
Automated lung segmentation in digital chest tomosynthesis

Jiahui Wang
Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27599 and
Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center,
Durham, North Carolina 27705

James T. Dobbins III
Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center,
Durham, North Carolina 27705; Department of Biomedical Engineering, Duke University, Durham,
North Carolina 27705; Medical Physics Graduate Program, Duke University Medical Center, Durham,
North Carolina 27705; and Department of Physics, Duke University, Durham, North Carolina 27705

Qiang Lia)

Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center,
Durham, North Carolina 27705

(Received 25 February 2011; revised 27 October 2011; accepted for publication 5 December 2011;

published 12 January 2012)

Purpose: The purpose of this study was to develop an automated lung segmentation method for

computerized detection of lung nodules in digital chest tomosynthesis.

Methods: The authors collected 45 digital tomosynthesis scans and manually segmented reference

lung regions in each scan to assess the performance of the method. The authors automated the

technique by calculating the edge gradient in an original image for enhancing lung outline and

transforming the edge gradient image to polar coordinate space. The authors then employed a

dynamic programming technique to delineate outlines of the unobscured lungs in the transformed

edge gradient image. The lung outlines were converted back to the original image to provide the

final segmentation result. The above lung segmentation algorithm was first applied to the central

reconstructed tomosynthesis slice because of the absence of ribs overlapping lung structures. The

segmented lung in the central slice was then used to guide lung segmentation in noncentral slices.

The authors evaluated the segmentation method by using (1) an overlap rate of lung regions, (2) a

mean absolute distance (MAD) of lung borders, (3) a Hausdorff distance of lung borders between

the automatically segmented lungs and manually segmented reference lungs, and (4) the fraction of

nodules included in the automatically segmented lungs.

Results: The segmentation method achieved mean overlap rates of 85.7%, 88.3%, and 87.0% for

left lungs, right lungs, and entire lungs, respectively; mean MAD of 4.8, 3.9, and 4.4 mm for left

lungs, right lungs, and entire lungs, respectively; and mean Hausdorrf distance of 25.0 mm, 25.5

mm, and 30.1 mm for left lungs, right lungs, and entire lungs, respectively. All of the nodules inside

the reference lungs were correctly included in the segmented lungs obtained with the lung segmen-

tation method.

Conclusions: The method achieved relatively high accuracy for lung segmentation and will be

useful for computer-aided detection of lung nodules in digital tomosynthesis. VC 2012 American
Association of Physicists in Medicine. [DOI: 10.1118/1.3671939]
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I. INTRODUCTION

Chest radiography has been the most common imaging mo-

dality for the detection of lung nodules because of its advan-

tages of low radiation dose and low cost. However, the

detection sensitivity for lung nodules in chest radiography is

relatively low, because normal anatomic structures such as

ribs and heart may obscure lung nodules. Computed tomogra-

phy (CT) is considerably more accurate in detecting lung nod-

ules than chest radiography; however, CT has significantly

higher radiation dose and higher cost. Digital chest tomosyn-

thesis is an imaging modality that has some of the advantages

of volumetric imaging, such as improving conspicuity of lung

nodules, but with lower radiation exposure and cost than CT.1

In several clinical trials, digital chest tomosynthesis has

shown a three-fold improvement in detection sensitivity for

pulmonary nodules relative to conventional radiography,2,3

and has been introduced commercially for chest imaging

recently. Despite the advantage of improved sensitivity, radi-

ologists must review many more images than with conven-

tional radiography and the sensitivity for detection of nodules

in chest tomosynthesis is about 30% less than with CT.3

Computer-aided diagnosis (CAD) systems have shown benefit

to improve the detection performance of pulmonary nodules
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in radiography and CT.4,5 White and his colleagues6 have

indicated that a commercially available CAD scheme

(OnGuard 3.0; Riverain Medical) has the ability to identify

about 50% undetected nodules that were missed by radiolog-

ists in chest radiography. Therefore, we will develop a CAD

system to detect lung nodules in digital chest tomosynthesis.

In this paper, we present a novel method for a key step of the

CAD approach: accurate segmentation of lungs in digital

chest tomosynthesis.

