However, a major limitation of Saha and Udupa’s method is

that they used an ad hoc approach for computing a normal-

ized measure for gradients which is essential to couple it

with class uncertainty using Postulate 1. Here, we overcome

this problem and present the theory to simultaneously

optimize both threshold and gradient parameters for individ-

ual tissue interfaces. In the following, we formulate an

energy function that is used for threshold and gradient

optimization.

II.B. Energy surface and threshold/gradient
optimization

As mentioned earlier, the central theme of this paper is to

couple the information embedded in the spatial arrangement

FIG. 2. An illustration of the relationship between class uncertainty and tissue interfaces under different conditions of thresholding. (a) An image slice from a

CT data of a patient’s lower abdomen. (b) Image intensity histogram for (a) with three thresholds marked as th1, th2, and th3. The first two thresholds are man-

ually selected to segment proper tissue regions while the third one is intentionally picked as a bad threshold. (c,d) Thresholded tissue regions and class uncer-

tainty image for the threshold th1. (e,f), (g,h) Same as (c,d) but for thresholds th2 and th3, respectively. Note that class uncertainty images in (d) and (f) depict

respective tissue boundaries while the same in (h) fails to indicate any tissue interface and spills out into the entire soft tissue region.
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of different object regions in an image with the class uncer-

tainty measure derived using a probabilistic model and the

theory of chaos. Specifically, we use Postulate 1 to combine

the image-derived gradient feature with the prior based

class uncertainty map to develop an energy function toward

solving the problem of simultaneous threshold and gradient

optimization for unknown number of object interfaces. It is

not difficult to find out from Eq. (4) that the class uncer-

tainty measure always lies in the normalized scale of [0, 1].

On the other hand, image gradient is measured in the image

intensity scale. Therefore, a meaningful formulation of the

energy function using Postulate 1 entails a normalized mea-

sure for image gradient values. To overcome this issue, a

gradient parameter r is introduced which needs to be opti-

mized and, quite possibly, the parameter may not remain

constant for different tissue interfaces. Many models may

be adopted to normalize the gradient measure; here a Gaus-

sian model is used to compute a normalized measure rr of

intensity gradients using the control parameter r as

follows:

rrðpÞ ¼ 1� e�
ðrðpÞÞ2

2r2 ; (5)

where r is an intensity gradient operator and rr is a nor-

malized gradient parameter. Using these two normalized

measures of class uncertainty and image gradient, the energy

function E is formulated as follows:

Eðt; rÞ ¼
X
p2c

h
ht;rð f ðpÞÞ � ð1�rrðpÞÞ

þ ð1� ht;rð f ðpÞÞÞ � rrðpÞ
i
: (6)

Following the above equation, each point p contributes large

energy if it falls in any of the following two categories—(1)

class uncertainty is high and gradient is low or (2) class

uncertainty is low and gradient is high. It may be noted that

each of these two situations is a contradiction to Postulate 1.

To some extent, the energy function E is formulated as an

aggregate measure of contradictions to Postulate 1 over the

entire image. On the other hand, if a pixel p has both high

class uncertainty and high gradient or low value for both

measures, it’s in agreement with Postulate 1 and only con-

tributes a small amount of energy. It may be noted that,

under any of these two conditions, each of the two compo-

nents on the right hand side of Eq. (6) takes a small value

(close to “0”) due to the multiplication between a high (close

to “1”) and a low (close to “0”) value and therefore the sum

of the two components is always a small value. In Sec. III,

we describe details related to a new method based on the

theoretical foundation laid in this section. Also, in the same

section, we describe experimental plans evaluating the

method.

III. METHODS AND EXPERIMENTAL PLANS

In Sec. II, we have formulated an energy function E that

captures the correlation between image gradient and class

uncertainty as guided by Postulate 1. Specifically, the energy

function is formulated as an aggregate measures of contra-

dictions to Postulate 1 by all points in an image and is

expressed as a function of threshold and gradient parameters

t and r, respectively. Thus, the energy function E essentially

forms an energy surface over the parametric space of t and r
and an optimum choice of threshold and gradient parameters

representing an object interface may be found by identifying

a meaningful depression on the energy surface. Following

the theoretical formulations of Sec. II, we need to define the

following steps to compute the energy function:

1. Computation of the original and normalized gradient

maps r and rr, respectively.

2. Computation of prior intensity probability distributions

pOðgÞ and pBðgÞ and the density parameter h for given

values of threshold and gradient parameters t and r.

Finally, it is necessary to identify the optimum values of t
and r on the energy surface E. In the following paragraphs,

we describe these steps in details.

