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Abstract
Micro-CT is widely used in preclinical studies of small animals. Due to the low soft-tissue
contrast in typical studies, segmentation of soft tissue organs from noncontrast enhanced micro-
CT images is a challenging problem. Here, we propose an atlas-based approach for estimating the
major organs in mouse micro-CT images. A statistical atlas of major trunk organs was constructed
based on 45 training subjects. The statistical shape model technique was used to include inter-
subject anatomical variations. The shape correlations between different organs were described
using a conditional Gaussian model. For registration, first the high-contrast organs in micro-CT
images were registered by fitting the statistical shape model, while the low-contrast organs were
subsequently estimated from the high-contrast organs using the conditional Gaussian model. The
registration accuracy was validated based on 23 noncontrast-enhanced and 45 contrast-enhanced
micro-CT images. Three different accuracy metrics (Dice coefficient, organ volume recovery
coefficient, and surface distance) were used for evaluation. The Dice coefficients vary from 0.45 ±
0.18 for the spleen to 0.90 ± 0.02 for the lungs, the volume recovery coefficients vary from for the
liver to 1.30 ± 0.75 for the spleen, the surface distances vary from 0.18 ± 0.01 mm for the lungs to
0.72 ± 0.42 mm for the spleen. The registration accuracy of the statistical atlas was compared with
two publicly available single-subject mouse atlases, i.e., the MOBY phantom and the
DIGIMOUSE atlas, and the results proved that the statistical atlas is more accurate than the single
atlases. To evaluate the influence of the training subject size, different numbers of training
subjects were used for atlas construction and registration. The results showed an improvement of
the registration accuracy when more training subjects were used for the atlas construction. The
statistical atlas-based registration was also compared with the thin-plate spline based deformable
registration, commonly used in mouse atlas registration. The results revealed that the statistical
atlas has the advantage of improving the estimation of low-contrast organs.
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I. INTRODUCTION
SMALL animal in vivo imaging plays an important role in preclinical studies. Micro
computed tomography (micro-CT) is an important technology that provides in vivo anatomy
of the animal body [1]. Many small animal functional imaging modalities, such as positron
emission tomography (PET) [2] and single photon emission computed tomography (SPECT)
[3] use co-registered micro-CT images as an anatomical complement, and even optical
imaging such as fluorescent molecular tomography (FMT) [4], [5] and bioluminescence
tomography (BLT) [6] utilize micro-CT for anatomical reference. Based on the wide use of
micro-CT for laboratory mice, it is necessary to segment internal organ structures from
mouse micro-CT images and to facilitate the localization of abnormalities [7], the
measurement of organ morphometry [8], the construction of anatomical models [4], and the
determination of pharmacokinetic and pharmacodynamic parameters [9].

An important limitation of current in vivo micro-CT technology is the low soft tissue
contrast. Due to a tradeoff between acquisition time, radiation dose and image quality,
standard imaging protocols of in vivo micro-CT scans normally use low-dose X-rays and a
limited number of projections, resulting in low soft tissue contrast [10]. Although contrast
agents for soft tissues can be applied [11], the use of contrast agents increases study cost and
complexity. Therefore, most preclinical studies still use noncontrast enhanced micro-CT
images, and segmentation of soft organs from noncontrast micro-CT images remains
problematic.

Since segmentation of mouse internal organs from conventional micro-CT images is
problematic, several studies have used atlas-based registration methods to help estimate the
internal organs instead of accurate segmentation. Most of these methods use high-contrast
anatomical features (such as the body profile, skin, skeleton, and lungs) to register the atlas
to individual subjects. Some studies acquire 2D silhouettes of the mouse body with optical
cameras, and use these silhouettes to guide the atlas registration [12] or body surface
alignment [13]. Other than 2D silhouettes, 3D body surface geometries are also acquired for
atlas registration. Chaudhari et al. developed a skin-based atlas registration method with the
assumption that the body surface is available from structured light measurements [14]. Joshi
et al. proposed a finite-element-model-based elastic warping method to register the mouse
atlas to 3D surface range data obtained from a laser scanner [15]. Besides the body surface,
high-contrast organs in the CT image are also used for atlas registration. Baiker et al. used
skin, skeleton, and lungs together as aligning features. They developed an articulated
skeleton atlas for whole-body posture alignment, and used the aligned skeleton to initialize
the skin and lungs. By registering the skin and lungs, a thin-plate spline (TPS) based
transformation was obtained and used for atlas mapping [16]. Similarly, Xiao et al.
registered skeleton, lungs, and skin using a 3D shape context based nonrigid registration
method, and the whole-body organs of the atlas were mapped to the individual subject using
the transformation obtained from the registration of skeleton, lungs, and skin [17]. In
addition to the above methods that use geometrical alignment features, some methods also
make use of intensity information from the CT image. Somayajula et al. registered the
reference CT with the target CT using a mutual information-based approach [18]. Li et al.
combined the skeleton geometrical features with image intensities for mouse CT image
registration [19]. Although the use of intensity information could improve registration
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accuracy of low-contrast tissues, it may be more computationally expensive, making the
method less efficient than geometrical feature-based approaches [16].

So far, most methods use a single subject atlas for registration. However, a single subject
atlas is not sufficient for compensating the inter-subject anatomical variations which are
caused by the differences of age, sex, strain, etc., among individuals. Although nonrigid
transformations are commonly used in the existing methods, applying a global deformation
to the whole body may not be sufficient for compensating the complex variations of
individual organs. Kovacevic et al. [20] proposed a hierarchical piecewise affine registration
scheme to cope with individual organ variations, but this method was specific to high-
contrast micro-MR images rather than low-contrast micro-CT images, and it was based on
the assumption that the morphological variations and posture differences are small enough
between the reference and the target. Another solution to compensate for inter-subject
differences is to use a multiple-subject atlas. By including more training subjects into the
atlas, inter-subject variance is inherently included. Multi-subject atlases have already gained
success in human image registration [21], [22] and mouse brain and kidney image analysis
[23]–[25]. Based on our survey, no study has used a multi-subject atlas for the estimation of
multiple mouse trunk organs.

