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Abstract

Background: Many tropical marine macroalgae are reported from all three ocean basins, though these very wide
distributions may simply be an artifact resulting from inadequate taxonomy that fails to take into account cryptic diversity.
Alternatively, pantropical distributions challenge the belief of limited intrinsic dispersal capacity of marine seaweeds and the
effectiveness of the north-south oriented continents as dispersal barriers. We aimed to re-assess the distribution of two
allegedly circumtropical brown algae, Dictyota ciliolata and D. crenulata, and interpret the realized geographical range of
the respective species in relation to their thermal tolerance and major tectonic and climatic events during the Cenozoic.

Methodology/Principal Findings: Species delimitation was based on 184 chloroplast encoded psbA sequences, using a
Generalized Mixed Yule Coalescent method. Phylogenetic relationships were inferred by analyzing a six-gene dataset.
Divergence times were estimated using relaxed molecular clock methods and published calibration data. Distribution
ranges of the species were inferred from DNA-confirmed records, complemented with credible literature data and
herbarium vouchers. Temperature tolerances of the species were determined by correlating distribution records with local
SST values. We found considerable conflict between traditional and DNA-based species definitions. Dictyota crenulata
consists of several pseudocryptic species, which have restricted distributions in the Atlantic Ocean and Pacific Central
America. In contrast, the pantropical distribution of D. ciliolata is confirmed and linked to its significantly wider temperature
tolerance.

Conclusions/Significance: Tectonically driven rearrangements of physical barriers left an unequivocal imprint on the
current diversity patterns of marine macroalgae, as witnessed by the D. crenulata–complex. The nearly circumglobal tropical
distribution of D. ciliolata, however, demonstrates that the north-south oriented continents do not present absolute
dispersal barriers for species characterized by wide temperature tolerances.
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Introduction

Geographical distributions and range sizes of species typically

result from the complex interplay of ecological and historical

factors. The combined effect of an organism’s ability to disperse

and the strength of dispersal barriers will, amongst other factors,

greatly influence the realized distribution of a species. The

apparent lack of dispersal barriers combined with high dispersal

capacities has often been invoked to explain wide distribution

ranges of many marine species [1,2]. However, even among

marine organisms distribution ranges vary widely as do their

intrinsic dispersal capacities. Kinlan & Gaines [3], using isolation-

by-distance slopes, determined that propagule dispersal varies at

least over five orders of magnitude among marine organisms.

Compared to marine invertebrates and fish, macroalgae are

considered poor dispersers. Even though manifest evidence for

long distance dispersal exists, these events are probably relatively

uncommon [4–7]. Congruent with limited dispersal capacities,

accumulating molecular data provide evidence for the prevalence

of geographically restricted cryptic species in many allegedly

globally distributed seaweeds e.g. [8–10].

For tropical marine coastal organisms the closure of the

circumtropical Tethyan seaway and the North-South orientation

of the African and American continents together with a steepening

of the sea surface temperature gradient from the equator to the

poles since the late Eocene [11] resulted in major dispersal

barriers. Sea surface temperature is known to play a pivotal role in

determining the range and position of distributions of macroalgae,
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and marine organisms in general e.g. [12–15]. Temperature limits

for survival, growth and/or reproduction correlate well with the

geographic ranges of seaweeds [16]. Most species display a rather

narrow thermal tolerance range which is reflected in restricted

latitudinal distributions [17–19]. For tropical species this implies a

serious constraint on dispersal between oceanic basins. Alterna-

tively, and avoiding cold water dispersal barriers, interoceanic

dispersal may succeed through the Suez and Panama Canal,

provided that the species cope with the osmotic stress resulting

from the hyper- or hyposaline conditions that characterize these

canals. Despite the apparent strength of the barriers that separate

the major ocean basins, unequivocal molecular evidence for

widespread circumtropical algal distributions has been presented

for some seaweeds, including Caulerpa species [20–21], the Boodlea-

complex [22] and the red alga Murrayella periclados [23]. These

distributions challenge the belief of limited intrinsic dispersal

capacity and the effectiveness of the north-south orientated

continents as dispersal barriers for tropical marine seaweeds.

