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Purpose: In order to eventually develop an analytical algorithm with noise characteristics of an

iterative algorithm, this technical note develops a window function for the filtered backprojection

(FBP) algorithm in tomography that behaves as an iterative Landweber algorithm.

Methods: Based on the formulation of the iterative Landweber algorithm, a frequency domain

window function is derived for each iteration of the Landweber algorithm. The resultant window

function has an index k, emulating the characteristics of the Landweber algorithm at the kth

iteration. The window function is used to modify the ramp filter in the FBP algorithm.

Results: Computer simulations show that the windowed FBP algorithm with window function

index k and the iterative Landweber algorithm iteration number k give similar reconstructions in

terms of resolution and noise.

Conclusions: Analytical FBP algorithms are able to provide similar results to the iterative

Landweber algorithm if the ramp filter in the FBP algorithm is modified by a set of specially

designed window functions. VC 2012 American Association of Physicists in Medicine.
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I. INTRODUCTION

The filtered backprojection (FBP) algorithm is simple and

fast, and can be used to reconstruct images in nuclear medi-

cine and x-ray CT.1 However, without windowing, the FBP

algorithm generally produces noisy images. An iterative

algorithm (e.g., the iterative Landweber algorithm) that does

not model the projection noise or does not model the projec-

tion noise correctly, can still outperform the FBP in terms of

noise propagation control.2,3 For this reason, the FBP algo-

rithm has gradually been replaced by iterative image recon-

struction algorithms.

The noise control strategies in an FBP algorithm and

in an iterative algorithm are different. Usually, an ana-

lytic algorithm controls noise by selecting the filter’s cut-

off frequency, while an iterative algorithm can control

noise by selecting the iteration number.6 Another way to

control noise in an iterative algorithm is to incorporate

the noise model in the objective function and to use

priors.4–6 As an initial step to improve the noise perform-

ance of the FBP algorithm, we link the FBP algorithm

with an iterative reconstruction algorithm so that the FBP

algorithm can “learn” from an iterative algorithm. Instead

of selecting the cut-off frequency for the analytic filter

function in the frequency domain, in Sec. II, a shaping

window function is designed for the FBP algorithm,

according to each iteration of the iterative Landweber

algorithm.

It turns out that the newly designed window function

looks similar to the Metz filter,7 which has been shown by

King et al. to be effective in controlling noise in SPECT

images.8

II. METHODS

The Landweber algorithm solves a system of linear equa-

tions AX ¼ B by an iterative procedure

Xðkþ1Þ ¼ XðkÞ þ aATðP� AXðkÞÞ; (1)

where A is the projection matrix, AT is the backprojection

matrix, P is the projection data vector, X is the image vector,

X(k) is the estimated image at the kth iteration, and a> 0 is

the step size. Algorithm (1) is in the form of a gradient

descent algorithm proposed as the solution to the unweighted

(nonstatistical) minimum least squares problem, where

AT(P-AX) represents the gradient of the quadratic formula-

tion (P-AX)T(P-AX).

This recursive relation can be rewritten as a nonrecursive

expression as

Xðkþ1Þ ¼XðkÞ þaATðP�AXðkÞÞ¼aATPþðI�aATAÞXðkÞ

¼aATPþðI�aATAÞ½aATPþðI�aATAÞXðk�1Þ�
¼aATPþðI�aATAÞaATPþðI�aATAÞ2Xðk�1Þ

¼aATPþðI�aATAÞaATPþðI�aATAÞ2½aATP

þðI�aATAÞXðk�2Þ�
¼aATPþðI�aATAÞaATPþðI�aATAÞ2aATP

þðI�aATAÞ3Xðk�2Þ ¼ :::
¼½IþðI�aATAÞþ :::þðI�aATAÞk�aATP

þðI�aATAÞkþ1Xð0Þ

¼
Xk

n¼0

ðI�aATAÞn
" #

aATPþðI�aATAÞkþ1Xð0Þ: (2)
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If the initial image X(0) is set to zero, the result from k itera-

tions of the Landweber algorithm is

XðkÞ ¼ a½
Xk�1

n¼0

ðI � aATAÞn�ATP: (3)

This noniterative expression of the Landweber algorithm

resembles a “backproject first, then filter” algorithm, in the

sense that the projection data P are first backprojected by the

operator AT and then filtered by a½
Pk�1

n¼0

ðI � aATAÞn�. When

the positive real number (i.e., step size) a is small enough,

the Landweber algorithm will converge and we have

a
Xk�1

n¼0

ðI � aATAÞn
" #

! ðATAÞ�1
as k !1; (4)

if ðATAÞ�1
exists, otherwise ðATAÞ�1

is replaced by a general-

ized inverse. To guarantee convergence, the step size a should

be chosen in the range of 0< a< 2/rmax, where rmax is the larg-

est singular value of ATA. If the step size is too large, the algo-

rithm will diverge. If the step size is too small, it will take too

long for the algorithm to converge. In practice, the eigenvalue

of is difficult to find, and the step size is empirically determined

by testing different values of a. For a finite k, we have

a
Xk�1

n¼0

ðI � aATAÞn
" #

¼ ðATAÞ�1½I � ðI � aATAÞk�: (5)

The proofs of the above equations are available in a review

paper by Schafer et al.9

It is easy to see that the Landweber algorithm is a linear

algorithm, but it may not be shift-invariant. The combined op-

erator of projection-and-backprojection, ATA, is almost shift-

invariant in the central region of the image array, which can

be verified by putting a point source in the image, and then

performing the projection-backprojection operation. After the

operation, the resultant blurred point source image is almost

shift-invariant if the point source is close to the center of the

image array. When the point source is close to the array edges,

the blurred point source image is no longer shift-invariant.