The initial gradient map r is computed in image intensity

scale using a derivative of Gaussian (DoG) type edge opera-

tor6 to reduce the effects of noise. To accomplish it, first, a

blurring operation is applied on the original image using a

Gaussian smoothing kernel6 currently available under ITK

application libraries.54 The shape of the smoothing kernel

(i.e., sharp or wide) may be controlled using a standard devi-

ation parameter rs; in this paper, a constant value of two

points is used for the kernel parameter rs. Let fBlur denote

the intensity function for the blurred image. The gradient

map in the intensity scale is computed from the blurred

image as follows:

2D: rxðpÞ ¼ fBlurðpþ ixÞ � fBlurðp� ixÞ;
ryðpÞ ¼ fBlurðpþ iyÞ � fBlurðp� iyÞ;

rðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

xðpÞ þ r2
yðpÞ

q
; (7)

and

3D: rxðpÞ ¼ fBlurðpþ ixÞ � fBlurðp� ixÞ;
ryðpÞ ¼ fBlurðpþ iyÞ � fBlurðp� iyÞ;
rzðpÞ ¼ fBlurðpþ izÞ � fBlurðp� izÞ;

rðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

xðpÞ þ r2
yðpÞ þ r2

zðpÞ
q

; (8)

where ix, iy, and iz are unit vectors along the x-, y-, and z-

coordinate axes, respectively. The computation of the inten-

sity gradient map immediately generalizes to any higher

dimension. Finally, the normalized gradient map is com-

puted from the intensity gradient map using Eq. (5) for a

given value r of the gradient parameter.

In order to make the class uncertainty map more consist-

ent with the gradient map computed using a DoG operator,

the blurred image is used for class uncertainty computation.

The blurring operation also reduces the effects of noise and

enhances the statistics of class uncertainty maps, especially,

for sharp interfaces. It may be noted that, once the optimum

thresholds and gradients are determined, they are applied
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on the original image; thus, the blurring used during the

process of threshold and gradient optimization does not

incur any structural loss or blurring in final thresholding

results.

For a given pair of values of threshold and gradient pa-

rameters t and r, prior object and background intensity dis-

tributions pOðgÞ and pBðgÞ are modeled using the following

equations:

pOðgÞ
1 if g > tþ 1:5r

e�
ðg�ðtþ1:5rÞÞ2

2r2 otherwise;

(
(9)

and

pBðgÞ
1 if g < t� 1:5r

e�
ðg�ðt�1:5rÞÞ2

2r2 otherwise:

(
(10)

Here, tþ 1:5r and t� 1:5r are used as reference object and

background intensities because they dedicate a 3r intensity

band (covering �99.7% of population) for the interface

between the object and background regions. In Eq. (6), the

original intensity function f is replaced by the blurred image

intensity function fBlur for computing class uncertainty val-

ues. Finally, the density function h is computed as the ratio

of the number of points in each of the two thresholded

regions.