In this study we address the genetic differentiation and

distribution patterns of Dictyota, a prominent genus in tropical to

warm-temperate oceans. We focus on Dictyota species with dentate

margins, which are generally reported under the names D. ciliolata

and D. crenulata. Dictyota ciliolata, originally described from the

Caribbean Sea, is regarded as an illustrative species with a

pantropical distribution [24–29]. Dictyota crenulata, originally

described from southern Pacific Mexico, closely resembles D.

ciliolata but differs in the abundance and shape of the marginal

teeth. In D. crenulata the margins are set with numerous triangular-

shaped teeth that are regularly spaced; while in D. ciliolata teeth are

much less abundant and irregularly spaced or absent altogether.

Like D. ciliolata, D. crenulata has been assumed to be broadly

distributed in the tropics, although its occurrence in the Indo-West

Pacific has been questioned [27]. In the Caribbean Sea the species

is frequently reported as D. jamaicensis Taylor, a taxon which is

considered synonymous with D. crenulata [30].

Since these very wide distributions may simply be an artifact

resulting from inadequate taxonomy which fails to take into

account cryptic diversity we aim to: 1. delimit species using a

sequence-based algorithmic methodology based on a dataset of

184 chloroplast encoded psbA sequences of Dictyota representatives;

2. reinterpret geographical distributions of the respective species;

3. assess how temperature tolerance and the closure of the

Tethyan seaway in the Cenozoic have shaped the current ranges

and diversity patterns using a phylogenetic approach. Tempera-

ture tolerances of the species were determined by correlating

distribution records with sea surface temperature data.

Materials and Methods

Taxon sampling and DNA sequencing
We sampled an extensive number of specimens of Dictyota

ciliolata, D. crenulata and other Dictyota species collected worldwide

(see Table S1 in Supporting Information). Morphological species

identification was based on regional floras and a recent taxonomic

treatise of the genus [24,27,30–32]. Total genomic DNA was

extracted from silica gel preserved material using a standard

CTAB-extraction method and subsequent purification with a

WizardH DNA Clean-Up System (Promega Inc., Madison, WI,

USA) as outlined in De Clerck et al. [33]. The plastid-encoded

psbA (photosystem II reaction center protein D1) and rbcL

(RuBisCO large subunit) genes were amplified and sequenced as

outlined by De Clerck et al. [33] and Hwang et al. [34].

Mitochondrial cox1, cox3 and nad1 genes were amplified and

sequenced according to Tronholm et al. [35]. The protein coding

sequences were aligned by eye using MEGA 5 [36]. A complete

list of specimens used in the molecular analyses is detailed in Table

S1 in Supporting Information.

Species delimitation
Species were delimited using a psbA dataset of 184 unique

Dictyota sequences. We used an algorithmic approach developed by

Pons et al. [37] and Monaghan et al. [38]. The method, using a

Generalized Mixed Yule Coalescent (GMYC) model aims to

detect the transition between micro- and macroevolutionary

patterns using an ultrametric tree and hence define the species

boundary. A maximum likelihood approach is used to optimize

the shift in branching rates in an ultrametric gene tree from

interspecific branches (Yule model) to intraspecific branches

(neutral coalescent). To obtain an ultrametric tree, a Bayesian

phylogenetic analysis, using one sequence for each haplotype, was

conducted in BEAST v1.5.3 [39] under a GTR+ I+G model with

an uncorrelated lognormal (UCLN) relaxed molecular clock

model [40] and using a coalescence tree prior. Two Markov

Chain Monte Carlo (MCMC) analyses were run for 10 million

generations, sampling every 1000th generation. The output was

diagnosed for convergence using Tracer v.1.5, and summary

statistics and trees were generated using the last five million

generations with TreeAnnotator v1.5.3 [41]. GMYC analyses

were performed under single- and multiple-threshold models [38],

using the SPLITS package for R (http:// r-forge.r-project.org/

projects/splits/). Inter- and intraspecific uncorrected p-distances

were calculated in MEGA 5 [36].