The 1/r function is the theoretical point response function

(PRF) for an ideal projection/backprojection pair. The

matrix ATA in the iterative Landweber algorithm uses a dis-

crete projector and backprojector, which assume a finite

pixel size and a finite image array. The PRF of ATA is not 1/r
everywhere due to the nonstationary property, and is not

exactly 1/r due to the discretization effects. However, at the

central region of the image array the PRF of ATA can be

accurately approximated by 1/r, which will be illustrated by

computer simulations in the next section.

Another issue of consideration is where to compensate for

this PRF: in the projection space or in the image space. As

shown in image reconstruction textbooks,10 if the projection

operator A is the line-integral (i.e., the Radon transform)

in the two-dimensional (2D) space and AT is the adjoint

operator (i.e., the backprojection transform), the combined

operator of projection-and-backprojection, ATA, is the 2D

convolution of the original image with a 2D kernel 1/r,

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
in the x-y Cartesian coordinates. The

2D ramp filter is able to cancel the 1/r blurring effect.10 In

this ideal situation, the (ATA) operation is 1/r convolution,

the (ATA)�1 operation is 2D ramp filtering, and

½I � ðI � aATAÞk� in Eq. (5) can be treated as a window func-

tion in the frequency domain

Wkð�x; �yÞ ¼ 1� 1� a
�k k

� �k

; with �k k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

x þ �2
y

q
:

(6)

where �x and �y are the frequencies with respect to x and y,

respectively, and �¼ (�x, �y) is the 2D frequency vector.

Thus, the conceptual shift-invariant Landweber algorithm is

equivalent to: first, backprojecting the data into the image

domain; second, filtering the backprojected image with a 2D

windowed ramp filter defined in Eq. (6).

In fact, a “backproject first, then filter” algorithm is equiva-

lent to an FBP algorithm, which filters the projections first, then

backprojects.10 The one-dimensional (1D) frequency domain

filter in the FBP algorithm is the 1D profile of the 2D filter in

the “backproject first, then filter” algorithm.10 The equivalence

of the “backproject first, then filter” algorithm and FBP algo-

rithm can be explained by using the central-slice theorem in to-

mography. The central slice theorem relates a 2D image with

its 1D Radon transform in the Fourier domain. The 1D Fourier

transform of the Radon transform at angle h is equal to a slice

(i.e., a 1D profile) with the angle h through the origin of the 2D

Fourier transform of the 2D image (see Fig. 1). Similarly, the

backprojection of data at angle h is to add a “central slice” of

the 2D Fourier transform of the 2D image in the 2D Fourier

space with the same angle h. After backprjection is completed,

the 2D Fourier space contains data that are nonuniformly dis-

tributed, looking like a bicycle wheel. At the center, the data are

dense, and become less dense as the distance from center gets

larger. The Fourier domain data density is proportional to the

reciprocal of the distance. In order to make the density uniform,

a 2D ramp filter can be used to weigh the data. The 2D ramp fil-

ter has a gain that is proportional to the distance to the center of

the Fourier space. This is the “backprojection first, then filter-

ing” algorithm. To achieve the same effect, one can preweigh

the Fourier transform of the 1D Radon transform with a 1D

ramp filter. After backprojection, the effective Fourier domain

data density is uniform; this is the FBP algorithm. Therefore,

ramp filtering can be either performed before or after backpro-

jection. Therefore, an iterative-Landweber-equivalent FBP

algorithm can be obtained, and the implementation steps are:

Step 1: Perform the 1D Fourier transform of the projec-

tion at each view.

Step 2: Filter the frequency domain data with a 1D win-

dowed ramp filter

Hkð�tÞ ¼ �tj j � 1� 1� a
�tj j

� �k
" #

; (7)

where �t is the frequency with respect to the linear variable

on the 1D detector.

Step 3: Perform a 1D inverse Fourier transform of the fil-

tered data.
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FIG. 1. Illustration of the 2D central slice theorem.

TABLE I. Comparison studies of the iterative Landweber algorithm and the windowed FBP algorithm. Noiseless data are used. The goal is to compare the

image resolution for different index k.
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Step 4: Perform the backprojection.

When k¼1, Eq. (7) is the ramp filter in the conventional

FBP algorithm. The idea of using window functions in the

FBP algorithm is not new. Many window functions have

been used by others, for example, the Hann window,11 the

Hamming window,12 the Butterworth window,13 and so on.