III.A. Optimization of threshold and gradient
parameters

In this section, we describe the optimization technique for

threshold and gradient parameters t and r over the energy

surface E described in Sec. II. Following that the search-

space is only two-dimensional over a limited range of values

for t and r, we adopt an exhaustive search technique. There-

fore, the most critical factor here is to define the geometry of

optimum locations on the energy surface. For the threshold

parameter t, the entire intensity range ½IMIN; IMAX� is used for

searching optimum locations. On the other hand, search-

space for the gradient parameter r is limited to

½1%� ðIMAX � IMINÞ; 40%� ðIMAX � IMINÞ�; we stay away

from the extreme values of r to reduce computation burden

and also, to avoid computational instability. We determine

two types of optimum locations on the energy surface—a

type I optimum location forms a meaningful or valid pit on

the energy surface E while a type II optimum location forms

a meaningful valley on E. Let Er0
denote energy function for

a given value r0 of the gradient parameter and thus, only the

threshold parameter is varied. Therefore, Er0
forms an

energy curve for the gradient parameter value r0. A local

minimum on the energy surface E is referred to as a pit while

a local minimum on an energy line Er0
is referred to as a

valley point. Depending upon the resolution of the search-

space, both E and Er0
may contain a large number of noisy

local minima. Here, we use the idea of intrinsic basin, an

idea similar to catchment basins used in watershed segmen-

tation methods,55,56 to distinguish between noisy and mean-

ingful local minima. Let ðt1;r1Þ denote the parameter values

at a pit, i.e., a local minimum on the energy surface E. The

intrinsic basin of ðt1;r1Þ, denoted by Bðt1;r1Þ, is the set of all

locations ðt; rÞ such that there exists a path from ðt; rÞ to

ðt1;r1Þ with all points on the path having energy values

greater than or equal to Eðt1;r1Þ. Essentially, Bðt1;r1Þ corre-

sponds to the region on E that can be flooded by pouring

water from top at Eðt1;r1Þ without water leaking to a loca-

tion with energy value less than Eðt1;r1Þ. An intrinsic basin

Br1
ðtÞ for a valley point ðt1;r1Þ, i.e., a local minimum on the

energy curve Er1
is defined similarly. The idea of intrinsic

basin on an energy line Er1
is illustrated in Fig. 3. The black

line in Fig. 3 denotes the energy line over the entire intensity

range ½IMIN; IMAX� and each local minimum on the line repre-

sents a valley point. Different colors are used to indicate dif-

ferent intrinsic basins; however, one intrinsic basin may

include multiple colors. The depth of a basin is defined as

the height of its topmost layer with respect to its bottom. A

pit (or, a valley point) is considered as a valid pit (respec-

tively, a valid valley point) if the height of its intrinsic basin

covers at least 3% of the maximum variation in the energy

surface E (respectively, the energy line Er). The maximum

variation for the energy curve Er, illustrated in Fig. 3, is the

depth of the grey basin. Depths of basins marked as invalid

valley points are less than 3% of the maximum variation and

thus fail to quality as valid valleys; all other basins in Fig. 3

qualify as valid valleys. The choice of the parameter value

of 3% for validity check was selected as it was experimen-

tally observed that the height of intrinsic basins for noisy

points were small and was always less than 1%. Therefore,

the parameter value of 3% ensures exclusion of all noisy

points.

In our experiments, both energy surfaces and curves are

mostly found to be smooth functions except for tiny fluctua-

tions, especially, over flat regions. The primary objective of

adding a validity constraint on pits and valley points using

intrinsic basins is to avoid such small fluctuations while

capturing all meaningful local minima. Each valid pit is con-

sidered as a type I optimum location for threshold and

FIG. 3. An illustration of intrinsic basins on an energy line Er1
. Different

colors are used to indicate different intrinsic basins; however, one intrinsic

basin may include multiple colors. All invalid valley points are marked in a

different color than valid valley points.
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gradient parameters. A meaningful valley is defined as an

eight-connected path57,58 of valid valley points for contigu-

ous values of the gradient parameter. Finally, a type II opti-

mum point is defined at the center of a meaningful valley

containing no pit or type I optimum location. Thus the search

step for optimization of threshold and gradient parameters

may be summarized as follows:

An example of the energy surface/function and detected

optimal locations are illustrated in Fig. 4. For the current

example, three valley lines were identified on the energy

surface among which two were associated with pits or

type I optimal locations while one valley had no pit on it.

For the valley with no pit, a type II optimal location was

detected following the algorithm described in the above.

III.B. Experimental plans

Here, we describe our experimental plans to examine the

effectiveness of the proposed thresholding algorithm and to

compare its performance with Otsu’s method21 and several

other popular thresholding methods.33,35,51 Although, the

thresholding method by Otsu was proposed three decades

ago, it has become quite popular because of its classical

theoretical foundation. Recently, the method has been

implemented within the ITK library54 and has been used in

several medical imaging8–13 and other applications.59–62

Essentially, the method is based on minimization of the

class density weighted within-class variance which is also

equivalent to maximization of between-class variance. A li-

mitation of Otsu’s method is that it requires that the num-

ber of tissue regions must be specified. In our experimental

setup we used Otsu’s method with the correct number of

tissue regions specified by users. On the other hand, for the

proposed method, this number is detected automatically by

the algorithm. Also, we have compared the performance of

the new method with the minimum error (ME) (Ref. 33)

and maximum segmented image information (MSII) (Ref.

35) thresholding algorithms along with our previously pub-

lished minimization of homogeneity- and uncertainty-based

energy (MHUE) thresholding algorithm.51 The principle of

ME thresholding algorithm is to find the threshold that

gives minimum classification error defined as follows. For

a given threshold, an image is partitioned into two regions

and the normal distribution of intensity values within each

partition is determined. The classification error is deter-

mined as the average fraction of the normal intensity distri-

bution of one partition falling inside the intensity range of

the other. The principle of the MSII thresholding algorithm

is based on maximization of segmented image information

defined as the difference between initial scene uncertainty,

computed from the original image, and residual uncertainty

computed from the thresholded image. In the MHUE (Ref.

51) thresholding algorithm, the class uncertainty theory is

combined with a rank-based normalized measure of region

homogeneity to formulate the criterion of threshold

optimization.

Experiments were designed to evaluate both accuracy and

reproducibility of the new method and to compare with the

other methods. The accuracy of a method was computed by

comparing its results with manual thresholding except for

phantom data where truths were known. Reproducibility of a

method was computed using repeat scan multidetector com-

puted tomography (CT) data of cadaveric ankle specimens.

