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Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in

deformable image registration and then use it to demonstrate their effect on daily dose mapping.

Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractio-

nated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain

displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day

onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal

components analysis (PCA) is applied to measured DVF error maps to produce decorrelated princi-

pal component modes of the errors. The modes are sampled independently and reconstructed to pro-

duce synthetic registration error maps. The synthetic error maps are convolved with dose mapped

via deformable registration to model the resulting uncertainty in the dose mapping. The results are

compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that

vary randomly from voxel to voxel.

Results: The error sampling method is shown to produce synthetic DVF error maps that are statisti-

cally indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties mod-

eled by our procedure produce patterns of dose mapping error that are different from that due to

randomly distributed uncertainties.

Conclusions: Deformable image registration uncertainties have complex spatial distributions. The

authors have developed and tested a method to decorrelate the spatial uncertainties and make statis-

tical samples of highly correlated error maps. The sample error maps can be used to investigate the

effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial

demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spa-

tial patterns in the DVF uncertainties. VC 2012 American Association of Physicists in Medicine.
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I. INTRODUCTION

The treatment target and other structures can move and

deform during external beam radiotherapy. This can occur

day by day or, in the case of respiration, can proceed contin-

uously during treatment. It can be observed via repeated

imaging and then accommodated via adaptive treatment

techniques, including adaptive planning. This latter approach

to treatment has become known as image-guided adaptive

radiotherapy (IGART). To obtain an accurate picture of the

cumulative dose delivered over a number of days (or through

a full breathing cycle), one must map each dose increment

back to a reference day (or breathing phase) while account-

ing for movement and deformation. If one has a CT image

associated with each dose increment, then one can deform-

ably register it to a reference image and use the resulting de-

formation vector field (DVF) to map the dose to the

reference image and also to construct statistical models of

where any particular anatomical element might be during

treatment, for use in probabilistic planning.1,2 However, de-

formable image registration (DIR) algorithms are imperfect.

Any DVF derived from the registration of two images will

have uncertainties3 that make the dose mapping imprecise. It

is important to know how imprecise. The purpose of our

present study is to develop and demonstrate a method to ana-

lyze patterns of uncertainty in DVF measurements and their

effect on mapping treatment dose for IGART.

The effect of DVF uncertainties on dose mapping and

accumulation is complex and depends on the spatial loca-

tions of both the DVF errors and the dose gradients: “For

example, when deformable alignment is used for dose accu-

mulation in adaptive therapy, small errors in the deformation

map can result in significant changes in the dose at points in

high dose gradient regions.”4 This means that, for a particu-

lar dose distribution, some regions can tolerate relatively

large DVF errors without a clinical impact, while others are

very sensitive to registration errors.5 It is therefore important

to know in detail how the DVF uncertainties impact the dose

mapping process.

One can study the effects of image registration errors on

dose accumulation by various methods. Yan et al.6 consid-

ered how inverse consistency (or its absence) in the DVF
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can affect dose mapping error. Empirically, a calculated

dose accumulation can be compared directly to measure-

ments in a deformable phantom.7,8 Theoretically, one can

estimate the DVF errors from mechanical or mathematical

properties of the deformation and translate them to dose

mapping errors.9,10 Alternatively, one can estimate the mean

and variance of DVF errors from measured data and blur the

dose maps,11 but this requires making assumptions about the

spatial properties of the errors. In a semi-empirical approach,

one can perturb a dose mapping by a measured DVF error

map. This can be done in a Monte Carlo-like procedure in

which a sample error map is added to a DVF, which is then

used to calculate a dose mapping that is perturbed by the

DVF errors. By performing a number of trials, each time

drawing a different DVF error map from a distribution of

possible maps, one can observe the statistical distribution of

dose mapping errors that arises from the statistical distribu-

tion of DVF errors.