Phylogenetic analyses
A multigene phylogenetic analysis was based on a data matrix of

35 Dictyota species and 6 genes (rbcL, psbA, nad1, cox1, cox3, LSU

rDNA; see Table S2 in Supporting Information). The 35 Dictyota

species correspond to separately evolving lineages derived from the

GMYC analyses performed on the psbA data set. The dictyotalean

genera Canistrocarpus, Dictyopteris, Dilophus, Padina, Rugulopteryx,

Scoresbyella and Spatoglossum were used as outgroup. Model selection

and partitioning strategy follow Tronholm et al. [35]. The

Bayesian information criterion (BIC) was used as the selection

criterion. The guide tree used during the entire procedure was

obtained by maximum- likelihood (ML) analysis of the unparti-

tioned concatenated alignment using a JC+G8 model. All

subsequent likelihood optimizations and BIC calculations were

carried out with Treefinder [42]. The partitioning strategy plus

model combination that received the lowest BIC score was used in

the phylogenetic analyses. Maximum likelihood (ML) searches

were carried out with Treefinder [42] using seven partitions [LSU

rDNA (one partition); plastid and mitochondrial genes partitioned

according to codon position (263 partitions)], and a GTR model

with gamma distribution and four rate categories (GTR+I+G) per

partition. Branch support was calculated by non-parametric

bootstrapping (1000 replicates). Bayesian phylogenetic inference

(BI) was carried out with MrBayes 3.1.2 [43] using the same

partitions and models, and default priors. Two parallel runs, each

consisting of four incrementally heated chains were run for 15

million generations, sampling every 1000th generation. Conver-

gence of log-likelihoods and parameter values was assessed in

Tracer v1.5 [41]. A burnin sample of 1000 trees was removed

before constructing the majority rule consensus tree.

Time-calibrated phylogeny
A cautious attempt is made to establish a time-frame of

diversification in Dictyota by inferring a chronogram based on the

same multigene alignment in BEAST. In the absence of reliable
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Dictyota fossils, two nodes in the tree were constrained in geological

time based on a previously published brown algal time-calibrated

phylogeny [44]. The split between Padina and the Dictyota-

Dictyopteris clade was constrained at 99.6–129 Ma, and the split

between the latter two genera was constrained at 68.8–113.5 Ma,

both with uniform priors. The analysis was performed under a

GTR+ I+G model with an uncorrelated lognormal (UCLN)

relaxed molecular clock model, using a uniform tree prior. Four

independent runs of 20 million generations each were run

sampling every 10000th generation. Convergence and stationarity

of the chains were evaluated in Tracer v1.5. The majority rule

consensus tree was based on 7200 trees sampled across a large part

of the four runs.

Thermal tolerance
Thermal preferences and tolerance limits were estimated by

plotting distribution records on geographic information system

(GIS) maps of environmental variables. We used Bio-ORACLE

[45], a dataset providing marine environmental information for

global-scale applications, to extract sea surface temperature (SST)

data (minimum, maximum and mean). Occurrence records are

primarily based on recently collected specimens for which the

identification has been confirmed by DNA sequence information.

These records are complemented with verified literature data and

herbarium specimens that were carefully re-examined by the first

and last author. Recent collections had accurate coordinates

recorded with a global positioning device. Older collections with

detailed locality information were georeferenced (latitude and

longitude) using Google Earth (http://earth.google.com).

To define the species’ thermal biology we pooled the realistic

geographical distribution of the species with their respective

temperature tolerances. The ‘maximum thermal tolerance range’

was calculated as the largest difference between the maximum and

the minimum sea surface temperature based on the species’

occurrence records, as these represent the most ecologically

realistic measure of a species’ tolerance of high and low

temperatures.