In order to reduce subjectivity artifacts by individuals for

accuracy analyses on clinical data, the mean of threshold

values selected by three independent users for a given inter-

face was used as truth. Toward defining an error measure

between a computer-selected threshold s and a true threshold

t, an important observation was made that pixel/voxel den-

sity is nonuniform over the intensity range. Therefore, a

straight-forward difference between s and t may not be a

good choice for error measure. Let H: ½IMIN; IMAX� ! Zþ,

Algorithm. Search_Local_Minima_on_Energy_Surface.

Input:

Eðt;rÞ: energy surface where t and r are threshold and

gradient parameters, respectively

Output:

Types I and II optimum locations for threshold and

gradient parameters

Begin:

for all values of the threshold parameter t do

for all values of gradient parameter r do

if ðt;rÞ is a valid pit

select ðt;rÞ as a type I optimum location for

threshold and gradient parameters

if t is a valid valley point on Er

find the eight-connected path p of valid valley

points containing ðt;rÞ
if p contains no valid pit or type I optimum location

select a type II optimum location on p
end

FIG. 4. An illustration of different types of optimum locations on an energy

surface=function. The energy function is rendered using a 3D MATLAB display

function with color indicating the energy value. Here, valley lines are shown

with Types I (pit) and II optimum locations on the energy surface are denoted

by hollow circles of different colors.
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where Zþ is the set of positive integers, denote the image

intensity histogram function. The value of HðiÞ denotes the

pixel/voxel density at the intensity value i. We use the fol-

lowing error function which essentially represents the pixel/

voxel density weighted distance between s and t in the nor-

malized scale of [0,1] defined as follows:

Errorðs; tÞ ¼

Xt

i¼s

HðiÞ

XIMAX

i¼IMIN

HðiÞ
; (11)

where HðiÞ represents the intensity histogram of the test

image. The idea of the above error measure is graphically

illustrated in Fig. 5. When there are multiple true thresholds t1,

t2, t3, … and computed thresholds s1, s2, s3, … for different

object regions, for each true threshold ti the closest computed

threshold sj is used for estimating the error. In the following,

we describe different image data sets used in our experiments.

CT image of cadaveric ankle specimens: Four cadaveric

ankle specimens were scanned in a Siemens Sensation 64

Multislice CT scanner at 120 kVp and 140 mAs and a pitch of

0.8 to adequately visualize the bony structures. After scanning

in a helical mode at a slice thickness of 0.6 mm and collima-

tion of 12� 0.6 mm, the image was reconstructed at 0.3 mm

slice thickness with a normal cone beam method utilizing a

very sharp kernel of U75u to achieve high image resolution.

Image parameters for these scans were as follow: matrix

size¼ 512� 512 pixels; number of slices¼ 334–336; pixel

size¼ 152 lm. Each ankle specimen was scanned three times

after repositioning on the table. This CT data set was used for

both accuracy and reproducibility analysis.

Simulated brain MRI: T1-weighted MR phantom

images at different levels of noise, intensity nonuniformity

and slice thickness were downloaded from the online facility

supported by Brainweb.63 Specifically, six MR images at

0%, 1%, 3%, 5%, 7%, and 9% noise levels provided by the

above referred online site were used for our experiments.

Seven MR images at 1%, 2%, 5%, 10%, 15%, 20%, and

25% intensity nonuniformity were generated from the origi-

nal image and the degraded image at 20% intensity nonuni-

formity provided at the website. Image parameters for all

images at varying noise and intensity nonuniformity levels

are as follows: matrix size¼ 181� 217 pixels; number of

slice¼ 181; isotropic voxel size¼ 1 mm. Also, another set

of five images at varying slice thickness of 1, 3, 5, 7, and 9

mm was used to examine the performance of the method

under varying resolution.

IV. RESULTS AND DISCUSSION

IV.A. Qualitative results

Results of application of the method on 2D and 3D CT

images are presented in Figs. 6–8. Figure 6(a) shows a 2D

image slice from a lower abdominal CT image of a patient

containing different tissue regions/organs, namely, bone,

muscle, bladder, fat/skin and air that are visually detectable.

The intensity value for the air space in this image is exactly

“0” and therefore, the region with zero intensity value was

excluded from analysis. The automatic threshold and gradi-

ent selection method was applied over regions with nonzero

intensity values and three thresholds were detected

[Fig. 6(b)] segmenting the image into four regions

[Fig. 6(d)] corresponding to fat/skin, bladder, muscles and

bone. The energy surface and detected optimal threshold and

gradient parameter locations are illustrated in Fig. 6(c). In

Fig. 6(d), different thresholded regions are marked with dif-

ferent colors. It may be noted that around each muscle

region, there is a thin layer of missclassified bladder region

caused by partial voluming effect. Also, noisy speckles are

visible on thresholded regions in Fig. 6(d) which disappear

on a smooth image shown in Fig. 6(e). The class uncertainty

image at different thresholds is presented in Fig. 6(f) where

different colors are used to describe interfaces between re-

spective tissue regions. It is interesting to note how the class

uncertainty image depicts different object boundaries. The

method has been found stable despite noise and low contrast

between bladder and muscles. Also, Otsu’s thresholding

algorithm was applied to this image (over regions with non-

zero intensity values) and the results are presented in Figs.