It is interesting to notice the similarity of the windowed

ramp filter (6) and the Metz filter:

Metzkð�x; �yÞ ¼
1� ð1� MTFð�x; �yÞ

�� ��2Þ
k

MTFð�x; �yÞ
�� �� ; (8)

where MTF is a frequency domain modulation transfer func-

tion (i.e., the 2D Fourier transform of the image-domain

point spread function(PSF)). King et al. showed that Metz

filter performs well for nuclear medicine images in handling

noise.7,8 The main difference between the Metz filter and

Eq. (6) is the square in the numerator of (8).

III. COMPUTER SIMULATION RESULTS

The Shepp-Logan head phantom1 was used in computer

simulation studies. A 1D parallel-hole detector was rotated

over 180� with 120 views and 128 detector bins on the

detector. The images were reconstructed in a 256� 256

array, and the central 128� 128 array was used for image

display. Poisson noise was added to the projection data

before image reconstruction. Two algorithms were used for

image reconstruction: the iterative Landweber algorithm

with a¼ 0.5� 0.0000525 and the FBP algorithm with

Eq. (7) as the frequency domain window function and

a¼ 0.5. The values of the parameter a were selected inde-

pendently for each algorithm by trial-and-error. A larger a
value makes the algorithms converge faster, but can make

the algorithms diverge if it is too large. The selection of the

value of a is independent of the projection data noise. For

the iterative algorithm, the upper limit of a is determined

TABLE II. Comparison studies of the iterative Landweber algorithm and the windowed FBP algorithm. Noisey data are used. The goal is to compare the image

noise for different index k. The signal-to-noise (S/N) ratio images use 100 noise realizations.
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by the projection matrix A. For the FBP algorithm, the

upper limit of a is determined such that the window func-

tion is always positive. Some computer simulation results

are shown in Tables I and II, where each image is displayed

from its minimum image pixel value (black) to its maxi-

mum image pixel value (white). No post processing of the

images was performed. The negative values in the images

were not altered.

Images in Table I used noiseless projections, and they are

used to illustrate the resolution improvement as the index k
gets larger. The profiles are drawn horizontally at the center

of the images. The images are almost converged when

k¼ 200. With the same index k, the iterative Landweber

algorithm and the windowed FBP algorithm give almost the

same resolution.

In Table II, Poisson noise was added to the projections.

The average total count in the projections was 792 500 for

each noise trial. Typical reconstructions are displayed in the

left two columns. As the index k increases, the resolution

improves, but the noise is more amplified. Signal-to-noise

(S/N) ratio images were obtained by using 100 noise realiza-

tions and are displayed in the 3rd and 4th columns. In the

S/N image each pixel represents the ratio of the mean value

over the standard deviation. The S/N was calculated pixel-

wise using the following formula:

S

N
¼ True image pixel value

Standard deviation of the reconstructed image pixel value

¼ Trueffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

100

P100

n¼1

ðReconn � TrueÞ2
s ; (9)

where n is the index of the noise realization.

As shown by the line profiles drawn horizontally across at

the center of the S/N images, the iterative Landweber algo-

rithm and the proposed FBP algorithm have almost the same

noise property for the same index k. It is interesting to notice

that when the algorithms are almost converged at k¼ 200,

the S/N image is very similar to the density image itself.

IV. CONCLUSIONS

In order to eventually develop an analytical algorithm

with noise characteristics of an iterative algorithm, this paper

derived an FBP window function with an index k that can

emulate the iterative Landweber algorithm of k iterations. In

deriving the windowed FBP algorithm, we assumed that the

projector/backprojector PRF to be shift-invariant, while in

an actual Landweber algorithm the PSF of the projector/

backprojector is not exactly shift-invariant, especially at

locations close to the image array edges. If the image array

is much larger than the object (e.g., the image array size is

twice as large as the object size) and the object is at the cen-

ter of the array, the PRF of the matrix ATA for an iterative

algorithm in the image region can be considered shift-

invariant and very closed to 1/r. Our computer simulations

showed that the reconstructed images and noise textures are

very similar with the same index k for the iterative Land-

weber algorithm and the proposed FBP algorithm. Since an

analytical algorithm is much faster than an iterative algo-

rithm, it is of significance to develop an analytic algorithm

that can control noise as well as an iterative algorithm.

The proposed method is applicable to imaging geometries

that have a shift-invariant PRF. It is expected that the pro-

posed window function method can be extended to Feld-

kamp’s algorithm14 that is an approximate cone-beam

reconstruction algorithm for the circular focal-point trajec-

tory and to Katsevich’s algorithm15 that is an exact cone-

beam reconstruction algorithm for the helical trajectory. In

both Feldkamp’s and Katsevich’s algorithms, the PRF is

shift-invariant. We are currently working on the extension of

the current method to regulate noise propagation and to

incorporate Bayesian prior information. The results are

encouraging and will be reported in different publications.

However, the proposed method has its limitations in the sit-

uations where the imaging PRF is shift-variant, for example,

the projections are truncated, the view-angles are limited, or

the attenuation (in emission tomography) is nonuniform.
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