The Monte Carlo method requires two things: (1) an en-

semble of measured (or calculated) DVF error maps and (2)

a procedure for drawing sample maps based on the measured

data. One could use a bootstrap method, drawing empirical

maps directly from the measured ensemble and applying

them to the dose accumulation. This has a drawback, though,

in that repeated dose accumulation studies would use the

same set of sample error maps over and over again. A better

approach would be to create an error map modeling and sam-

pling procedure that is trained to emulate the statistical dis-

tribution of the empirical data and that allows one to draw an

unlimited number of different sample maps.

An error map modeling and sampling process must cor-

rectly emulate all of the properties of the actual DVF error

distributions. This includes spatial correlations between the

registration errors at each voxel and the probability distribu-

tion of the ensemble of maps. We have developed a method

that can do this.

The process begins by estimating the voxel-by-voxel DIR

errors in an ensemble of similarly-derived DVFs, which

becomes the training set. If the DIR uncertainties fluctuated

randomly voxel-by-voxel from one DVF to the next, in the

manner of white noise, then the statistical problem would be

simple: one would just calculate voxel-by-voxel the proba-

bility density function (PDF) for the errors from the training

set and then draw samples from it independently for each

voxel to create simulated error maps. Unfortunately, most

DVF uncertainties are not randomly distributed in space.

Instead, the uncertainties will generally be spatially-correlated,

usually in a complex and unpredictable way, which invalidates

random voxel-by-voxel sampling.12

How can DIR uncertainties be spatially-correlated? Sup-

pose the DVF is modeled by some parameterized function,

such as a B-spline. Even if the motion varies smoothly

within the image, the model will be an imperfect representa-

tion of it, contributing an uncertainty. The difference

between the actual motion and the model will change

smoothly throughout the image—i.e., it will have strong spa-

tial coherence from one displacement vector to the next. If

the actual motion has local fluctuations that are overly

smoothed by the model, then a second mode of spatially-

structured uncertainty will be introduced. Artifacts in the

image will introduce a third source, or mode, of spatial

uncertainty in the DVF, and so on.

This situation requires a way to transform the error maps

in the training set in such a way that each map can be com-

pletely described by a small number of statistically inde-

pendent variables. Principal component analysis (PCA) is

the obvious choice for this problem because it compresses

highly correlated data into a small space of maximally

uncorrelated features that can be treated as statistically inde-

pendent of one another.

PCA expands each error map in the training set on an

orthornormal basis of eigenvectors that are defined such that

the expansion coefficients are statistically independent of

one another. The error training set is thus transformed into a

set of expansion coefficients, each of which has a PDF that

is statistically independent of the others. One can then ran-

domly and independently draw a sample principal coefficient

for each mode from the PDFs and reconstruct a sample DVF

error map on the eigenvectors. The resulting sample map

will emulate the spatial structure and probability distribution

of the errors in the training maps. Rather than make any

assumptions about the functional form of the PDFs for the

expansion coefficients, we use kernel density estimation to

model the PDFs directly from the training data.

If the sampled error maps are statistically indistinguish-

able from the training set, then we have a viable method of

error sampling. We can then use the method to take a DVF,

randomly add errors to it, calculate the resulting mapped

dose distribution, and then repeat the process to obtain an en-

semble of dose distributions that reflects the uncertainty in

the mapping process due to the image registration

uncertainties.

In this paper, we outline the PCA DVF error sampling

method, present validation results, and then demonstrate its

use to study dose mapping errors. The procedure is trained

on an ensemble of actual DVF error maps that are represen-

tative of one particular source of deformable registration

uncertainty—namely, the variation of the DVF with the de-

formation region of interest. To underscore the importance

of employing a sampling process that correctly models the

spatial characteristics of the measured DVF errors, we make

comparison calculations using error maps in which the errors

of the individual voxel displacement vectors independently

follow Gaussian distributions.

II. METHOD AND MATERIALS

To demonstrate and validate our procedure we deform-

ably registered a pair of CT images of the male pelvis 100

times while varying the registration parameters, to generate

a training set of 50 DVF error maps and a validation set of

50 different DVF error maps. We used the training set to cal-

culate the PCA PDFs for the errors, from which we created

50 sampled error maps. We then compared our sampled error

maps to the validation set and tested whether they were stat-

istically indistinguishable. Once validated in this way, we
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used the error sampling method to create a set of 50 mapped

dose distributions, with each DVF used in the mapping per-

turbed by a different error map sample, and determined the

resulting uncertainty in the maps of accumulated dose. We then

repeated the process using 50 maps of spatially uncorrelated,

normally-distributed DIR errors with the same variance to ex-

pose the differences in the resulting dose mapping uncertainty.