6(g)–6(i). For Otsu’s method, the number of tissue regions

was provided externally. Beside this limitation of Otsu’s

method, results of the two methods are visually similar for

this example. Results of application of MSII, ME, and

MHUE algorithms are shown in Figs 6(j)–6(l), respectively;

while MHUE has produced visually satisfactory results, ME

and MSII have clearly failed to detect different tissue

regions.

Results of application of the method on another image are

illustrated in Fig. 7. Figure 7(a) shows a 2D image slice from

upper abdominal CT image of a patient containing different

regions with visibly distinct intensity values. Our method

was applied on this image slice and five different optimal

thresholds were identified [Figs. 7(b) and 7(c)]. Six thresh-

olded regions, including air, are depicted in Figs. 7(d) and

7(e) using a separate color for each thresholded region. The

class uncertainty maps for different thresholds are displayed

in Fig. 7(f) using different colors for different thresholds

which indicates different tissue interfaces. Results of appli-

cation of Otsu’s method are presented in Figs. 7(g)–7(i). As

visually appear in Fig. 7(g), Otsu’s method has under thresh-

olded the region representing muscle, spleen and liver while

FIG. 5. A graphical illustration of the error measure between a selected

threshold s and the true threshold t. Essentially, it computes the pixel=voxel

density weighted distance (the area of the grey region) between the two

thresholds and normalize by image size, i.e., the total area under the

histogram.
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it has over thresholded the bone region. Results of applica-

tion of MSII, ME, and MHUE algorithms are shown in Figs.

7(j)–7(l), respectively; while MHUE has produced visually

satisfactory results similar to the new algorithm, ME and

MSII have clearly failed to detect different tissue regions.

IV.B. Accuracy analysis

As described in Sec. III B, the following image data sets

were used to examine the accuracy of the new method as

compared to Otsu’s method and three other popular thresh-

olding methods—(1) three repeat CT scans of four cadaveric

ankle specimens (altogether, twelve images), (2) six MR

phantom images from the brain web data set with noise level

varying over 0%–9%, (3) seven MR phantom images from

the same dataset with intensity nonuniformity levels varying

over 1%–25%, and (4) five MR phantom images from the

same data set with slice thickness varying over 1–9 mm. All

12 ankle images were used for this experiment and results of

application of the new method and those of other methods

on one ankle specimen are illustrated in Fig. 8. The new

method successfully detected three thresholds producing vis-

ually satisfactory segmentation of four regions, namely,

background, fat/skin, muscle, and bone. Salt and pepper

noise, especially, over thresholded regions for fat/skin and

muscle [Fig. 8(d)] was primarily caused by low contrast-to-

noise-ratio between the two regions which disappeared after

applying a simple smoothing filter [Fig. 8(e)]. More interest-

ing, the amount of noise on each of the two regions is more

or less similar indicating that the method selected the thresh-

old nearly at the middle between mean intensities for the

two regions. In Fig. 8(b), the second threshold on the inten-

sity histogram of the 3D image represents the threshold for

the interface between the two regions which is located near

the second pick of the histogram. Just by looking at the his-

togram it is almost impossible to select this threshold. On

FIG. 6. Results of application of different thresholding methods on a CT image slice of lower abdomen. (a) Original CT image slice. (b) Optimum thresholds

(red lines) derived by the new method. (c) The energy surface with valley lines and optimum threshold and gradient parameters (hollow circles). (d) Thresh-

olded regions in different colors as applied to the original image. (e) Same as (d) but applied to a smoothed image. (f) Object class uncertainty maps at differ-

ent optimum thresholds. Note that the class uncertainty image highlights different tissue interface at different optimum thresholds. (g,h,i) Same as (b,d,e),

respectively, but for Otsu’s method. (j,k,l) Results of thresholding as obtained by the MSII, ME, MHUE algorithms, respectively. One of the merits of the pro-

posed method is that by incorporating spatial information, the new method succeeds in dealing with all three examples of Figs. 6–8; however, Otsu’s method

succeeds in Fig. 6 but clearly fails in Fig. 8.
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the other hand, the two regions and therefore the interface

threshold is clearly visible in the image which allowed our

algorithm to automatically detect the threshold. As shown in

Fig. 8(c), each of the first two thresholds led to pits (type I

optimum locations) while the third threshold produced only

a valley (type II optimum location). The class uncertainty

image at different thresholds successfully depicts different

interfaces with different colors. Otsu’s method has failed to

produce visually satisfactory results for this example. Also,

ME and MSII thresholding methods have failed to find

thresholds for all three tissue interfaces in these images sig-

nificantly increasing error measures. For this specific speci-

men, the MHUE has produced almost similar results [Fig.

8(l)] as produced by the new algorithm. For quantitative ac-

curacy analysis, gold standard threshold for each interface

for each image was determined as the average of the thresh-

olds selected using a graphical user interface by three inde-

pendent users to reduce the effect of interuser subjectivity

errors. For a given CT image and a specific tissue interface,

the threshold error by a method was determined from the

true threshold and the closest computed threshold according

to the error definition presented in Sec. III B. Finally, for a

given image, the threshold error was computed as the sum of

errors over all interfaces. Images threshold errors for twelve

images by the five methods are illustrated in Fig. 9 using bar

diagram. Also, the standard deviation of threshold errors for

different interfaces in an image is indicated in the figure.

The new method has clearly outperformed the ME and MSII

thresholding methods. Average image threshold errors by

Otsu’s and MHUE methods are 20.78% and 8.57%, respec-

tively, while that by the new method is only 2.75% indicat-

ing seven- and three-fold error reduction as compared to

Otsu’s and MHUE methods, respectively. Also, the standard

deviation of threshold errors for different tissue interfaces by

the new method is relatively small for all images indicating

the consistency of our method in selecting the threshold for

different tissue interfaces. As described in Sec. IV B, aver-

age image threshold error was measured by adding errors

FIG. 7. Same as Fig. 6, but for a CT image slice of upper abdomen.
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FIG. 8. Same as Fig. 6, but for a 3D CT image of a cadaveric ankle specimen.

FIG. 9. Results of quantitative analyses of image

threshold errors by different methods. For each ankle

CT image, indicated by a number between one and

twelve on the horizontal axis, height of the bar indi-

cates the percent image threshold error. The line one

each bar denotes the standard deviation (in percentage

scale) of threshold errors for different interfaces in an

image.
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from all interfaces. For example, each ankle CT data used

here has three tissue interfaces; therefore, the average inter-

face threshold error by our method should be 0.92% com-

puted by dividing the total image threshold error of 2.75%

by three. We performed a paired t-test of threshold errors by

the new, the Otsu’s and the MHUE methods using the error

values for all three interfaces in all images. The average

threshold errors for an interface by Otsu’s, MHUE and the

new methods are 6.93%, 2.86%, and 0.92%, respectively,

and the null hypothesis was rejected with p-value< 0.001

for comparisons between the new and either of Otsu’s or

MHUE methods.

Results of application of the new method and those of

Otsu’s method on the MR brain phantom image at varying

noise levels are illustrated in Fig. 10. Figures 10(a)–10(e)

illustrate matching image slices from phantom data at 0%,

3%, 5%, 7%, and 9% noise. For all 3D images at different

noise levels, both new and Otsu’s methods detected

four thresholds producing visually satisfactory results; see

Figs. 10(f)–10(j) and Figs. 10(p)–10(t). Class uncertainty

FIG. 10. Results of thresholding on MR brain phantom images at different noise levels: 0% (a), 3% (b), 5% (c), 7% (d), and 9% (e). (f–j) Results of threshold-

ing by the new method for (a–e), respectively, at different noise levels. (k–o) Class uncertainty images at optimum thresholds of (f–j), respectively. (p–y)

Same as (f–j) but for Otsu’s (p–t) and the MHUE (u–y) methods, respectively.
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images at different noise levels for different thresholds using

our method are presented in Figs. 10(k)–10(o); similar to the

other examples, class uncertainty images at different thresh-

olds nicely represent different interfaces. Results of thresh-

olding using the MHUE algorithm are presented in

Figs. 10(u)–10(y); although MHUE produced similar results

to the new algorithm at low noise, the results at high noise

[Fig. 10(y)] is visually less satisfactory. Figure 11 illustrates

same results at different slice location from 3D images.

Results of application of the new, Otsu’s and the MHUE

thresholding methods on MR brain phantom images with

varying intensity nonuniformity are qualitatively illustrated

in Fig. 12. Figures 12(a)–12(d) shows the matching slice

from phantom images at 10%, 15%, 20%, and 25% intensity

nonuniformity. As observed in Figs. 12(e)–12(h) and

12(m)–12(p), both the new and Otsu’s methods are found

quite robust under moderate intensity nonuniformity. How-

ever, a thresholding method may fail at higher levels of

intensity nonuniformity where significant overlap takes place

between intensity distributions of two tissue types at

FIG. 11. Same as Fig. 10 but at a different slice location.
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FIG. 12. Same as Fig. 10 but at different nonuniformity levels: 10% (a), 15% (b), 20% (c), and 25% (d) intensity nonuniformity. Here, a display-intensity win-

dow different from Figs. 10 and 11 was used to illustrate the intensity nonuniformity.