In this paper we study the registration of a multi-subject statistical mouse atlas to
noncontrast micro-CT images, aiming at estimating gross anatomy of major organs. We
focus on the trunk region which includes most of the important organs for pre-clinical bio-
distribution studies [26], [27]. Our statistical mouse atlas was constructed based on 45
training subjects to achieve better ability of compensating inter-subject anatomical
variations than a single atlas. The statistical shape model (SSM) [28] was used to learn the
inter-subject anatomical variations from the training sets. A conditional Gaussian model
(CGM) [29] was used to capture inter-organ correlations of shapes and positions. For atlas
registration, the statistical shape model was used to align the high-contrast organs, and the
conditional Gaussian Model was used to estimate low-contrast organs from high-contrast
organs. Section II below, describes the construction and registration of the statistical atlas
and Section III provides the evaluation results of registration accuracy. Discussions and
conclusions are made in Sections IV and V, respectively.

II. METHOD
A. Atlas Construction

A schematic of the procedure of atlas construction is demonstrated in Fig. 1, and is further
explained in the following subsections.

1) Training Subjects—As shown in Fig. 1(a), 45 contrast-enhanced mouse micro-CT
images from normal subjects were used for atlas construction. These images were selected
from previously acquired datasets of contrast agent studies [30]. Healthy subjects of
different sexes, strains, weights, and postures were acquired in vivo. Three of the most
frequently used strains in preclinical studies [Nude, black C57, and severe-combined
immunodeficient (SCID)] were included, with body weights ranging from 15 to 30 g. The
subjects were imaged at prone positions inside a multimodality chamber that provided
anesthesia and heating [31]. Although the imaging chamber restrained the possible postures
of the subject, these were not strictly regularized and random flexing of bodies towards the
left, right, and back directions was included in the dataset. The contrast agent used was
Fenestra LC (ART, Montreal, QC, Canada) and the imaging system was a MicroCAT II
small animal CT (Siemens Preclinical Solutions, Knoxville, TN). Exposure settings were 70
kVp, 500 mAs, 500 ms, and 360° rotation in 1° steps with 2.0 mm aluminum filtration.
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Images were reconstructed using a modified Feldkamp process to isotropic voxel size 0.20
mm, and a matrix size 256 × 256 × 496.

The major organs that were visible in the contrast-enhanced CT images were segmented by
human experts using a semi-automatic segmentation software, which incorporated the tools
of intensity thresholding, region growing, deformable simplex mesh [32] and graph cuts
[33], [34]. The segmented organs included skin, skeleton, heart, lungs, liver, spleen, and
kidneys. All the segmented organs were converted to triangular surface meshes using the
Marching Cubes Algorithm [35]. To reduce the computational cost for the subsequent
registration step, the triangular meshes were decimated [36] to fewer vertex numbers: 2500
for skin, 2000 for skeleton, 1000 each for lungs and liver, 700 each for the heart, spleen, and
kidney. These numbers were selected as tradeoffs between reducing computation cost and
maintaining organ shape features. To extract the trunk region, two axial slices were
manually selected passing the neck bone and pelvis bone, respectively [Fig. 1(b)]. This
extracted region between the two axial slices covers the biologically interesting areas where
all the major organs other than brain are located [Fig. 1(c)]. To establish the vertex
correspondence between different subjects, a reference subject of each organ was selected
and registered to the rest of the training subjects (i.e., the correspondence of each organ was
established separately) using the point set registration method based on Gaussian mixture
models [37]. The accuracy (point distance) of the vertices correspondence for different
organs is reported in the Appendix.

2) Statistical Shape Model—During the past decade, the statistical shape model (SSM)
was widely used for modeling anatomical variations of biological structures [38]. It has been
successfully used for registration and segmentation of human organs [28], [39], [40]. In our
study, the statistical shape model was used to model the inter-subject anatomical variance of
the major mouse trunk organs.

According to their visibility in noncontrast enhanced micro-CT images, the segmented
organs were divided into two groups: high-contrast organs (skin, skeleton, and lungs) and
low-contrast organs (heart, liver, spleen, and kidneys) [Fig. 1(d)]. Two statistical shape
models, SSMH and SSML, were constructed for each group, respectively [Fig. 1(e)].

Before the construction of SSMH, the inter-subject differences of translation, scaling and

rotation were eliminated using the Generalized Procrustes Analysis [41]. Let  denote the
mesh of high-contrast organs of the ith training subject index, the Generalized Procrustes

Analysis was applied to the set of { } to obtain the similarity

transformations { } that mapped each  into the generalized shape

space. If  denotes the mesh after the Procrustes alignment,  is represented
as a 1-D vector which is lined up with the 3D coordinates of the mesh vertices

(1)

where
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with ( ) being the 3D coordinates of the jth vertex of subject i, and Nskin being
the total number of skin vertices. The same denotations also apply to skeleton and lungs.

Therefore,  is a 1-D vector of length 3×(Nskin+Nskeleton+Nlungs)

Principal component analysis (PCA) [42] was performed based on the training set of

{ }. This statistical analysis technique reduces data dimensionality of
multivariate datasets. It linearly transforms the datasets into a new coordinate system where
the first coordinate axis corresponds to the direction of greatest variance of data distribution,
the second coordinate axis corresponds to the direction of second greatest variance, and so
on. The directions of the new coordinate basis were defined as the eigenvectors of the
covariance matrix of the datasets, with the eigenvalues as the energy of data variance in the
corresponding directions. Each eigenvector was considered as a principal component of the
original dataset. Using PCA, it is possible to simplify the representation of the datasets as a
linear combination of the first few principal components. In our case, the principal

components corresponded to the statistical variations of { }. By performing

eigendecomposition to the covariance matrix of { }, the eigenvalues  and

eigenvectors  were obtained. The first m̂ components that account for over

95% of the total variations (i.e., ) were grouped column-wisely
into a matrix VH which satisfied (VH)TVH = I. The SSMH is represented as

(2)

where mH is an arbitrary instance of the model, m ̄H is the mean value of { }, and bH is a

m̂ component 1-D vector of the shape parameters. The shape parameters of each  were
computed as

(3)

The construction of SSML was the same as for SSMH, except for the Procrustes alignment

step. In order to map { } and { } into the same shape space, { } was normalized

using the similarity transformations of { }, i.e., . Therefore SSML was
represented as

(4)

and the shape parameters for each  were computed as

(5)

3) Conditional Gaussian Model—The conditional Gaussian model (CGM) is the
mathematical tool for modeling the conditional distribution between two multivariate
Gaussian variables. Iglesias et al. [29] used CGM to describe the correlations between sparse
vertebrae landmarks and dense vertebrae edge points of human lateral X-ray spine images.
In our case, the conditional Gaussian model was used to capture the shape correlation
between SSMH and SSML [Fig. 1(f)]. Given that SSMH was matched to the micro-CT

Wang et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



image, the conditional Gaussian model was used to estimate the conditional distribution of
SSML. The basic assumptions were that the probabilistic distribution of SSMH and SSML

could be modeled with Gaussian distributions, and there exist statistical correlations
between SSMH and SSML. The feasibility of these assumptions is verified in the Appendix
section, where we plotted the distributions of bH and bL, as well as the covariance matrix
between different organs. Observations based on these plots confirmed that bH and bL

roughly follow Gaussian distributions, and there were apparent correlations between
different organs. While we do not deny the possible existence of better distribution models
for describing the inter-organ correlations, the conditional Gaussian model works reasonably
well in this application.

The construction of the conditional Gaussian model is described as follows. Based on the
training subjects, the probabilistic distributions of bH and bL were modeled with
multivariate Gaussian distributions, and the conditional distributions between bH and bL

were modeled with a conditional Gaussian distribution

(6)

where b ̄L | H and ΣL | H are the mean and covariance of the conditional distribution; b̄H, ΣH

and b̄L, ΣL are the mean and covariance of bH and bL, respectively; ΣL,H and ΣH,L are the
cross-covariance between bH and bL, respectively. The values of b̄H, ΣH, b̄L ΣL, ΣL,H and

ΣH,L could be estimated from the training set { } and { }.

Fig. 2 demonstrates the shape variations generated from the statistical shape models and the
conditional Gaussian model. Fig. 2(a) shows the shape variations of the first three principle
modes of SSMH. The left column shows the variation of the largest eigenmode between

 and , the middle and right columns show the variations of the second and
third largest eigenmode, respectively. Fig. 2(b) shows the shape variations of SSML in the
same way. Fig. 2(c) shows the shape correlations generated from the conditional Gaussian
model: both SSMH and SSML are displayed together, the shapes of SSMH are the same as
Fig. 2(a), and the corresponding shapes of SSML are generated using the conditional
Gaussian model, based on the shapes of SSMH as the conditions. It can be observed from
Fig. 2(c) that the shape variations of SSML closely follow the shape variations of SSMH.

B. Atlas Registration
The registration of the statistical atlas is achieved in three steps: segmentation of high-
contrast organs, registration of high-contrast organs, and estimation of low-contrast organs.
Fig. 3 illustrates the process of atlas registration, which is explained below.

1) Segmentation of High-Contrast Organs—To obtain the alignment features for
atlas registration, high-contrast organs were segmented from the micro-CT image [Fig. 3(a)
and (b)]. The ISODATA clustering method [43] was used to group the voxels into clusters
of different intensity levels. The cluster number was chosen as 8 to ensure good
discrimination between the target organs. The resultant clusters were labeled from 1 to 8
based on the intensity level. Cluster 1 was classified as the background and was removed
from the image, identifying the body region. Inside the body region, the cluster of the largest
number of voxels (usually cluster 3 or 4) was recognized as soft tissue. Clusters brighter
than soft tissue were classified as skeleton. Some subjects may have intestine regions as
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bright as the bones, in part due to bits of metal in the food. These intestine regions were
recognized as small disconnected objects in the lower body region and were removed from
the skeleton. The lungs were classified from the upper body region as large objects which
were darker than the soft-tissue and brighter than cluster 2. Finally, the Marching Cubes
Algorithm was used to create the triangular mesh of the skin, skeleton and lungs.

The trunk region of the target subject was extracted by registering a single-subject skeleton
atlas (from an arbitrary subject of the training set) to the target skeleton. To reduce
registration time, the mesh of the skeleton atlas was down-sampled to 400 vertices [Fig.
3(c)]. Two landmark points were defined on the neck and pelvis of the skeleton atlas, as
shown in the zoomed-in boxes of Fig. 3(c). The skeleton atlas was registered to the target
skeleton using the point set registration method based on Gaussian mixture models [37]. A
TPS-based transformation was obtained from the registration and was used to map the two
landmarks into the target subject. Two axial slices passing the mapped landmarks were
generated [Fig. 3(d)], and the trunk region was cut out between the two axial slices [Fig.
3(e)].

2) Registration of High-Contrast Organs—In this step, SSMH [Fig. 3(f)] was
registered to the segmented organs [Fig. 3(g)]. The initial correspondence between SSMH

and the segmented organs was established by matching the mean shape m̄H to the
segmented organs using the Robust Point Matching (RPM) method [44]. A minor adaption
was made to the RPM method in order to register multiple organs simultaneously, i.e., the
point correspondences between the source and target meshes were calculated only for the
vertices belonging to the same organ. The RPM method resulted in a TPS-based
transformation TPSinit (middot;). This transformation was applied to m̄H to obtain TPSinit
(m̄H), which was the initial matching result. Based on the initial matching, SSMH was
registered to the segmented organs via an iterative process:

1. Initialization: set b0 = 0, m0 = m ̄H, y0 = TPSinit (m̄H), where b is the shape
parameter, m is the model shape corresponding to b, and y is the target shape of
model fitting.

2. FOR each iteration k = 0, 1, 2, …, +∞, DO

3. Use Generalized Procrustes Analysis to compute the similarity transformation
SIM(·) that minimizes the summed squared distance ||yk − SIM(mk)||.

4. Calculate bk+1 with (3), i.e.,

5. Calculate mk+1 with (2): mk+1 = m̄H + VHbk+1.

6. IF ||SIM(mk+1) − SIM(mk)|| < ξ, THEN terminate the iteration and break out. The
termination threshold was set as ξ = R · N, where R was the voxel size of the CT
image, and was the total number of vertices of SSMH.

7. IF ||SIM(mk+1) − SIM(mk)|| ≥ ξ, THEN map mk+1 into the target subject via
SIM(·). For each organ mesh of SIM(mk), do ray tracing along the normal
directions of the vertices, find the nearest intersecting points of the rays with the
surface of the same organ in the segmentation result. These intersection points
compose the new target shape yk+1. If no intersection point is found for a specific
vertex, use the vertex itself as the intersection point.

8. END FOR
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9. The final value of bk+1 is used as the optimal shape parameter b̂H. The final value
of SIM(·) is used as the optimal similarity transform SÎM(·). The model matching
result is M̂H = SÎM(m̄H + VHb̂H).

10. Apply the RPM method again to register M̂H with the segmented organs. Let
TPSfinal(·) be the transformation obtained from the RPM method, the final
registration result of the high-contrast organs is

(7)

Note that the above method uses a strategy similar to the active shape model (ASM)
approach [28]. The main difference between this method and the conventional ASM
approach is that this method uses a TPS-based deformable registration after the SSM fitting,
because combining SSM with deformable registration could achieve better accuracy than
using each alone. The effect of combining SSM with deformable registration will be
evaluated and discussed in Sections III and IV.

3) Estimation of Low Contrast Organs—After b̂H was obtained, the conditional
distribution P(bL | b ̂H) could be calculated using the conditional Gaussian model [according
to (6)]. Let b̄L | H be the mean value of P(bL | b̂H), the estimation of low-contrast organs
could be calculated as

(8)

where  is the mean shape of the low-contrast organs.

4) Generation of Organ Probability Maps—P(bL | b̂H) gave the conditional
distribution of low-contrast organs under the condition of high-contrast organs. Based on
P(bL | b̂H), an arbitrary number of samples of bL could be randomly generated. Probabilistic
maps of organ distribution could be created based on the random samples. Such probability
maps are useful for probability-based image segmentation [21], [45] and quantification [46].

In practice, we generated Ns = 100 samples of bL. Let  be the ith sample of bL,  is
converted to organ meshes using

(9)

where  was the mesh union of the low-contrast organs (i.e., the heart, the liver, the

spleen, and the kidneys). Let  be the mesh of heart in , and

{ } be the set of all heart samples. For each sample i,  was

converted into a binary volume  where the voxels inside the heart mesh were set to

value 1, and the outside were set to 0.  had the same matrix size as the CT image.

Finally, the probability map of the heart was computed as the average of all  s
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(10)

where the voxel values of PMheart represented the probabilities of the heart’s existence at
the locations of these voxels. Similarly, PMliver, PMspleen, PML Kidney, and PMR Kidney

were computed.

Probability maps of the high-contrast organs were generated in a similar manner. Let 

be the mesh of lungs from  [as in (7)]. PMlungs was created by filling the voxels inside

 with uniform probability 1. PMskeleton was created in the same way. Unlike the
probability maps of low-contrast organs, the probability maps of high-contrast organs were
uniform throughout the organ region, because they were registered with the segmentation
results, rather than estimated using the conditional Gaussian model.

Fig. 3(i) shows the organ probability maps overlaid with the original CT image, Fig. 3(j)
shows the volume rendering of the organ probability maps.

III. EVALUATION RESULTS
A. Experimental Setup

The statistical atlas-based registration was validated based on both noncontrast micro-CT
images and contrast-enhanced micro-CT images. Note that the purpose of this study is to
develop a method for organ estimation of noncontrast micro-CT images. However,
noncontrast images do not offer good enough soft-tissue contrast for all the target organs. To
evaluate the registration accuracy of all the target organs, we used the strategy borrowed
from [16], i.e., high-contrast organs (the skin, skeleton, and lungs) were evaluated using the
noncontrast images (because from noncontrast images, human experts can only define the
high-contrast organs), while low-contrast organs (the heart, liver, spleen, and kidneys) were
evaluated with the assistance of contrast agents, so that we could define reference standards
of the low-contrast organ regions.

Twenty-three noncontrast images were randomly selected from the database of small animal
images at the Crump Institute, UCLA [47]. The subjects in these images were healthy mice
in prone positions. All the images were acquired with the same protocol as described in
Section II-A, and reconstructed to isotropic voxel size 0.20 mm, matrix size 256 × 256 ×
496.

The contrast-enhanced images were selected from the training sets of atlas construction.
Leave-one-out test was performed to evaluate the registration accuracy, i.e., each time one
of the 45 images used as a test image, the atlas was constructed from the rest 44 images.
Therefore the test images were not included into the atlases.

The proposed method was applied to both noncontrast and contrast-enhanced images.
Automatic registration was achieved for all the 23 noncontrast images. However, in 14 of
the 45 contrast-enhanced images, the high-contrast organ segmentation step (Section II-B)
yielded incorrect bone segmentation and manual correction was necessary. This is because
the segmentation method was mainly designed for noncontrast images. For contrast-
enhanced images, the high-intensity in the liver or spleen may interfere with bone
segmentation. After this manual correction, the subsequent registration was completed
automatically for the contrast-enhanced images.
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The segmentation and registration algorithms were programmed with IDL 7.1 (ITT Visual
Information Solutions, Boulder, CO) and were executed on a PC with a 3.05 GHz CPU and
5.99 GB RAM. The time requirements were ~16 s for automatic high-contrast organ
segmentation (for image size 256 × 256 × 496), and ~5 min for atlas registration. Most of
the registration time was spent on the generation of the probability maps (~4 min 15 s). The
time spent on probability map generation was directly related to the number of random
instances and the volume size of the probability map. In our experiment, we used 100
random instances and an image size of 256 × 256 × 496. Nevertheless, the necessity of
probability map generation is optional and depends on user requirements. If the user decides
to skip the generation of probability maps, the registration time could be less than 1 min.

B. Visual Assessment of Registration Results
Fig. 4 shows the results of organ probability maps overlaid on noncontrast micro-CT
images. Coronal and sagittal slices of different subjects are presented. The probability maps
are color-coded, and the color brightness represents the probability value (brighter color

means higher probability). Fig. 5 compares the mean shapes of registration results [  and

 in (7) and (8)] with the human segmentation results based on contrast-enhanced
images. For every pair of comparison, “S” stands for human segmentation result, and “R”
stands for registration result.

C. Registration Accuracy
As described above, for high-contrast organs (skin, skeleton, and lungs), the accuracy of
atlas registration was evaluated based on 23 noncontrast images, and for low-contrast organs
(heart, liver, spleen, and kidneys), the accuracy was evaluated based on 45 contrast-
enhanced images, via the leave-one-out test. Registration accuracy was measured by

comparing the mean shapes of registration results [  and  in (7) and (8)] with the
human segmentation results. Three different metrics, Dice coefficient, recovery coefficient
of organ volume (RCvlm) and mean surface distance(Dsurf), were used for accuracy
assessment

(11)

(12)

(13)

where RR and RS represent the organ regions of registration and segmentation, respectively;
| · | denotes the number of voxels, ∩ indicates overlapping between two regions; uR and uS
represent the surface vertices of the registered region and segmented region, respectively;
and i and j denote the vertex index of the two meshes, respectively. The Dice coefficient
reflects the estimation accuracy of shape, size and position, RCvlm reflect the estimation
accuracy of organ volume, and Dsurf reflects the average distances between two organ
surfaces.
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For comparison, single-atlas-based registration was also applied to the test images. Two
publicly available mouse atlases, the MOBY phantom [48] and DIGIMOUSE atlas [49],
[50], were used for the comparison. Trunk regions of the two atlases were extracted in the
same way as the statistical atlas (Section II-A). The registration on a single atlas was
performed as follows: at first the high-contrast organs were registered using the RPM
method [44], and then the low-contrast organs were mapped using the transformation
obtained from the RPM method. The accuracy of the single atlas registration was also
measured by the above three metrics.

Fig. 6 demonstrates the comparison of registration accuracy of major organs between the
statistical-atlas-based registration and the two single-atlas-based registrations. Both mean
value and standard deviation are plotted. For the Dice coefficient and RCvlm, a mean value
closer to 1 means better accuracy. For surface distance, mean value closer to 0 mm means
better accuracy. It is clear that the statistical-atlas-based registration performs better than the
two single-atlas-based registrations. Note that we did not calculate the Dice coefficient and
RCvlm for skin and skeleton, because the skin and skeleton of the atlas are open meshes
which are cut from the whole-body mesh. Opened surfaces cannot be filled into solid
volumes for calculating volumetric metrics (Dice and RCvlm). Moreover, in the atlas, the
skin and skeleton only cover the trunk range, while in the target image, the skin and skeleton
cover the whole body range. Therefore it is not equitable to compute Dice and RCvlm based
on different anatomical ranges.

To evaluate the significance of difference between the statistical atlas (SA)-based
registration and the two single atlas-based registrations (MOBY and DIGI), the Wilcoxon
signed-rank test was performed with each organ for each of the three accuracy values (i.e.,
Dice coefficient, RCvlm and surface distance) in Fig. 6. This paired different test was
conducted for both “SA vs. MOBY” and “SA vs. DIGIMOUSE.” Most of the test yielded
results of p < 0.0001, with only two exceptions: the results of the spleen Dice coefficients
were p = 0.0011 for “SA vs. MOBY” and p = 0.0069 for “SA vs. DIGIMOUSE” and the
results of the skin surface distances were p = 0.0386 for “SA vs. MOBY” and p = 0.1159 for
“SA vs. DIGIMOUSE”. These results will be analyzed in Section IV.

D. Influence of the Number of Training Subjects
Since the statistical atlas is constructed based on multiple subjects, the number of training
subjects should influence the accuracy of registration. A leave-many-out test of atlas
registration was conducted to quantify this influence. Different numbers of training subjects,
5, 15, 25, 35, and 44, were used for the atlas construction. For 5, 15, 25, and 35 training
subjects, the subjects were randomly selected from the total of 45 and the resulting atlas was
registered to all the remaining number of subjects (40, 30, 20, and 10). This experiment was
repeated five times to reduce the possible bias of random selection. For the case of 44
training subjects, the test was the same as the leave-one-out test. The means and standard
deviations of the Dice coefficient for each training number were obtained and are plotted in
Fig. 7. In order to give a clear demonstration, the standard deviations were plotted in
different directions for different organs. It can be seen that with increasing training subject
size, the mean Dice coefficients increase, and the standard deviations roughly decrease.

E. Comparing Statistical Atlas Registration With TPS-Based Deformable Registration
In this paper, we combined statistical atlas fitting with TPS-based deformation [see (7)]. To
reveal the effect of this combination, we conducted an experiment to compare the accuracies
of using each method alone with the accuracies of combing them together. Fig. 8 shows the
comparison results in terms of Dice coefficients. Both mean values and standard deviations
are reported. “Statistical Atlas+ TPS” means the combined method. “Statistical Atlas Only”
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means performing statistical atlas fitting without TPS-based registration [i.e., ignore TPSfinal
in (7)–(9)]. “TPS of Mean Atlas” means using the mean shapes of SSMH and SSML as a
single atlas, and register it with TPS-based deformable registration just as we did for the
MOBY and DIGIMOUSE atlases. “TPS of Single Atlas” means using each of the 45
training subjects as a single atlas, register them with TPS-based deformable registration, and
compute the means and standard deviations of the Dice coefficients for all the 45 single
atlases. For all the four methods, the same test images were used as described in Section III-
A. Leave-one-out tests were performed to avoid including the test images into the atlases.

IV. DISCUSSION
A. Atlas Registration

From Fig. 4, we could see that the probability maps of low-contrast organs have fuzzy edges
and bright centers. This means there is higher probability of the organs’ presence in the
central regions than in the edge regions. In the probability map of the liver, the cranial part is
better defined than the caudal part, because the cranial part is closer to the lungs, which are
known as a deterministic condition. Similarly, we can explain why the probability map of
the heart is better defined than other low-contrast organs, because the heart has good
correlation with the location of the lungs. The spleen and the left kidney are two of the least
well determined organs, since their positions are influenced to the varying size of the
flexible stomach. The food content in the stomach influences its size, and consequently
influences the positions of the spleen and left kidney. The same phenomenon is also
observed from the quantitative results (Fig. 6), where the spleen and left kidney always have
the worst accuracy.

As shown by Fig. 6(a), the two single subject atlases, MOBY and DIGIMOUSE, have
similar levels of Dice coefficients. They outperform each other on different organs, but
neither of the two prevails on all organs. The statistical atlas presented here yields larger
Dice coefficients than both single atlases. Although a nonrigid deformation (the RPM
method) is used for both the statistical atlas and the single atlas registrations, the statistical
atlas outperforms the single atlases because it provides a good estimation of the individual
anatomy before the final nonrigid deformation, just like generating an individual-specific
single atlas which matches the subject better than any existing single atlas. Observing the
results, it is promising that the statistical atlas-based registration obtains Dice coefficients
>0.7 for the lungs, heart, liver and kidneys. The statistical atlas also produces small standard
deviations for the lungs, heart, and liver, but not for the spleen and kidneys. The liver has
smaller standard deviation because it is bigger in size and more stable in location. The
spleen has the smallest mean Dice coefficient and the biggest standard deviation, because it
suffers from both unstable position (affected by the flexible stomach) and problematic shape
(banana-like long shape), which makes it very sensitive to small variances of position and
direction. The kidneys also have suboptimal standard deviations, because their positions are
unstable. It is interesting to see that the right kidney has larger Dice coefficient and smaller
standard deviation than the left kidney, because the position of the right kidney is less
flexible than the left kidney. The position of the right kidney is mainly affected by the liver,
which is big and stable. In contrast, the position of the left kidney is mainly affected by the
stomach, which is flexible in size and position.

From Fig. 6(b) and (c), the results of RCvlm and Dsurf reveal similar phenomena as the Dice
coefficients. The RCvlm of the statistical atlas is close to 1 for almost all organs. This means
that the statistical atlas is good at estimating organ volume. For the spleen, the statistical
atlas tends to overestimate the spleen volume. The spleen of the MOBY atlas is even closer
to 1 than the statistical atlas, but the MOBY atlas based registration tends to underestimate
the spleen volume. In terms of surface distances, the statistical atlas has smaller distances for
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all organs than the single atlases. The surface distances of the high-contrast organs are
significantly smaller than the low contrast organs, because the high-contrast organs are
directly registered to the CT segmentation results. For the statistical atlas, the surface
distances of the high-contrast organs are 0.26±0.02 mm for the skin, 0.26 ± 0.05 mm for the
skeleton and 0.18 ± 0.01 mm for the lungs. The achievement of this accuracy is attributed to
the combination of statistical atlas with the RPM registration method.

Judging from the results of Wilcoxon signed-rank test, the statistical atlas-based registration
is significantly (p < 0.0001 for most organs with the three accuracy metrics) more accurate
than the two single atlas-based registrations (MOBY phantom and DIGIMOUSE atlas). For
the Dice coefficient, the spleen showed the least significant differences (p < 0.01), because
the spleen is the most difficult organ to register, as explained above. For the surface
distance, the skin showed weak significance (p < 0.05) for “SA vs. MOBY”, and is not
significant (p > 0.1) for “SA vs. DIGIMOUSE”. This is because the skin has less complex
shape than other organs, thus it is easier for the TPS-based method to get a good alignment,
reducing the advantage of the statistical atlas. Moreover, the skin of the MOBY phantom is
represented by the nonuniform rational B-spline (NURBS) surface which is less realistic
than the DIGIMOUSE atlas, therefore the MOBY phantom showed more significant
difference of skin accuracy than the DIGIMOUSE atlas.

Fig. 7 demonstrates the influence of training subject number on the Dice coefficient. It is
clear that the Dice coefficient of every organ increases when more training subjects are used.
This phenomenon again confirms the advantage of using more training subjects. It can also
be observed that the improvement for low-contrast organs is faster than for high-contrast
organs. This is because for high-contrast organs, the TPS-based registration [as in (7)] was
used to capture more anatomical variations than the SSM captures, while for low contrast
organs, no TPS-based registration can be directly applied thus we have to rely more on the
improvement of SSM. From Fig. 7, we can also see that the Dice coefficients for all organs
tend to increase slower when the subject number becomes larger, implying there might be an
upper bound of Dice coefficient for each organ. The possible existence of the upper bounds
reveals a limitation of the statistical-atlas-based approach: after all, we cannot expect to use
statistical approach to model all possible inter-subject anatomical variations.

Fig. 8 reveals that combining the statistical atlas with deformable registration yields better
accuracy than using each alone. Statistical atlas and deformable registration complement
each other to achieve improved accuracy. By fitting the statistical atlas to the subject image,
an individualized atlas is obtained and is then used as a good starting point of the
deformable registration. On the other hand, the deformable registration serves as a
compensation for the over-constrained SSM, since the training subject number is quite
limited compared to the great inter-subject anatomical variations. Fig. 8 also demonstrates
that “Statistical Atlas Only” and “TPS of Mean Atlas” have comparable accuracies with
each other for low contrast organs, and both of them are more accurate than “TPS of Single
Atlas”. However, for the lungs, “TPS of Mean Atlas” and “TPS of Single Atlas” are better
than “Statistical Atlas Only”, because the lungs are directly registered by the TPS-based
method. Concluding from these observations, TPS-based registration performs well for
high-contrast organs, because the landmark points of the TPS deformation can be directly
obtained from the segmentation of these organs. However, for low contrast organs, the
statistical atlas is essential since it uses conditional Gaussian model to derive subject-
specific estimation. It is also interesting to see that using the mean shape of the statistical
atlas as a single atlas is more accurate than using an individual training subject as a single
atlas, because the mean shape as a representation of the whole training set is less prone to
the influence of the outlier subjects.
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B. Atlas Construction
A direct question rising from Fig. 7 is how many training subjects are needed to approach
the upper bound of registration accuracy. Although 45 training subjects is already a
reasonably large number of subjects, the DICE data shows there is still room for
improvement with more subjects, as 45 was not enough to model the tremendous anatomical
variations of mice population. To achieve better accuracy, we should try either to increase
the training sample number (by acquiring more training data) or to decrease the target
population variations (by building and registering the atlas based on subgroups of the
population, according to different ages, strains, sexes, and etc.), or both. The synthetic
variation methods for statistical shape model construction [51] could also be used to
artificially enlarge the variations of limited training sets.

The statistical atlas is constructed based on the segmentation of Fenestra LC-enhanced CT
images. Most trunk organs that are important for bio-distribution studies are included in the
atlas. However, there are a few major trunk organs, such as the bladder and the
gastrointestinal (GI) track, not included due to technical difficulties. The difficulties of
including the bladder and the GI track are illustrated in Fig. 9, where the same subject is
displayed at different time points. It is noticeable that the sizes and positions of the bladder
vary between different time points, due to the influence of urine accumulation. Since the
bladder has significant intra-subject variation, it is very difficult to model its inter-subject
statistics. Therefore we consider the atlas registration strategy unsuitable to estimate the
bladder. Instead it would be easier to extract the bladder via segmentation strategies, since
the bladder normally presents good boundary contrast. As for the GI track, it is hard to
clearly define the detailed boundaries from Fenestra enhanced images. To overcome this
limitation, as well as to define other smaller organs like the gallbladder and pancreas, it
might be necessary to try with multiple CT contrast agents [11], [52], intraperitonealy
administrations or micro-MR images [53] in future studies.

Another limitation of the current study is that the statistical atlas is constructed based on
only healthy training subjects. It is difficult to include unhealthy training subjects because
different diseases may affect the anatomy in unpredictable ways. However, many preclinical
studies are conducted based on disease models. The registration of a healthy atlas to
unhealthy subjects should be evaluated in future work.

C. Statistical Shape Model and Conditional Gaussian Model
In our work, the statistical shape models are constructed for groups of multiple organs. That
is, instead of modeling each organ individually, we modeled a group of organs as a single
object. The advantage of doing this is that the relative movements between adjacent organs
can be inherently built into the model, therefore the chances of organ overlap are much
reduced. However, group-wise modeling tends to over-constrain the model, making it
difficult to capture delicate shape variations of single organs. For further improvement,
multi-object statistical shape models [54]–[56] can be explored to model both inter-organ
movements and single organ variations.

In this paper, the conditional Gaussian model was used in the estimation of low-contrast
organs from high-contrast organs. Nevertheless, the value of the conditional Gaussian model
can reach beyond this specific application. For example, for those applications that use the
mouse body surface to estimate internal organs, the conditional Gaussian model is a good
choice for capturing the correlation between internal organs and body surface. Furthermore,
it can also be used in clinical image analysis, for the estimation of unknown organs based on
the already segmented organs.
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D. Comparison With Existing Methods
As mentioned in the introduction section, so far several single-subject atlas registration
methods have been proposed. Most existing methods are used for whole-body registration.
In contrast, our method focuses on trunk region because only this region is stable enough for
inter-subject statistical modeling when imaged in our imaging chamber [31]. Otherwise if
the head, the limbs and the tail are built into the model, they may introduce false statistical
correlations caused by posture changing. By focusing on the trunk region, our method
obtained better accuracy than single atlas-based registrations. Therefore, our statistical atlas
is suitable for the trunk region, while a single-subject atlas could be used for whole-body
registration. In fact, we already used a single-subject skeleton atlas in this paper for defining
the trunk region based on spine and skull alignment, and this strategy can also be used for
brain estimation if needed. However, this strategy is not accurate enough for aligning the
limbs, especially for the front limbs which are too close to the thoracic bones. Khmelinskii
et al. proposed some articulated skeleton atlases which are better at whole-body posture
alignment [57]. Xiao et al. also developed a shape-context based non-rigid registration
method which achieved posture alignment by piecewisely aligning the mouse skeleton [58],
[59]. It could be a promising improvement if the statistical trunk atlas could be combined
with articulated skeleton atlas or piecewise skeleton registration approach, to offer wider
usability and better accuracy for mouse micro-CT image registration.

In this paper, a probabilistic atlas (PA) is generated for the abdominal organs. In the past
decade, PA-based segmentation of human abdominal organs from clinical CT images has
become a popular topic. Our method has a similar application purpose (for obtaining
probability maps of abdominal organs) with the existing PA-based methods, but also has its
own contribution in methodology. For the generation of the PA, existing methods firstly
register the training subjects into a common space either by aligning the target organs
themselves [60] or by establishing an external normalization space (such as the abdominal
cavity [56], [61], [62] or TPS-based control points [21]), and then estimate the PA by
computing the proportional fractions of the aligned binary organs. In our method, the PA is
estimated by sampling the analytical distribution of SSML rather than by counting from
aligned training subjects. In this way, the PA is related to the statistical shape model (SSM).
The relationship of SSM and PA is not extensively studied in existing references of human
abdominal CT. Okada et al. [62], [63] combined SSM and PA for the segmentation of
human abdominal organs, but SSM and PA are constructed and applied separately. Shimizu
et al. [64] correlated pancreas PA with the SSM of pancreas centerline, but each instance of
the SSM had to be endowed with a different PA, making the optimization of individualized
PA computationally expensive; hence they used only a limited number of pre-sampled SSM
instances for the optimization. In this paper, since the conditional distribution of SSML is
already individualized for the specific subject, it is straightforward to generate an
individualized PA from SSML. Moreover, for localizing the PA into the individual subject,
existing methods normally use the same normalization space of PA construction to map the
PA into individual images, and some of these methods also utilize image intensity
information for organ pose estimation [65] or atlas registration. [21]. In our method, the PA
of low contrast organs is inherently localized according to the analytical anatomical
correlation (conditional Gaussian model) with surrounding high contrast organs. The high
contrast organs provide both shape condition [b̂H in (9)] and external spatial constraint
[TPSfinal and SÎM in (9)] for the low contrast organs. Such a strategy might be useful not
only for CT images, but also for other modalities where high contrast organs can help with
the estimation of nearby low contrast organs, such as PET images, etc. Finally, unlike most
existing human-oriented references, the PA obtained in this work is not used for
segmentation, due to the imperfect soft-tissue contrast of in vivo micro-CT images (as
discussed in Section I). Nevertheless, the PA generated here can be helpful for segmenting
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other modalities that are co-registered with the micro-CT images, such as micro-PET [2],
micro-SPECT [3], and etc., which are beyond the scope of this paper but within the plan of
future study.

V. CONCLUSION
In this study, we constructed a statistical atlas of the mouse trunk region, and registered this
atlas to noncontrast mouse micro-CT images to estimate the major organs of trunk region.
To our knowledge, this is the first time that a multi-subject mouse atlas has been proposed
for multiple trunk organs. Moreover, differing from probabilistic atlases which are
constructed by directly averaging multiple single-subject atlases, our atlas uses statistical
models to analytically describe the inter-subject distributions and inter-organ correlations.
Subject-specific organ probability maps are generated based on the registration of statistical
shape models.

The strategy of combining statistical shape model with conditional Gaussian model could
also enrich the methodologies of multi-subject atlas construction. The statistical shape
model was used to compensate for inter-subject anatomical variations, and the conditional
Gaussian model was used to capture inter-organ shape correlations. The evaluation results
showed improvement of registration accuracy compared to single atlas-based registration,
and the registration accuracy can be further improved with the increase of training subject
number. Comparing the statistical-atlas-based registration with TPS-based deformable
registration, the statistical atlas demonstrates advantage in improving the accuracy of low-
contrast organs.

In future work, we still need to add more training subjects and include more organs into the
atlas. We also need to incorporate the trunk atlas into a whole-body atlas, so as to widen the
uses of the atlas.
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APPENDIX
As introduced in Section II-A, to build the statistical atlas, the point set registration method
based on Gaussian mixture models [37] was used for establishing the organ vertex
correspondence between training subjects. Using this method, a reference subject of each
organ was selected and registered to the rest of the training subjects. The statistics of
registration accuracy of each organ is reported in Table I. The accuracy is measured across
the whole training set, using the surface distance defined in (13).

As reflected from Table I, different organs have different level of accuracy, the organs with
simpler shapes (e.g., the heart and kidneys) tend to have better accuracy. Nevertheless, all
the organs have accuracy of less than 0.2 mm, serving the purpose of this study. In future
work, we will investigate possibilities to further improve the accuracy of vertex
correspondence.

One basic assumption of the conditional Gaussian model is that both bH and bL follow
multivariate Gaussian distributions. In order to verify this assumption, we inspected the
distributions of the first five principal components of bH and bL in scatter plot matrices. Fig.
10(a) and (b) shows the scatter plots of bH and bL based on the 45 training subjects,
respectively. In the nondiagonal blocks of the matrices, the joint distribution of two principal
components is plotted. In the diagonal blocks, a histogram of each principal component is
plotted. It can be observed that although the number of training subject is limited, the joint
distributions and the histograms roughly follow 2D and 1-D Gaussian distributions,
respectively. The plots also reveal that the number of training subjects is still not enough to
support an obvious Gaussian distribution. Therefore, more training data is needed to
improve the quality of the model.

Another assumption of the conditional Gaussian model is that there should be statistical
correlations between the shapes of different organs. In order to verify this assumption, we
plot the covariance matrix of different organs. Let v be the 1-D vector that lines-up the
vertex coordinates of all organs

(14)

where
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and similar for other organs. The correlation matrix of v was estimated based on the 45
training subjects and is plotted in Fig. 11. The pixels of the matrix stand for the correlations
between every two elements of v. The bright diagonal line throughout the matrix means that
every vertex has strong self-correlation. In order to mark the range of different organs, red
lines are plotted to divide the matrix into sub-blocks. Each sub-block corresponds to the
correlation between two organs. The brightness of the block represents the strength of inter-
organ correlation. It can be observed that some sub-blocks demonstrate good inter-organ
correlations, such as the heart vs. the lungs, and the spleen vs. the left kidney. Some organs
correlate well with only part of other organs, such as the kidneys correlate well with part of
the skeleton (the abdominal spine), and the right kidney correlates well with part of the liver
(the right lobe). It is also interesting to see that the spleen and the kidneys have very strong
self-correlations, meaning these organs have stronger inter-subject translations than the
changing of sizes and shapes, because if a organ mainly performs translation without
significantly changing the size or shape, the vertices of this organ will always move in
similar directions and thus have strong correlations between each other.

Wang et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Construction of the statistical mouse atlas of the mouse trunk region. (a) Training set of 45
contrast-enhanced micro-CT images. Segmented organs are labeled with colored contours.
(b) The two axial slices that pass the neck and pelvis. (c) Trunk region that is cut out
between the two axial slices. (d) Segmented organs divided into two groups: high-contrast
organs and low-contrast organs. (e) Two statistical shape models constructed for the high-
contrast organs and low-contrast organs, respectively. (g) Conditional Gaussian model
which is constructed based on the two statistical shape models.
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Fig. 2.
Shape variations generated from the statistical shape models and the conditional Gaussian
model. (a) First three eigenmodes of the shape variations of SSMH. Each column shows the

variation of one eigenmode, varying between  (top) and  (bottom). (b) First
three eigenmodes of the shape variations of SSML, displayed in the same way of (a). (c)
First three eigenmodes of the shape variations of SSMH coupled with the correlated
variations of SSML estimated using the conditional Gaussian model.
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Fig. 3.
(a) Target micro-CT image. (b) High contrast organs segmented from the CT image. (c)
Single-subject skeleton atlas used for trunk segmentation. The zoom-in regions show the
two landmark points that are used for marking the trunk range. (d) Skeleton atlas registered
with the segmented organs. Two axial slices are generated passing through the registered
landmarks. (e) Trunk region of the segmented meshes, which is cut out by the two axial
slices of (d). (f) Statistical shape model of high contrast organs(SSMH). (g) Result of fitting
SSMH to the target subject. (h) Conditional Gaussian model. (i) Probability maps of the
registered organs overlaid with the target CT image. (j) Volume rendering of the organ
probability maps.
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Fig. 4.
Registration result of organ probability maps, overlaid with noncontrast micro-CT images of
different subjects. Different coronal and sagittal slices are demonstrated. The probability
maps are color-coded. The brightness of color represents the probability value (brighter
color means higher probability).
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Fig. 5.
Visual comparison of the registration results with human segmentation results, based on
contrast-enhanced micro-CT images. For every pair of comparison, “S” stands for human
segmentation result, and “R” stands for registration result. The contours of the registration

results demonstrate the mean shapes [  and  in (7) and (8)] of the registered organs.
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Fig. 6.
Comparison of registration accuracies between statistical atlas-based registration and the
two single atlas-based registrations. Two publicly available mouse atlases, the MOBY
phantom [48] and DIGIMOUSE atlas [49], are used for the comparison. The skin, skeleton,
and lungs are evaluated based on non-contrast images, while other organs are evaluated
based on contrast-enhanced images. (a) Comparison results of Dice coefficient. (b)
Comparison results of recovery coefficient of organ volume. (c) Comparison results of
surface distance. In each comparison, both mean value and standard deviation across the
target subjects are plotted.
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Fig. 7.
Influence of training subject number on registration accuracy. The numbers on the abscissa
axis stand for the number of training subjects for atlas construction. Dice coefficient results
of different organs are plotted for different training subject numbers. For clarity, the
standard deviations of different organs are plotted in different directions.
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Fig. 8.
Comparison of the organ registration accuracy (Dice coefficient) of statistical atlas
registration and TPS-based deformable registration. “Statistical Atlas + TPS” means
combining statistical atlas fitting with TPS-based registration. “Statistical Atlas Only”
means performing statistical atlas fitting without TPS-based registration. “TPS of Mean
Atlas” means TPS-based registration using the mean shapes of SSMH and SSML as a single
atlas. “TPS of Single Atlas” means TPS-based registration using each of the 45 training
subjects as a single atlas.
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Fig. 9.
Longitudinal micro-CT images of the same subject, demonstrating the instability of bladder
position and size, as well as the difficulty of defining the region of the GI track. The subject
is shown at similar coronal positions and at different time points after the injection of
contrast agent. The red arrows point to the bladder, and the blue dashed circles delineate the
rough GI regions. It can also be observed that the GI track has fuzzy boundaries in all
images, making it difficult to accurately define it.
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Fig. 10.
(a) Distributions of the first five principal components of bH, based on the 45 training
subjects. The non-diagonal blocks plot the joint distribution of every two principal
components. The diagonal blocks plot the histogram of each principal component. (b)
Distributions of the first five principal components of bL, plotted in the same way as (a).
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Fig. 11.
Correlation matrix of the vertex coordinates of all organs. Each element of the matrix
represents the correlation of two vertex coordinates (brighter element means higher
correlation). The red lines are used to mark out the sub-blocks that represent the cross
correlations of every two organs.
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