Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1981 Mar 25;9(6):1483–1497. doi: 10.1093/nar/9.6.1483

Molecular mechanical studies of proflavine and acridine orange intercalation.

A Dearing, P Weiner, P A Kollman
PMCID: PMC326771  PMID: 7232221

Abstract

Previous workers have reported that proflavine and acridine orange form various structurally different complexes with the dinucleoside phosphates rCpG and dCpG, with uniform C3'-endo and mixed C3'-endo (3'-5') C2'-endo sugar puckers being observed. We present theoretical calculations, based on the method of molecular mechanics, which support the experimental observations. The results suggest that the mixed C3'-edo (3'-5') C2'-endo pucker conformation isi intrinsically more stable than the uniform C3'-endo conformation, but that the additional stabilisation gained from specific, hydrogen bonding, interactions between nucleic acid and solvent, or intramolecularly within the nucleic acid, can lead to the adoption of the latter conformation, or of variants between the two. The role played by hydrogen bonding between amino-groups and nucleic acid phosphate appears more subtle than previously supposed.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alden C. J., Arnott S. Stereochemical model for proflavin intercalation in A-DNA. Nucleic Acids Res. 1977 Nov;4(11):3855–3861. doi: 10.1093/nar/4.11.3855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alden C. J., Arnott S. Visualization of planar drug intercalations in B-DNA. Nucleic Acids Res. 1975 Oct;2(10):1701–1717. doi: 10.1093/nar/2.10.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berman H. M., Neidle S., Stodola R. K. Drug-nucleic acid interactions: conformational flexibility at the intercalation site. Proc Natl Acad Sci U S A. 1978 Feb;75(2):828–832. doi: 10.1073/pnas.75.2.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hagler A. T., Huler E., Lifson S. Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. J Am Chem Soc. 1974 Aug 21;96(17):5319–5327. doi: 10.1021/ja00824a004. [DOI] [PubMed] [Google Scholar]
  5. Hagler A. T., Moult J. Computer simulation of the solvent structure around biological macromolecules. Nature. 1978 Mar 16;272(5650):222–226. doi: 10.1038/272222a0. [DOI] [PubMed] [Google Scholar]
  6. Jain S. C., Tsai C. C., Sobell H. M. Visualization of drug-nucleic acid interactions at atomic resolution. II. Structure of an ethidium/dinucleoside monophosphate crystalline complex, ethidium:5-iodocytidylyl (3'-5') guanosine. J Mol Biol. 1977 Aug 15;114(3):317–331. doi: 10.1016/0022-2836(77)90253-4. [DOI] [PubMed] [Google Scholar]
  7. LERMAN L. S. Structural considerations in the interaction of DNA and acridines. J Mol Biol. 1961 Feb;3:18–30. doi: 10.1016/s0022-2836(61)80004-1. [DOI] [PubMed] [Google Scholar]
  8. Miller K. J., Pycior J. F. Interaction of molecules with nucleic acids. II. Two pairs of families of intercalation sites, unwinding angles, and the neighbor-exclusion principle. Biopolymers. 1979 Nov;18(11):2683–2719. doi: 10.1002/bip.1979.360181105. [DOI] [PubMed] [Google Scholar]
  9. Neidle S., Berman H. M., Shieh H. S. Highly structured water network in crystals of a deoxydinucleoside---drug complex. Nature. 1980 Nov 13;288(5787):129–133. doi: 10.1038/288129a0. [DOI] [PubMed] [Google Scholar]
  10. Pigram W. J., Fuller W., Hamilton L. D. Stereochemistry of intercalation: interaction of daunomycin with DNA. Nat New Biol. 1972 Jan 5;235(53):17–19. doi: 10.1038/newbio235017a0. [DOI] [PubMed] [Google Scholar]
  11. Sakore T. D., Jain S. C., Tsai C. C., Sobell H. M. Mutagen-nucleic acid intercalative binding: structure of a 9-aminoacridine: 5-iodocytidylyl(3'-5')guanosine crystalline complex. Proc Natl Acad Sci U S A. 1977 Jan;74(1):188–192. doi: 10.1073/pnas.74.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Shieh H. S., Berman H. M., Dabrow M., Neidle S. The structure of drug-deoxydinucleoside phosphate complex; generalized conformational behavior of intercalation complexes with RNA and DNA fragments. Nucleic Acids Res. 1980 Jan 11;8(1):85–97. doi: 10.1093/nar/8.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sobell H. M., Tsai C. C., Gilbert S. G., Jain S. C., Sakore T. D. Organization of DNA in chromatin. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3068–3072. doi: 10.1073/pnas.73.9.3068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tsai C. C., Jain S. C., Sobell H. M. Visualization of drug-nucleic acid interactions at atomic resolution. I. Structure of an ethidium/dinucleoside monophosphate crystalline complex, ethidium:5-iodouridylyl (3'-5') adenosine. J Mol Biol. 1977 Aug 15;114(3):301–315. doi: 10.1016/0022-2836(77)90252-2. [DOI] [PubMed] [Google Scholar]
  15. Wang A. H., Nathans J., van der Marel G., van Boom J. H., Rich A. Molecular structure of a double helical DNA fragment intercalator complex between deoxy CpG and a terpyridine platinum compound. Nature. 1978 Nov 30;276(5687):471–474. doi: 10.1038/276471a0. [DOI] [PubMed] [Google Scholar]
  16. Wang A. H., Quigley G. J., Rich A. Atomic resolution analysis of a 2:1 complex of CpG and acridine orange. Nucleic Acids Res. 1979 Aug 24;6(12):3879–3890. doi: 10.1093/nar/6.12.3879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Winkle S. A., Tinoco I., Jr Interactions of 4-nitroquinoline 1-oxide with deoxyribodinucleotides. Biochemistry. 1979 Sep 4;18(18):3833–3839. doi: 10.1021/bi00585a001. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES