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With regard to ctl evasion, tumour losses of mhc-
i have been thoroughly studied (our group has more 
than 200 papers on file) and have, in most instances 
(although not invariably), been associated with poor 
outcome (reviewed in Garrido et al. 2). Interestingly, 
the principle of mhc-i loss also applies to the members 
of the so-called antigen-processing machinery, such 
as the transporter associated with antigen processing 
(tap), the endoplasmic reticulum aminopeptidase as-
sociated with antigen processing (eraap in mice and 
erap1 and erap2 in humans), and tapasin. These are 
in charge of, respectively, translocation (into the en-
doplasmic reticulum), final trimming, and editing of 
peptide antigens (Figure 1) before loading onto mhc-i. 
After our initial observation of linked expression 
patterns between mhc-i and members of the antigen-
processing machinery 3, coordinated downregulation 
of some of these molecules was shown to correlate 
with poor prognosis 4.

Immunotherapeutic approaches, including 
the massive administration of dominant tumour 
antigens in peptide-based T-cell therapy (mostly 
pursued in melanoma and incorrectly called 
“vaccination”), impose an even greater selective 
pressure, possibly leading to an increased advan-
tage for tumour cell variants lacking the antigen-
presenting mhc-i molecule or the protein antigen 
that contains the immunogenic peptide epitope (or 
both) 2,5. Particularly when irreversible, mhc-i loss 
in cancer patients has been claimed to negatively 
affect prognosis 2.

Assuming that spontaneous and immunotherapy-
induced mhc-i losses are drivers and not passengers 
of tumour progression, it remains to be explained 
why they do not incite recognition and tumour lysis 
by nk cells (Figure 1). Porgador et al. 6 described a 
very high prevalence (5 in 13 cases) of irreversible 
complete mhc-i losses in patients treated with vari-
ous immunotherapeutic regimens. Despite the cells 
being very sensitive targets of autologous nk cells in 
vitro, clinical outcome was reported to be poor. Like-
wise, Pende et al. 7 observed that long-term tumour 

Cytotoxic T  lymphocytes (ctls) and natural killer 
(nk) cells lyse tumours expressing and lacking, 
respectively, properly conformed class  i molecules 
of the major histocompatibility complex [mhc-i (Fig-
ure 1)]. In keeping with the “missing self” hypoth-
esis 1, a logical extrapolation would be to postulate 
that the primary goal of a tumour is to elude both 
defense lines.

figure 1	 Activation–inhibition and molecules of major histocom-
patibility complex, class i (mhc-i). Tumours are killed either when 
they are able to express mhc-i molecules containing tumour peptide 
antigens recognized by the rearranging T-cell receptor (tcr) of 
cytotoxic T lymphocytes (ctls), or when self–mhc-i molecules are 
lacking or unable to properly engage non-rearranging inhibitory 
receptors, mainly (but not exclusively) expressed by natural killer 
(nk) cells. Peptide antigens must be processed and tailored before 
they can stabilize mhc-i assemblies with β2-microglobulin (β2m). 
Only folded mhc-i molecules serve as ligands of ctls and nk cells.
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cell lines, even when established from patients not 
undergoing immunotherapy, do not express enough 
mhc-i to protect themselves from nk recognition. 
Why, then, can these tumours evade in the face of a 
brisk in vitro nk response?

A possible interpretation is that simple cytotox-
icity readouts do not reflect the lytic behaviour of 
immune effectors in vivo. After all, if antitumour 
T-cell counts and activity in vitro are not entirely 
predictive of clinical responsiveness to vaccination 8, 
why should nk cell responses in vivo be faithfully 
recapitulated in an in vitro assay? Alternatively, it 
might be hypothesized that nk cells have nothing 
to do with tumour immune surveillance, at least in 
humans. Indeed, lymphoid cell infiltrates contain 
many more T cells than nk cells, and only T cells 
are positively associated with a favorable outcome 9. 
Whatever the interpretation, a drastic objection is 
that certain subsets of nk cells may be important 
at early stages, but may be long gone by the time 
the tumour becomes clinically evident and hits the 
pathology slide.

If nk cells are indeed important, tumours low in 
mhc-i may elude them either by exploiting certain 
“gaps” in the inhibitory nk receptor repertoire 10 or, 
analogous with viral immuno-evasion strategies 11, 
by “replacing” mhc-i self-inhibitory signals with 
other inhibitory ligands such as the non-classical 
mhc-i human leukocyte antigens  G (hla-g) and E 
(hla-e) 12–14. However, at least hla-e behaves not only 
as an inhibitory, but also as a triggering ligand 15. In 
addition, hla-e expression may not be restricted to 
tumours with mhc-i loss as required by the “replace-
ment” model  16,17. Finally, and quite surprisingly, 
hla-e is associated with a good prognosis, at least 
in certain tumour histotypes 18–20. It will be of con-
siderable interest to find out if and how tumours use 
nk-decoy tactics.

Although there are simpler ways to explain 
mhc-i–driven tumour evasion from both ctl and nk 
cells, those explanations have received consider-
ably less attention than the foregoing mechanisms. 
A straightforward assumption is that, besides mhc-i 
losses adopted by ctl-sensitive tumours, there are 
mechanisms of mhc-i gains, and those mechanisms 
are preferred by another set of tumours that are par-
ticularly sensitive to nk lysis. It might be envisaged 
that the opposing influences of ctl and nk cells pre-
vent any major change in mhc-i expression, making 
less-aggressive tumours resemble their normal coun-
terparts. By contrast, aggressive tumours may escape 
by adopting whichever immuno-evasion strategy is 
the most advantageous in the context of the immune 
response mounted by an individual host. Indeed, a 
Gaussian distribution of mhc-i expression around 
“normal” values was observed in vitro and in vivo in 
a variety of solid tumours 3,21, mhc-i losses and mhc-i 
gains both being associated with poor prognosis in 
colorectal carcinoma 22.

Given the opposing effects of mhc-i molecules 
on ctl and nk cells (Figure 1), an mhc-i phenotype 
efficiently triggering both effectors is a contradiction 
in terms. For instance, in the classical paper that pio-
neered the “missing self” hypothesis, a tap-defective 
mutant of the murine lymphoma RMA, called RMA-
S, was shown to be rejected essentially by nk cells 1.

Recently, rna interference of the same RMA cells 
for eraap (just downstream of tap in the antigen-
processing machinery pathway 23) similarly resulted 
in tumour rejection 24, but in addition to nk cells, 
T cells (CD4 and CD8 alike) were also involved. It ap-
pears that poorly folded mhc-i molecules synthesized 
in the absence of eraap can be “seen” as abnormal 
by several immune effectors. Quite interestingly, 
only a few human tumours express low erap1 and 
erap2 levels 25,26, suggesting that the spontaneous 
occurrence of this altered, two-edge phenotype is 
counterselected in vivo.

In conclusion, it is fairly clear what tumours look 
like when they are “out of the hands” of the immune 
system, but we know much less of “real” tumours 
under immunologic scrutiny and during immuno-
editing in vivo. If ctl and nk cells must both be 
“tuned in” to reject tumours, many more immuno-
evasive mhc-i (and non-mhc-i 27) phenotypes remain 
to be discovered.
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