II.A. Creating a training set of DVF error maps

We selected a pair of pelvic CT scans for one patient at

random from a database of daily CT scans of a cohort of

prostate cancer patients. The scans had 76 slices of

512� 512 pixels, each 3.00� 0.922� 0.922 mm in size. The

two scans were deformably registered via an in-house DIR

process based on parametric modeling of the DVF with B-

splines. The computational details of this algorithm have

been reported previously.13 One feature of the registration

algorithm is the ability to define a limited region of interest

(ROI) in the target image, within which the registration is

computed. This allows one to focus on key anatomy and

obtain the highest spatial resolution for a prescribed number

of B-spline control points. However, if one varies the ROI,

then the DVF will vary as well. This is one source of uncer-

tainty in DIR. To expose this component of uncertainty we

created a set of 50 different ROIs by defining an initial ROI

encompassing 200� 170� 40 voxels and then randomly

varying its position and dimensions by up to 10 voxels in

each direction. Figure 1 shows a representative slice of the

target image, with the registration region of interest indi-

cated by the dashed rectangle. Each ROI was used to

deformably register the two CTs. This gave us 50 different

DVFs. We determined the volume of overlap for the 50

ROIs, calculated the mean DVF there, and subtracted it from

the individual DVFs to obtain a set of 50 DVF error maps

within the overlap volume. This became our training set.

Approximately, 95% of the mean DVF vectors were less

than 4.0 mm in length. We observed that the individual

DVFs within the overall ROI fluctuated with a 0.38 mm root

mean square (RMS) deviation around the mean DVF.

Approximately 95% of the errors were less than 0.8 mm, but

there was a long tail of errors of greater than 1 mm. In pro-

portion to the DVF vector magnitudes, the relative (i.e., nor-

malized) RMS fluctuation was

nRMS ¼
�X

i

e2
i

.X
i

Vi � mð Þ2
�1=2

¼ 19% (1)

where Vi is the ith DVF vector magnitude, ei is the ith dis-

placement vector error, and m is the mean of all the displace-

ment vectors Vi.

II.B. Principal component analysis of the training set

Suppose that we have N DVF error maps, each of which

has M voxels. We arrange them into N feature vectors fvig,
i¼ 1, … N, each with M components (indexed j¼ 1, …, M),

to form the training set. We expand each feature vector on

an orthonormal basis fukg as follows:

v ¼ M
X

k

pkuk (2)

There are a maximum of M basis vectors indexed by k, each

of dimension M. We want to find the basis for which the expan-

sion coefficients pk are maximally uncorrelated.14 This basis is

made up of the so-called principal components of fvig.
To find the principal components of fvig, we compute the

mean hvi of the feature vectors, subtract it to get vi�hvi,
and arrange the N zero-mean column vectors in the M�N
matrix V. The M�M covariance matrix of the training data

is then

C ¼ 1=Nð Þ
X

i

vi � hvið Þ vi � hvið ÞT ¼ 1=Nð ÞV VT (3)

The M principal components uk (i.e., eigenvectors) of the

training set and their associated eigenvalues kk are solutions

of the eigenvalue problem

Cuk ¼ 1=Nð ÞV VTuk ¼ kkuk (4)

We collect the eigenvectors uk into an M�M matrix U of M
column vectors.

Principal components analysis uses the M orthonormal

eigenvectors uk (the principal components) to rotate the

zero-mean feature vectors vi�hvi into a new set of (zero-

mean) vectors pi

UT vi � hvið Þ ¼ pi (5)

In this discussion, we will call the pi the principal coefficient
vectors. Each of the M elements pki of pi is maximally uncor-

related with all the other elements and has an associated

eigenvalue kk that equals the variance of that component

over the set of N feature vectors.14 The computational pro-

cess arranges the eigenvalues and eigenvectors in order of

decreasing variance. If the individual elements (voxels) in

the feature vectors are strongly correlated, then the eigen-

value spectrum will fall off rapidly and there will be only a

few dominant eigenmodes. If the voxels are completely

uncorrelated (as with white noise) then the eigenvalue spec-

trum will be flat and Eq. (4) will have many degenerate solu-

tions for the eigenvectors, indicating that the principal

FIG. 1. A representative slice of the male pelvic CT showing the contoured

organs for computing the dose plan and the registration region of interest

(box).
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component basis has no preferred directionality. Therefore,

PCA is a powerful test of correlations among the elements of

a data vector.

II.C. Estimating the PDFs of the principal coefficients
and sampling from them to construct a sample
error map

The ensemble of the kth principal coefficients pk(i¼ 1,…N)

of the N rotated error feature vectors will be distributed

according to a probability density function Pk(p). If the train-

ing set used for PCA has a Gaussian distribution around its

mean, then it can be completely described by its covariance

and the principal coefficients and their associated PDFs

Pk(p) are stochastically independent. If the data are not

Gaussian, or have multiple Gaussian modes, then although

PCA will maximally decorrelate the training data, the princi-

pal coefficients will not necessarily be completely independ-

ent. For our sampling method, we assume that they are

stochastically independent. However we also assume that we

do not know the shape of Pk but, as noted above, its mean

squared value (variance) should be kk. Also, we have only a

sparse sampling of it from our training set of N DVF maps.

Therefore we use kernel density estimation15 to build contin-

uous PDFs from the N examples of pki (Kernel density esti-

mation is a very useful nonparametric way to estimate the

continuous parent PDF from a small ensemble of samples

when one doesn’t know its shape a priori.)
Using a Gaussian kernel, the Parzen15 estimation of the

PDF for fpk(i¼ 1,…N)g k¼ 1, … M, is

Pk pð Þ ¼ ð1=
ffiffiffiffiffiffi
2p
p
Þð1=rÞð1=NÞN

X
i

exp ½�ðpki� pÞ2=2r2�

(6)

where r is a smoothing parameter. Determining the optimal

smoothing parameter (also referred to as the bandwidth) for

kernel density estimation is in general a difficult problem, but

for a Gaussian kernel and PDFs that are approximately unim-

odal and symmetric about their mean, a good estimate is16–18

r ¼ d= d þ 2ð ÞNð Þ½ �1=ðdþ4Þ SDð Þdata (7)

where (SD)data is the standard deviation of the data and d is

the dimensionality of the data space. For a univariate distri-

bution, this equals

r ¼ 1:06=N1=5
h i

SDð Þdata (8)

To make a sample synthetic DVF error map, we randomly

pick a principal coefficient pk from each Pk(p) via impor-

tance sampling, refer back to the PCA expansion in Eq. (2)

and make a sample error feature vector according to

e ¼ M
X

k

pkuk (9)

which we then reconfigure as a 3D error map.

II.D. Validating the error sampling procedure

There are several practical aspects of PCA that can affect

the validity and accuracy of our DVF error modeling and

sampling procedure. To begin, the feature vectors in the

PCA training set will have a large number of components,

whereas our training set of measured DVF errors for training

will be comparatively small. Therefore the dimension M of

the covariance matrix will potentially be (much) larger than

the number N of sample feature vectors used to compute the

covariance. This is the so-called “curse of dimensionality”

that afflicts many pattern recognition problems. It results in a

sparse covariance matrix where many of the points in the

principal component space are unrepresented by sample

data. While there is a standard method to compute the eigen-

vectors and eigenvalues of the covariance matrix under these

conditions (see, for example, page 569 of Bishop19) one can

ask whether there are enough examples of training data to

adequately constrain the solution. One common criterion for

adequate data is to have more sample vectors than there are

significant eigenmodes in the data. Another test is whether

the eigenvalue spectrum changes when the number of train-

ing examples changes. We tested our method for sufficient

training data by reducing the number of training examples

from 50 to 10 while monitoring the eigenvalue spectrum for

changes.

A second concern is how well can the PCA-based sam-

pling procedure simulate arbitrary error distributions? If the

parent data set used for the PCA has a Gaussian distribution

around its mean, then it can be completely described by its

covariance and the principal coefficients are stochastically

independent. This would validate our assumption that the

random samples we draw from the PDFs of the coefficients

are statistically independent and we can ignore cross-

correlations among them. However, if the data are not Gaus-

sian, or have multiple Gaussian modes, then although PCA

decorrelates the training data, the principal coefficients are

not necessarily completely independent. This might bias our

sampling process.

To validate our method we created a training set of 50

error maps and a validation set of 50 different maps. From

the training set, we constructed PDFs of the principal error

coefficients as described above, drew 50 random samples

from our PDFs and constructed 50 synthetic maps of the

DVF uncertainties. We then compared the PCA eigenvalue

spectrum of the synthetic map set to the spectrum of the vali-

dation set. We also compared the individual PDFs of the

principal coefficients of the validation set and the synthetic

set using the Kolmogorov-Smirnov test. The purpose of this

was to see if the PCA of the error data, combined with our

kernel-based PDF estimation and sampling process, pro-

duced an ensemble of synthetic error maps that was indistin-

guishable from the real maps.

II.E. Modeling dose mapping uncertainties

Having validated our error sampling method, we used it

to produce an ensemble of mapped doses. We did this by cal-

culating a clinical dose plan on one of our two pelvic CTs

(see Figs. 1 and 2). The plan was then applied to the other

CT and the calculated dose was mapped back to the planning

CT using 50 DVFs created via the B-spline deformable
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registration described above, each perturbed by a different

error map based on the variable ROIs and created by our

DIR error sampling process. The 50 mapped dose distribu-

tions were averaged, and then, the difference of each dose

map from the average was computed. This revealed the pat-

terns of dose mapping uncertainty arising from the DVF

uncertainty.

To demonstrate the significance of spatial coherence in

the error maps, we repeated the dose mapping trials using

error maps in which the DVF error varied voxel-by-voxel as

white noise with a variance equal to that of the spatially-

correlated uncertainties.

III. RESULTS

III.A. Deformable image registration uncertainties due
to ROI choice

Figure 3(a) shows a representative example from the

training set of DIR error maps due to the variable ROI. Fig-

ure 3(b) shows a random white noise error map with the

same RMS error. The spatial distribution of DIR errors is

smooth and homogeneous over large areas, in contrast to the

random spatial distribution of errors.

III.B. PCA of the ROI error maps

Figure 4 shows the eigenvalue spectra for our validation

set of 50 error maps and for our set of 50 synthetically

sampled maps, together with the eigenvalue spectrum for 50

maps of random error. As expected, the ensemble of random

error maps has a flat eigenvalue spectrum, consistent with

the absence of any cross-correlation between pixels (i.e., the

covariance matrix is diagonal), while the spectrum for the

actual error maps falls off steeply, indicating the presence of

strong cross-correlations among the pixels.

To test the importance of sample size N, we calculated

the eigenvalue spectrum for subsets of N¼ 10, 30, and 50

samples. Figure 5 shows these spectra. There is no appreci-

able difference among them. We also note from Fig. 4 that

more than 99% of the variance is in the first ten eigenmodes,

which suggests that ten or more training examples should be

sufficient. We conclude that we have sufficient training data

in our 50 samples.

III.C. Making and validating sample error maps

From the PDFs [Eq. (6)] of the principal coefficients in

Eq. (2), we drew independent samples pk and constructed 50

synthetic error maps according to Eq. (9). The PCA eigen-

value spectra of the validation and synthetic sets of error

maps are shown in Fig. 4. These spectra are essentially iden-

tical. The Kolmogorov-Smirnov test comparing the PDF of

each of the 50 principal coefficients of the validation set and

the synthetic set returned p-values ranging from 0.20 to 1.0

(with 39 of 50 above 0.90). Here, the p-value is the likeli-

hood that the two data sets were drawn from the same parent

distribution. By way of comparison, the same test applied to

the validation set and the training set returned p-values rang-

ing from 0.43 to 1.0 (with 42 of 50 values above 0.90). These

tests indicate that the synthetic sample error maps are

FIG. 2. The prostate dose plan calculated on the patient’s first CT.

FIG. 3. (a) An example map of the DVF error arising from the variable

registration region of interest and (b) a random white noise error map with

the same RMS error.
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accurate emulations of the actual error maps, which validates

our sampling process.

For our demonstration purposes, we have used a single

pair of pelvic CTs to derive deformable registration error

maps, model and sample them, and use the samples to ex-

pose the effects of registration error on dose mapping

between the two CTs. However, to ensure that the error mod-

eling and sampling process is generalizable to error maps

obtained from a more general set of deformable registration

results, we repeated the sampling validation tests with error

maps derived from a variable region of interest applied to

registrations of three pairs of pelvic CT studies for three dif-

ferent patients. Each pair of CT registrations contributed 20

training examples and 20 validation examples, for a total of

120 training and validation maps and 60 sample error maps.

As before, the eigenvalue spectra for the validation and sam-

ple sets were essentially identical and the Kolmogorov-

Smirnov test showed that the distributions of principal coef-

ficients were indistinguishable.

III.D. Mapped dose uncertainty due to the DVF
uncertainty associated with ROI choice

Figure 2 shows the calculated dose plan on the delivery

CT. This dose was mapped back to the planning CT using

DIR of the two CTs, with the resulting DVF perturbed by 50

sampled DIR error maps. Figure 6(a) shows the voxel-by-

voxel variance of the dose mapping due to the spatially-

correlated uncertainties caused by the ROI variability, as

estimated by our error sampling procedure. Figure 6(b)

shows the variance in dose mapping caused by a random

white noise pattern of DIR uncertainty with the same var-

iance as the correlated uncertainties. We note that the errors

in dose mapping for both patterns of DIR error are in general

larger in the regions of highest dose gradient, but the correla-

tion between dose gradient and dose mapping error is weak,

in accordance with previously reported results.5,11 In particu-

lar, there are three bright islands of mapping error apparent

in Fig. 6(a) that are not nearly as prominent in Fig. 6(b). The

dose mapping errors due to correlated DIR errors are notice-

ably larger than those due to random errors. This is seen in

FIG. 5. PCA eigenvalue spectrum versus number of samples in the training

set.

FIG. 4. The PCA eigenvalue spectra for the validation set of 50 spatially-

correlated error maps, the synthetic sample set of 50 correlated error maps,

and a set of 50 random uncorrelated error maps with the same RMS error.

FIG. 6. The dose mapping errors due to (a) the PCA model of DIR error for

spatially-correlated errors and (b) random spatial errors with the same RMS

magnitude.
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the scatter plot of the dose mapping error due to correlated

DIR uncertainty versus that due to random DIR error

[Fig. 7(a)], which has a slope of about 1.75, with a subset of

dose mapping errors that are substantially larger for the cor-

related DIR errors. If we filter this scatter plot to select the

dose mapping errors in the regions of high dose gradient

[Fig. 7(b)], the trend persists. The histograms of the frequen-

cies of correlated versus random mapping errors (Fig. 8) also

show that spatial correlations in DIR uncertainty tend to

increase the resulting dose mapping error. However, the

local correlation coefficient between mapping errors due to

ROI uncertainty and random DIR error, seen in Fig. 9, shows

that the relative magnitude of the mapping error due to

spatially-correlated versus uncorrelated DIR errors is not

spatially uniform.

IV. DISCUSSION

In this study, we have developed a method to test

the effects of DIR uncertainty on daily dose mapping for

external beam radiation therapy. We first developed a statis-

tical sampling model for DIR errors that correctly recreates

DVF uncertainties that have strong spatial correlations. The

DIR uncertainty model was then used in a Monte Carlo type

manner to propagate DIR errors through the dose mapping

process in order to simulate the resulting dose errors. We

then compared the results with a considerably simpler ran-

dom DVF uncertainty model that made no assumptions

about spatial error correlation. We observed that the naı̈ve

random error model underestimates the dose mapping error.