Results

Species delimitation
We analysed branch length dynamics in the ultrametric psbA

tree to delimit species. The likelihood of the GMYC model was

significantly higher than that of the null model of uniform

(coalescent) branching rates (Table 1). Using the single-threshold

GMYC, the depth (T) from the branch tips at which the transition

occurred was 0.00469 substitutions per site. The model estimates

39 putative species, with a confidence interval ranging from 34 to

43. The multiple-threshold model detected the same number of

putative species, although with a markedly broader confidence

interval, from 21 to 39. Dictyota ciliolata and D. crenulata were

resolved in five GMYC lineages under both models (Fig. 1).

Dictyota crenulata consists of four GMYC lineages: one Pacific

Central American lineage, two Macaronesian lineages and one

amphi-Atlantic lineage. Several non-dentate Dictyota species,

Dictyota cf. caribaea, D. cymatophila, D. implexa, D. mertensii and D.

sandvicensis, also fall within this D. crenulata clade. In contrast to D.

crenulata, all specimens identified as D. ciliolata form a single GMYC

lineage, which also includes the morphologically allied D.

menstrualis and D. plectens. Sequence divergence, calculated as

uncorrected p-distances (see Figure S1 in Supporting Information),

within these putative species ranged from complete identity to

0.8% with 95% of the values equal or lower than 0.7%. Distances

among species ranged from 1% to 10.2%.

Phylogenetic analyses
The concatenated alignment of six genes consisted of 54 species

and 5487 nt (LSU rDNA = 1290 bp; psbA = 885 bp; rbcL = 1293;

cox1 = 645 bp; cox3 = 657 bp; nad1 = 717 bp). The matrix was 77%

filled (see Table S2 in Supporting Information). ML and BI

yielded virtually identical tree topologies and the nodes within the

clades of interest (D. ciliolata and D. crenulata clade) were well

supported. The phylogenetic tree obtained from the ML analysis

(lnL = 245960.04), with indication of ML bootstrap values and BI

posterior probabilities, is shown in Figure S2 in Supporting

Information. The D. ciliolata and D. crenulata clades do not form a

monophyletic assemblage. The D. ciliolata clade is sister to D.

coriacea and D. acutiloba with moderate support, while the D.

crenulata clade is sister to D. pinnatifida and D. spiralis.

An Eocene origin of the genus Dictyota was inferred, 46 (95%

HPD: 35–57) Ma (Fig. 2). The backbone of the genus Dictyota is

characterized by a radiation of lineages which received no support.

The D. crenulata complex may have gradually diverged from the

late Oligocene onwards (23, 95% HPD: 18–32 Ma), with the most

recent divergence recovered between D. crenulata#3 and D.

crenulata#4 (2.6, 95% HPD: 2.2–5.8 Ma). D. ciliolata may have

diverged from D. coriacea ca. 14 Ma.

Geographical distribution
We determined the geographical distribution of the species on

the basis of DNA-confirmed records, complemented with credible

literature data and re-examined herbarium specimens. Dictyota

ciliolata is broadly distributed in the tropical to subtropical Atlantic

and Indo-West Pacific. The northernmost DNA-confirmed record

is located in North Carolina and the southernmost in Carnac

Island in Western Australia. Genuine D. crenulata (D. crenulata#1) is

restricted to the Pacific coast of Central America, from Costa Rica

to Baja California. Non-Pacific specimens morphologically

identified as D. crenulata, resolved as three separate species, which

are all confined to the Atlantic Ocean. Dictyota crenulata#2 occurs

in the Canary Islands, Madeira and Cape Verde. Dictyota

crenulata#3 has an amphi-Atlantic distribution occurring in the

Caribbean Sea, Bermuda and Cape Verde Islands. D. crenulata#4

is only known from the Canary Islands. The non-dentate members

of the D. crenulata clade, D. implexa, Dictyota cf. caribaea, D. mertensii,

D. cymatophila and D. sandvicensis show similar geographically

confined distributions, with only D. implexa having an amphi-

Atlantic distribution (Fig. 3).