An accurate lung segmentation method can remove irrel-

evant tissues surrounding lungs and thus can significantly

reduce the computational cost and the false positive rate in

nodule detection. The difference in intensity between lung

parenchyma and surrounding tissue was often used for the

segmentation of lungs in chest radiography. Xu et al.7 devel-

oped a method to accurately determine in chest radiography

a ribcage that contains both left lung and right lung by iden-

tifying the lung top edges using vertical profiles of the

images and the left and right ribcage edges using horizontal

profiles of the images. Armato et al.8 segmented lungs in

chest radiography by use of a thresholding method, in which

the threshold was automatically determined by analyzing

the histogram of images. Pietka et al.9 segmented lungs with

thresholding technique as well but followed by a lung border

smoothing routine using cubic spline interpolation and

mathematical morphologic techniques. In lung segmentation

method developed by Duryea et al.,10 the gray-scale of chest

radiography was first remapped to improve the image con-

trast between the lung field and surrounding tissue, and the

outlines of lungs were then determined by identifying the

edge points with greatest contrast on the horizontal profiles.

Carreira et al.11 and Brown et al.12 developed rule-based

lung segmentation schemes, in which the image features and

clinical information were combined and used for the identi-

fication of lung regions. In studies of McNitt-Gray et al.13

and Tsujii et al.,14 artificial neural network technique was

employed for lung segmentation. The features of relative

pixel address, pixel intensity, gray-level gradient, and local

image texture were used for the classification of lung and

nonlung pixels. van Ginneken et al.15 proposed a hybrid

lung segmentation method that combined a rule-based

scheme with a pixel classifier. The rule-based image seg-

mentation system roughly identified the lung regions. A k-

nearest-neighbor based pixel classifier was then employed to

refine the segmentation results by correcting the incorrectly

segmented pixels by the rule-based segmentation system. In

Vittitoe et al.’s approach,16 a Markov random field (MRF)

model was used to incorporate spatial and textural informa-

tion of lung regions. An iterated conditional modes

method17 was then used to determine the lung regions based

on the MRF features. Li et al.18 developed a two-step

method for lung segmentation. They first identified the

obvious edges of lung and then applied an iterative edge-

tracking algorithm to form a smooth lung boundary. Shi

et al.19 first identified the lung regions by use of scale invari-

ant feature transform and then refined lung boundary by use

of longitudinal radiographies from the same patient. De-

formable model-based methods, especially active shape

models (ASM)-based techniques, were widely used in lung

segmentation approaches developed by Xu et al.,20 Seghers

et al.,21 Ginneken et al.,22–24 and Shi et al.25 These ASM-

based approaches were able to accurately segment lungs and

preserve the general topology of lungs.

In spite of many lung segmentation methods described

above, lung segmentation in digital chest tomosynthesis is

a new topic and has not been investigated adequately. Li

and Dobbins26 were the first to segment ribcages in digital

chest tomosynthesis. In their method, points on the ribcage

border were determined on each row and each column at

places where the differences in intensity between adjacent

pixels were greater than a threshold. However, the seg-

mented ribcages include some nonlung structures, such as

the mediastinum.

We developed in this study, a novel method for accurate

lung segmentation in digital chest tomosynthesis by use of a

dynamic programming technique. In this method, we first

estimated the centers of left lung and right lung in central

slice of a tomosynthesis scan by use of a thresholding tech-

nique and used these centers of lungs to convert original sli-

ces into a polar coordinate space. Next, we segmented the

lungs in the converted image of the central slice of a tomo-

synthesis scan with dynamic programming algorithm. The

outlines of lungs obtained in the central slice were then

employed to guide the segmentation of lungs in other slices.

By use of information in adjacent slices, the lungs can be

accurately segmented in all the slices of a tomosynthesis

scan with a relatively stable shape.