Furthermore, the spatial patterns of dose mapping errors for

the two models are distinctly different. The significance of

these differences must be judged with respect to the accuracy

needed in the mapped and accumulated dose. We conclude

that the spatial coherence of DVF errors can influence the

dose mapping error and therefore should not be ignored.
FIG. 7. The correlation between the dose mapping errors due to correlated

DIR errors and those due to random spatial errors, (a) from the entire dose

distribution and (b) selected from the regions of higher dose gradient.

FIG. 8. The frequency distributions of dose mapping errors for our two mod-

els of DIR uncertainty.

FIG. 9. The local spatial correlation between the dose mapping error due to

spatially-coherent DIR errors and that due to random white noise DIR

errors.
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For a typical intensity-based DIR algorithm, the DVF

uncertainty will generally be the smallest at organ and other

feature boundaries, and the largest in areas of uniform gray-

scale intensity. We see this in Fig. 3, where the largest DVF

errors occur well inside the contour of the prostate. On the

other hand, the largest dose mapping uncertainties will gen-

erally be in the regions of high dose gradient, as we see in

Fig. 6. This raises the following interesting point as IGRT

moves toward more precise daily plans with smaller mar-

gins, and potentially to the point where organ and tumor sub-

volumes are targeted for boosts. The accuracy of the DVF

error model will be most important when summing doses in

plans with high dose gradients in anatomical regions of high

registration uncertainty. This will be conspicuously the case

if, e.g., the PTV is a subvolume of the prostate targeted for a

boost. If the regions of high DVF accuracy roughly coincide

with regions of high dose gradient (i.e., right at the organ

boundary), then the estimated dose mapping errors will

likely be fairly insensitive to the details of the DVF error

estimation model.

Just as with error sampling via the bootstrap process, our

error modeling and sampling method requires a training set

that is made up of multiple individual instances of measured

DIR errors throughout a registered region of interest. If the

DIR error measurements have already been reduced to

means and variances, as is often the case in reported studies

of deformable registration accuracy, then the information

needed for the PCA analysis has been lost. Measuring DIR

errors is a complicated subject all of its own. One can expect

the error maps to depend on the anatomy present in the regis-

tered region of interest, which will depend in turn on the

individual patient characteristics. It can be problematic to

combine DIR error studies from a population of subjects into

a generic training set for our sampling method. We will take

up the problem of developing the DVF error training set in a

follow-on study.

V. SUMMARY

We have developed a statistical sampling procedure that

can model complex DIR error distributions and shown that

this procedure can be used to study their impact on dose

mapping. Using such a model instead of making simplified

assumptions about the DIR errors will result in a more accu-

rate and nuanced estimate of dose mapping uncertainty. The

significance of this improvement, though, will depend on

expectations and requirements for dose mapping accuracy.

ACKNOWLEDGMENTS

This work was supported in part by NCI Grant No. P01-

CA116602 and in part by Philips Medical Systems.

a)Electronic mail: mmurphy@mcvh-vcu.edu
1M. Birkner et al., “Adapting inverse planning to patient and organ geomet-

rical variation: Algorithm and implementation,” Med. Phys. 30,

2822–2831 (2003).
2P. Zhang, G. D. Hugo, and D. Yan, “Planning study comparison of real-

time target tracking and four-dimensional inverse planning for managing

patient respiratory motion,” Int. J. Radiat. Oncol., Biol., Phys, 72(4),

1221–1227 (2008).
3K. K. Brock et al., “Results of a multi-institution deformable registration

accuracy study (MIDRAS),” Int. J. Radiat. Oncol., Biol., Phys. 76(2),

583–596 (2010).
4R. Kashani et al., “Objective assessment of deformable image registration

in radiotherapy: A multi-institution study,” Med. Phys. 35(12), 5944–5953

(2008).
5N. K. Saleh-Sayha, E. Weiss, F. J. Salguero, and J. V. Siebers, “A distance

to dose difference tool for estimating the required spatial accuracy of a

displacement vector field,” Med. Phys. 38(5), 2318–2323 (2011).
6C. Yan et al., “A pseudoinverse deformation vector field generator and its

applications,” Med. Phys. 37(3), 1117–1128 (2010).
7G. G. Zhang et al., “Dose mapping: Validation in 4D dosimetry with

measurements and application in radiotherapy follow-up evaluation,”