Table 1. Lineage branching pattern fit to single- and multiple
threshold variants of the GMYC model.

Model T NGMYC CI L0 LGMYC LR

single 0.00469 39 34–43 1649.088 1671.926 45.67581*

multiple - 39 21–39 1649.088 1674.306 50.43415*

T, threshold genetic distance from the branch tips where transition occurred
(presented for single-threshold models).
NGMYC, number of putative species as the sum of sequence clusters and singletons,
CI, confidence intervals as solutions within 2 log-likelihood units of the maximum
likelihood.
L0, likelihood for null model (the same for single and multiple threshold model
comparisons.
LGMYC, likelihood for GMYC model.
LR, significance of the likelihood ratio evaluated using a chi-square test with 3
degrees of freedom to compare GMYC and null models.
*p , 0.001.
doi:10.1371/journal.pone.0030813.t001
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Figure 1. Ultrametric tree of Dictyota based on a Bayesian analysis of 184 psbA sequence data. Divergence times were estimated under a
relaxed molecular clock using an uncorrelated lognormal (UCLN) model in BEAST. The dotted vertical line indicates the maximum likelihood transition
point of the switch in branching rates, as estimated by a general mixed Yule-coalescent (GMYC) model. The GMYC analysis was performed using a
single threshold (left) and multiple thresholds (right).
doi:10.1371/journal.pone.0030813.g001
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Species distribution ranges and thermal tolerance
Dictyota species varied widely in their latitudinal as well as

longitudinal range (Table 2). Mean values of thermal tolerance

ranged from 21.1uC in D. implexa to 28.5uC in Dictyota cf. caribaea.

Differences in maximum and minimum values of SST between

species were more pronounced, which were also shown by these

two species (31uC in Dictyota cf. caribaea and 17.1uC in D. implexa).

Significant correlations were detected between maximum thermal

tolerance range (uC) and latitudinal range (R2 = 0.751), and

longitudinal range (R2 = 0.828), i.e. species with the highest

thermal tolerance showed broader latitudinal and longitudinal

ranges (e.g. D. implexa and D. ciliolata) (Fig. 4).

Discussion

Species boundaries and geographic range
Molecular screening of geographically disparate populations of

a common tropical Dictyota species, D. crenulata, revealed a complex

Figure 2. Time-calibrated phylogeny. Highest density probability (95% HPD) intervals are provided for each node as well as the posterior
probabilities, stars represent strong support (p.p..0.95).
doi:10.1371/journal.pone.0030813.g002
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of multiple pseudocryptic species, which also include several other

species. In contrast, results indicated that the widespread tropical

species D. ciliolata consists of a single species. The contrasting

results for D. crenulata and D. ciliolata illustrate the difficulties related

to using morphology as an estimator of species diversity in

structurally simple organisms. This is especially evident when these

organisms are also characterized by a considerable degree of

morphological plasticity, as is the case in Dictyota. Species

delineation can therefore be best achieved by the analyses of

gene sequence data. In this study we apply an algorithmic species

delineation approach to redefine species boundaries. Both the

original GMYC model developed by Pons et al. [37] and the

modified version that allows for a variable transition from

coalescent to speciation among lineages [38] converge on the

same number of independently evolving lineages and the

specimens attributed to the respective lineages were fully

congruent in both analyses. Values of uncorrected interspecific

distances fall completely within the range of distances reported in

the literature for the psbA gene in Dictyotales [46–48] and lend

further support to the application of GMYC modeling to delineate

independently evolving lineages. Dictyota crenulata illustrates well

how misconceptions about species boundaries impact on our

understanding of distributions and historical biogeography of

tropical seaweeds. Once properly delineated, the taxa making up

the D. crenulata-clade have much more restricted geographic

ranges, being exclusively confined to either the Atlantic or the

Eastern Pacific Ocean.