527 Liu, Liang, and Saha: New thresholding method combining class uncertainty and gradient 527

Medical Physics, Vol. 39, No. 1, January 2012



different spatial locations. The MHUE algorithm have failed

to produce visually satisfactory results (Figs. 12(s) and 12(t)]

at 20% and 25% intensity nonuniformity.

Qualitative results on Brainweb MR phantom images at

different levels of noise and intensity nonuniformity illus-

trated in Figs. 10–12 do not lead to a decisive conclusion

about the performance of the new, Otsu’s and MHUE meth-

ods. For this reason, we performed a quantitative comparison

among the results by different methods in the same way we

did for the example of ankle images. Errors of different

image thresholding methods at different levels of noise are

presented in Fig. 13(a) as functions of noise; results of com-

parison with Otsu’s and MHUE methods are magnified in

Fig. 13(b). Figures 13(a) and 13(b) shows that the new

method clearly outperforms (smaller errors) ME and MSII

methods and also, generates less error than Otsu’s methods

at every level of noise. As compared to the MHUE method,

the improvement by the new method is enhanced at higher

noise levels. Similar to the example of ankle image, we per-

formed a paired t-test of threshold errors by the new and

Otsu’s methods using the error values for all four interfaces

in images with varying noise. The average threshold errors

for an interface by the new, Otsu’s and MHUE methods are

0.56%, 0.88% and 1.02%, respectively, and the null hypothe-

sis was rejected with p-value¼ 0.01 for comparison between

the new and Otsu’s methods and the p-value observed was

0.07 for comparison between the new and MHUE methods.

For the experiment at varying thickness levels, results of

quantitative comparison among the results from the five

methods in terms of image threshold errors are presented in

Fig. 13(c) as a function of slice thickness. The results of

paired t-test between our method and Otsu’s method are as

follows: average threshold errors for an interface by the new,

Otsu’s, and MHUE methods are 0.65%, 1.05%, and 1.13%,

respectively, and the null hypothesis was rejected with

p-value< 0.001 for comparison between the new and Otsu’s

methods and the p-value observed was equal to 0.21 for

comparison between the new and MHUE methods. The

experimental results of Fig. 13(d) at different levels of inten-

sity nonuniformity confirm the same trend observed in

Figs. 13(a)–13(c) at varying noise and slice thickness. The

results of paired t-test between our method and Otsu’s

method at different levels of intensity nonuniformity are as

follows: average threshold errors for an interface by the new,

Otsu’s, and MHUE methods are 0.64%, 1.13%, and 0.97%,

respectively, and the null hypothesis was rejected with

p-value< 0.001 for comparison between the new and Otsu’s

methods and the p-value observed was 0.06 for comparison

between the new and MHUE methods. In general, the per-

formance of the previously published MHUE thresholding

FIG. 13. Results of quantitative comparison on MR brain phantom images at varying levels of noise, slice thickness and intensity nonuniformity. (a) Errors for

different image thresholding algorithms as functions of noise level. (b) Same as (a) but without MSII and ME. (c, d) Same as (a) but as functions of slice thick-

ness (c) and intensity nonuniformity (d).
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algorithm was comparable to that of the new algorithm under

small imaging artifacts with noise, intensity nonuniformity

and slice thickness. However, the performance of the MHUE

algorithm was degraded as levels of those artifacts were

raised. This inconsistency in performance of the MHUE

algorithm has reduced the statistical significance in the

results of paired t-test analyses.

IV.C. Reproducibility analysis

As described in Sec. III B, three repeat CT scan data

of four cadaveric specimens were used for reproducibility

analysis. We performed two reproducibility analyses as

follows:

Experiment 1: For this experiment, repeat CT scans were

used to examine the reproducibility of threshold values for

different interfaces and specimens. From every CT image,

we extracted three data values, each representing the

threshold value for one of the three tissue interfaces (see

Sec. IV B). Thus, altogether there were twelve events each

representing the threshold for a specific interface in a given

specimen [Figs. 14(a)–14(c)]. The threshold value computed

from each repeat CT scan was considered as a repeat obser-

vation of the event; thus, there were three repeat observa-

tions. Results of this experiment are presented in

Figs. 14(a)–14(c) showing that high repeat scan reproduci-

bility for all three methods except that the MHUE algorithm

has underperformed for one specimen (specimen-interface

number 5) where it missed the threshold for one tissue

interface.