Comput. Methods Programs Biomed. 90(1), 25–37 (2008).
8T. C. Huang et al., “Four-dimensional dosimetry validation and study in

lung radiotherapy using deformable image registration and Monte Carlo

techniques,” Radiat. Oncol. 5(45), (2010).
9H. Zhong and J. F. Siebers, “Monte Carlo dose mapping on deforming

anatomy,” Phys. Med. Biol. 54(19), 5815–5830 (2009).
10M. Hub, M. L. Kessler, and C. P. Karger, “A stochastic approach to esti-

mate the uncertainty involved in B-spline image registration,” IEEE Trans.

Med. Imaging 28(11), 1708–1716 (2009).
11F. J. Salguero, N. K. Saleh-Sayah, C. Yan, and J. V. Siebers, “Estimation of

three-dimensional intrinsic dosimetric uncertainties resulting from using deform-

able image registration for dose mapping,” Med. Phys. 38(1), 343–353 (2011).
12C. Vaman, D. Staub, J. Williamson, and M. J. Murphy, “A method to map

errors in the deformable registration of 4DCT images,” Med. Phys.

37(11), 5765–5776 (2010).
13M. J. Murphy, Z. Wei, M. Fatyga, J. Williamson, M. Anscher, T. Wallace,

and E. Weiss, “How does CT image noise affect 3D deformable image

registration for image-guided radiotherapy planning?,” Med. Phys. 35(3),

1145–1153 (2008).
14J. Kittler and P. C. Young, “A new approach to feature selection based on

the Karhunen-Loeve expansion,” Pattern Recogn. 5, 335–352 (1973).
15E. Parzen, “On estimation of a probability density function and mode,”

Ann. Math. Stat. 33, 1065–1076 (1962).
16B. W. Silverman, “Density Estimation for Statistics and Data Analysis,”

Monographs on Statistics and Applied Probability (Chapman and Hall,

London, 1986).
17D. W. Scott, “Multivariate Density Estimation: Theory, Practice, and Vis-

ualization” (John Wiley, New York, 1992).
18A. W. Bowman and A. Azzalini, Applied Smoothing Techniques for Data

Analysis (Oxford University Press, London, 1997).
19C. M. Bishop, Pattern Recognition and Machine Learning (Springer, New

York, 2006).

580 Murphy et al.: Dose mapping uncertainties 580

Medical Physics, Vol. 39, No. 2, February 2012

http://dx.doi.org/10.1118/1.1610751
http://dx.doi.org/10.1016/j.ijrobp.2008.07.025
http://dx.doi.org/10.1016/j.ijrobp.2009.06.031
http://dx.doi.org/10.1118/1.3013563
http://dx.doi.org/10.1118/1.3572228
http://dx.doi.org/10.1118/1.3301594
http://dx.doi.org/ 10.1026/j.cmpb.2007.11.015
http://dx.doi.org/10.1088/0031-9155/54/19/010
http://dx.doi.org/10.1109/TMI.2009.2021063
http://dx.doi.org/10.1109/TMI.2009.2021063
http://dx.doi.org/10.1118/1.3528201
http://dx.doi.org/10.1118/1.3488983
http://dx.doi.org/10.1118/1.2837292
http://dx.doi.org/10.1016/0031-3203(73)90025-3
http://dx.doi.org/10.1214/aoms/1177704472

	s1
	s2
	s2A
	E1
	s2B
	E2
	E3
	E4
	E5
	F1
	s2C
	E6
	E7
	E8
	E9
	s2D
	s2E
	s3
	s3A
	s3B
	s3C
	F2
	F3
	s3D
	F5
	F4
	F6
	s4
	F7
	F8
	F9
	s5
	cor1
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19