Contrary to Dictyota crenulata, where geographically disparate

populations segregate as distinct evolutionary lineages, results

showed that the widespread tropical species D. ciliolata constitutes a

single evolutionary lineage. This lineage also includes specimens

traditionally attributed to D. menstrualis and D. plectens from the

warm temperate western Atlantic (North Carolina) and south-east

Pacific (Lord Howe Island), respectively. The D. ciliolata clade

comprises four subclades segregating according to geographical

origin: an Indo-Pacific subclade containing specimens from

Indonesia as well as East Africa, a subclade with specimens from

the Philippines, an Atlantic subclade with species from both sides

of the Atlantic, and a clade uniting the specimens identified as D.

plectens together with one specimen from East Africa. The fact that

samples of D. ciliolata, D. menstrualis and D. plectens, regardless of

geographic origin, do not represent separately evolving units is

highly relevant given the observation of Lohse [49] who

demonstrated that the General mixed-Yule coalescent model has

a tendency to overestimate species numbers, especially when

sampling of intraspecific variation is low or uneven. With our

moderate taxon sampling (20 specimens sequenced and 12 unique

haplotypes) and given the vast geographic range of D. ciliolata it is

highly unlikely that the entire genetic variation of the species was

adequately sampled. Nevertheless, GMYC model does not

consider these subclades as separately evolving. This leads us to

believe that D. ciliolata (incl. D. menstrualis and D. plectens) maintains

genetic cohesion over geographic scales spanning several ocean

basins.

Figure 3. Distribution maps. Distribution of the species belonging to D. ciliolata (a) and the D. crenulata-complex (b–d) with superimposition of
phylogenetic relationships.
doi:10.1371/journal.pone.0030813.g003
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Diversification and historical biogeography
The paucity of fossil records has impeded the estimation of

divergence time estimates in brown algae. Silberfeld et al. [44]

presented the first time-calibrated phylogeny of the Phaeophyceae,

which was based on a multigene dataset constrained with three fossil

calibration points. The chronogram presented in this study is based

on these divergence estimates for the Dictyotales and may be treated

as a first attempt to assess the evolutionary history of the genus

Dictyota. Therefore, and given the limited number of fossil constraints,

the divergence estimates presented here need to be interpreted with

care. The origin of the genus Dictyota is inferred to be ca. 40 Ma (95%

HPD: 31–52 Ma). Initial diversification appeared to be very rapid,

with several lineages emerging nearly simultaneously.

The D. crenulata clade seems to have diverged gradually from

the late Oligocene onwards (.25 Ma) with the most recent

inferred divergence dated at ca. 3 Ma. The early splits in the

Eastern-Pacific-Atlantic clade (EPA-clade) show no obvious

signature of a vicariant event across the Central American

Isthmus. The putative earliest diverging lineages, D. spiralis and

D. pinnatifida have an exclusively Atlantic distribution and Pacific

– Atlantic sister relationships are to be found only between D.

crenulata#1 – D. implexa/crenulata#2 and Dictyota cf. caribaea – D.

sandvicensis. The diversification estimates of these sister lineages

predate the effective closure of the Tropical American Seaway

(3.1 Ma). Similar observations have been reported for many

marine organisms including seaweeds [50–53]. Although we

cannot rule out that our molecular clock analysis overestimates

divergence times, it is likely that the final closure of the Panama

Isthmus was not the initial cause of divergence between

populations. The uplift of the Panama Isthmus was a complex

process that took place over at least 12 Ma before completion at

ca. 3 Ma [54,55], and the final closure of the land bridge may

have acted as barrier reinforcement after divergence had been

initiated by oceanographic events [50–52]. Moreover, the

eventual uplift of the Panama Isthmus was followed by major

extinctions in the western Atlantic [56], which can lead to

overestimation of divergence times since trans-isthmian species

pairs may not be true sisters [50,52].

Table 2. Summary of geographic range and Sea Surface Temperature (SST) for each species.

Species n Lat range (6) Lon range (6) Max (6C) Mean (6C) Min (6C) Max range (6C)

Dictyota cf. caribaea 3 3.6 3.3 31.0 28.5 26.1 6.6

Dictyota ciliolata 305 66.8 308.5 29.9 27.5 24.9 21.1

Dictyota crenulata#1 25 21.1 30.9 29.4 25.9 22.6 16.3

Dictyota crenulata#2 18 18.1 11.2 26.2 23.6 21.5 9.5

Dictyota crenulata#3 64 23.0 73.2 29.6 27.7 25.9 11.5

Dictyota crenulata#4 14 1.1 2.9 23.8 21.2 18.9 6.1

Dictyota cymatophila 13 0.9 2.3 23.8 21.3 18.9 5.9

Dictyota implexa 111 36.3 116.4 25.9 21.1 17.1 22.3

Dictyota mertensii 15 4.9 15.3 30.2 27.9 26.3 8.3

Dictyota sandvicensis 13 0.4 0.5 27.1 25.7 24.4 3.4

n = number of records.
Lat range = latitudinal range.
Lon range = longitudinal range.
Max = mean of the maximum SST.
Mean = mean SST.
Min = mean of the minimum SST.
Max range = range between the maximum and the minimum SST values.
doi:10.1371/journal.pone.0030813.t002

Figure 4. Correlation between maximum thermal tolerance
range (6C) and log-transformed latitudinal range (A), and log-
transformed longitudinal range (B). The correlation coefficient (R2)
is shown for each case. Symbols represent individual species’ as follows:
Dictyota cf. caribaea (car), Dictyota ciliolata (cil), Dictyota crenulata#1
(cre1), Dictyota crenulata#2 (cre2), Dictyota crenulata#3 (cre3), Dictyota
crenulata#4 (cre4), Dictyota cymatophila (cym), Dictyota implexa (imp),
Dictyota mertensii (mer), Dictyota sandvicensis (san).
doi:10.1371/journal.pone.0030813.g004
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Speciation and dispersal in the Atlantic Ocean
Diversification in the Atlantic Ocean most likely involved

repeated peripatric speciation events that took place in the

Miocene and Pliocene epochs. Peripatric speciation involves

founder events resulting from long distance dispersal of a small

number of individuals and subsequent genetic differentiation of the

established population [57]. For this mode of speciation to qualify

as founder speciation, depends on the frequency and temporal

variation of dispersal events. Paulay & Meyer [2] argue that if

dispersal is very rare at all times founder speciation is favored,

while long-term temporal variation of dispersal favors vicariance.

Because of the vast distance that separates the Western from the

Eastern Atlantic and the lack of intermediate suitable substrate,

one would intuitively favor founder speciation when considering

species pairs on both sides of the Atlantic. The presence of two

amphi-Atlantic species, D. implexa and D. crenulata#3, however,

illustrates ongoing dispersal and connectivity across the Atlantic

Ocean. Although DNA-confirmed data for marine benthic algae

are scarce, similar distribution patterns of amphi-Atlantic species

of the green algal genera Cladophoropsis [58,22] and Halimeda

[59,60] may be indicative for relatively high gene flow across the

Atlantic Ocean and give more credibility to vicariant speciation.

More detailed studies applying more variable markers and

including greater taxon sampling could shed important insights

on the phylogeographic structure of these algae, quantify gene flow

and directionality across the ocean basin.

Dispersal and thermal tolerance
The broad geographical range sizes of D. ciliolata and some species

in the D. crenulata clade suggest high dispersal potential. This is in

contrast with many other attached seaweed species that have more

restricted geographical ranges, either as a consequence of narrow

ecological tolerance resulting in habitat unsuitability (phenotype-

environment mismatches) or effective dispersal limitation [19,7,53].

An effective way for Dictyota to disperse might be by small thallus

fragments or microthalli that are able to drift in the water column,

re-attach and grow successfully at new sites [61]. In addition, fertile

thallus fragments may drop propagules on arrival [4,6,22].