Experiment 2: The purpose of this experiment was to

examine whether a method reproduce the same threshold for

FIG. 14. Results of reproducibility analysis and intraclass coefficient (ICC) of threshold values in repeat CT scans. (a) ICC for threshold values of different tis-

sue interfaces of four specimens in three repeat scans using the new method. (b) Same as (a) but for Otsu’s method. (c,d) Same as (a,b) but for ICC value of

thresholds for matching interfaces in different specimens using the first CT scan.
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a specific tissue interface in different specimens. The argu-

ment behind this experiment is that, in CT images, intensity

values for different tissues are highly reproducible64 and

therefore, different methods should produce similar thresh-

olds for a specific interface in different specimens. For this

experiment, we used the data from first CT scan for each of

the four specimens. Here, threshold of a given tissue inter-

face is considered as an event leading to three events for

three interfaces. On the other hand, the threshold values of

the specific tissue interface computed from different speci-

mens are treated as repeat observations leading to four obser-

vations for each event. Results of this experiment for the

new, Otsu’s and MHUE methods are presented in

Figs. 14(d)–14(f). ICC values for the three methods under

this experiment are 0.999, 0.865, and 0.976, respectively.

Similar results were found using images from other two

scans.

Results of above two experiments show that all three

methods successfully reproduce a threshold in repeat scans

for a specific interface in a given specimen. However, Otsu’s

method has failed to guarantee high reproducibility of the

threshold for a specific interface in different ankle specimens

which is expected to be similar in CT images. The MHUE

method is less robust in detecting all different tissue interfa-

ces in an images resulting reduced ICC values in both repro-

ducibility experiments. The new method has shown high

reproducibility under both experiments. In repeat CT scans

of a given specimen, histograms are similar; on the other

hand for different specimens, there were significant varia-

tions in histograms due to differences in tissue proportions.

It explains the behavior of Otsu’s method in above two

experiments.

IV.D. Conclusion and discussion

In this paper, we have presented a new method for

simultaneously computing optimum values for thresholds

and gradient parameters for different object interfaces. The

method has been applied on several medical image data

sets. For every example presented here, the new method

has successfully determined the number of object/tissue

regions in the image and also, detected visually satisfactory

thresholds for different tissue interfaces even when some

of the thresholds are almost impossible to locate in their

histograms. Although, the method provides the optimum

gradient parameter for each interface in an image, the ac-

curacy and reproducibility of this parameter has not been

examined in this paper. Accuracy and reproducibility of

the new thresholding method have been evaluated using

both clinical CT images and MRI brain phantoms data

sets. The performance of the method has been compared

with two types of methods—(1) methods with automatic

detection of the number of object regions (ME, MSII,

MHUE) and (2) methods with predefined number of object

regions (Otsu). Results of comparative experiments have

shown that the new significantly outperform the two meth-

ods (ME and MSII) under the first category. Results of

comparison with Otsu’s method has shown that, given the

predefined number of object regions, Otsu’s method pro-

duce visually similar results to our method where the

thresholds are visible (e.g., a local plateau) on the histo-

gram. However, Otsu’s method being a purely histogram-

based algorithm; it may fail to properly select a threshold

when it is located near a local top on the histogram (Fig. 8).

On the other hand, our method effectively utilizes spatial

information by combining image gradient with class uncer-

tainty. Therefore, although, the information on the histo-

gram is not good enough to select the right threshold, the

new method fills the gap by using spatial information. Fur-

ther, one major advantage of the current method over

Ostu’s method is that the new method does not require any

predefined number of object region in an image which

itself is a significant improvement. Even for the examples

where Otsu’s method produce results visually similar to the

new method, quantitative analyses of accuracy and repro-

ducibility have shown that the new method is superior to

Otsu’s method. As compared to the MHUE algorithm, the

improvement in performance of the new algorithm is

enhanced as higher levels of imaging artifacts by noise,

intensity nonuniformity and resolution. Also, the MHUE

algorithm was found less robust in detecting thresholds for

all tissue interfaces.

All methods were implemented on a Desktop PC with

Intel(R) Xeon(R) CPU at 2.27GHz running under a Linux

operating system. For a 3D Brainweb image of size

181� 217� 181 (Fig. 10), the ME and MSII methods take

approximately 1 s to complete the task. Time complexity for

Otsu’s method depends on the number of object regions in

an image. It takes approximately 1 s for three objects, 3 s for

four objects, and 40 s for five objects and it increases expo-

nentially with the number of objects in an image. Running

time for the MHUE algorithm and our new method are both

independent of the number of objects regions but increases

linearly with image size. For the 3D Brainweb image

(Fig. 10), the running time is around 30 s for MHUE, while

the computation time of our method approximately 41 s.

Overall, the new algorithm improves the accuracy and

robustness of image thresholding without any prior knowl-

edge of the number of object regions with some increased

computational costs.
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