The asymmetrical biogeographies of Dictyota ciliolata and the

segregated D. crenulata species are congruent with the widely

accepted view that thermal tolerance is an important factor in

determining latitudinal range size of marine as well as terrestrial

organisms [13–15,62,63]. While D. ciliolata has been successful in

expanding its range throughout the tropical to warm-temperate

Atlantic and Indo-West Pacific, the segregated D. crenulata species

have more restricted distributions that are separated to partly

overlapping within a single ocean basin (Atlantic or Eastern Pacific

Oceans). Our data suggest that the biogeographical asymmetry

between D. ciliolata and the species in the D. crenulata clade can best

be explained by differences in thermal tolerance range, enabling or

restricting dispersal over cold-water barriers.

Sea surface temperature along the south-west African coast

steeply declined by the appearance of the Benguela upwelling

system in the late Miocene [64]. Along with this cold-water barrier,

the formation of the Levant in the early Miocene [65] and the

Messinian Salinity Crisis in the late Miocene resulted in a strong

dispersal barrier for tropical marine organisms between the Atlantic

and Indo-West Pacific. The nearly circumtropical distribution of D.

ciliolata likely results from its tolerance towards relatively low

minimum temperatures, allowing it to cross southern Africa’s cold-

water barrier, followed by successful dispersal and establishment

throughout the Atlantic and Indo-West Pacific Oceans.

Although the cold water Benguela upwelling system first

appeared in the Miocene, it did not become a permanent feature

until the late Pliocene [66,67], but even in recent times, eddies of

the warm Agulhas current (‘Agulhas rings’) pass into the tropical

South Atlantic, possibly allowing for occasional migration of

marine tropical organisms from the Indian Ocean to the Atlantic

[13,68]. Another possible corridor for recent dispersal between the

Atlantic and the Indo-West Pacific is the Suez Canal, which

opened in the mid 1800s. Several studies have provided evidence

for colonization of species from the Red Sea to the Mediterranean

Sea (Lessepsian migration), with scarcely any evidence of dispersal

in the opposite direction [69]. Dictyota ciliolata occurs in the Red

Sea, but its absence from the Mediterranean Sea [35] makes

Lessepsian migration less plausible. Despite high dispersal

potential, D. ciliolata is absent from the eastern Pacific Ocean.

Trans-Pacific dispersal of coastal organisms is limited by the vast

expanse of the eastern Pacific Ocean, and only a few species occur

on both sides of this eastern Pacific Barrier [70,71]. The East

Pacific also likely acts as a strong barrier for Dictyota species with

tropical affinities. The isolated Hawaiian occurrence of D.

sandvicensis, which diverged from the Atlantic species pair D.

crenulata#3 and D. crenulata#4 ca. 8 Ma, is more difficult to explain

but may have resulted from a peripatric speciation event. As has

been suggested for several groups of marine organisms, the eastern

Pacific Barrier acts as a haphazard filter allowing sporadic

dispersal events that are separated by periods of time long enough

to cause speciation.

Supporting Information

Figure S1 Estimates of evolutionary divergence (uncorrected p-

distances) between psbA sequences, using unique haplotypes only.

Raw data available upon request.

(EPS)

Figure S2 Multigene phylogeny. Phylogenetic hypothesis

(lnL = 245960.04) obtained by maximum likelihood inference of

a dataset containing six genes (partial LSU rDNA, rbcL, psbA, cox1,

cox3 and nad1). Numbers at the nodes indicate ML bootstrap

values followed by posterior probabilities; values below respec-

tively 50 and 0.7 are not shown.

(EPS)

Table S1 Specimens used in the molecular analyses with

indication of collecting data. In the first column, (N) indicates

specimens used for the species delimitation analyses and (#)

indicates the specimens used for the multigene phylogenetic

analyses.

(PDF)

Table S2 Genbank accession numbers of the sequences used in

the concatenated alignment, including strain numbers and

sequence length.

(PDF)
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