II. MATERIALS AND METHODS

II.A. Database

This study was approved by the Institutional Review

Board at Duke University. Forty-five digital chest tomo-

synthesis scans from a larger NIH-funded study were col-

lected at Duke University Medical Center with a prototype

chest tomosynthesis system built on a commercial-grade

CsI/a-Si flat-panel detector (GE Healthcare, Milwaukee,

WI).3,26 The position of the detector was fixed with a

source-to-image distance of 180 cm; a custom-built appa-

ratus moves the x-ray tube vertically from� 10� toþ 10�.3

For each subject, 71 projection images were acquired in 11

s at 120 kVp. Sixty-three slice images were reconstructed

from the 71 projection images by use of a matrix inversion

tomosynthesis algorithm.3 The reconstructed images had a

1024� 1024 pixel matrix with a pixel size of 0.4� 0.4

mm and a slice interval of 5 mm. The range of pixel values

was between 0 and 600. A sliding average of seven adja-

cent slices was performed immediately after all slices

were reconstructed to reduce noise and low-contrast tomo-

synthesis artifacts. Thus, the effective thickness of each

slice was 35 mm and there was a 30 mm overlap between

adjacent slices.

We used the first 20 scans of our database as the training

dataset to adjust the parameters in the lung segmentation

algorithm and the other 25 scans as the test dataset to evalu-

ate the performance of the segmentation algorithm.
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II.B. Lung segmentation in central slice

Our segmentation method was composed of two steps. In

the first step, we segmented the lungs in the central slice

(slice 32) of a digital tomosynthesis scan because of the ab-

sence of rib overlap. We then used the segmented lungs in

the central slice to guide the segmentation of lungs in non-

central slices, in order to obtain accurate and consistent lung

regions across slices. In each slice, the left lung and right

lung were segmented separately.

II.B.1. Rescaling the original slice images

The first step in our lung segmentation method is to

reduce the original slice of 1024� 1024 pixels to a

rescaled image of 512� 256 pixels by use of the average

value of 2� 4 pixels in the original slice. Doing so can

significantly save processing time and will have little

negative impact on the accuracy of lung segmentation, as

lung is a very large object. We reduced the image 4 times

in vertical direction to make the width and height of a

lung comparable, so that dynamic programming can be

utilized appropriately. Figure 1(a) shows the right lung of

a subject in the central slice of a digital tomosynthesis

scan. The left lung was not shown in Fig. 1(a). Figure

1(b) shows the rescaled lung. Please note that for clarity,

Fig.1(b) was shown twice as large as its actual size. The

rationale for rescaling the lungs will be further discussed

in Sec. IV.

II.B.2. Generation of edge gradient images

We used the edge gradient of pixel intensities to identify

outlines of lungs. We first designed two 11� 11 kernels in

Eq. (1) to calculate the edge in horizontal and vertical

directions. In the kernel Kx for calculating the horizontal

edge, the elements in the first two rows and the last two

rows were assigned a value ofþ1 and�1, respectively, and

those in other columns were assigned a value of 0. The ker-

nel Ky for calculating vertical edge was designed similarly.

Figure 1(c) shows the magnitude of the edge gradient for

Fig. 1(b) by use of the two kernels. The magnitude was

then used for determining lung outlines with dynamic pro-

gramming. In this study, we tried using kernels of 5� 5,

7� 7, 9� 9, 11� 11, and 13� 13 pixels for determining

edge gradient and we found that the kernels of 11� 11 pix-

els provided the highest accuracy for lung segmentation on

the training dataset.

FIG. 1. (a) Original image of a right lung in a digital tomosynthesis slice, (b) rescaled image of the lung, (c) edge gradient image, (d) transformed edge gradient

image in polar coordinate space, (e) the delineated outline of the lung in the transformed image, and (f) the segmented lung in the original image.
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Kx ¼
1

22
�

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

�1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1

�1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

Ky ¼
1

22
�

1 1 0 0 0 0 0 0 0 �1 �1

1 1 0 0 0 0 0 0 0 �1 �1

1 1 0 0 0 0 0 0 0 �1 �1

1 1 0 0 0 0 0 0 0 �1 �1

1 1 0 0 0 0 0 0 0 �1 �1

1 1 0 0 0 0 0 0 0 �1 �1

1 1 0 0 0 0 0 0 0 �1 �1

1 1 0 0 0 0 0 0 0 �1 �1

1 1 0 0 0 0 0 0 0 �1 �1

1 1 0 0 0 0 0 0 0 �1 �1

1 1 0 0 0 0 0 0 0 �1 �1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (1)

II.B.3. Transformation of lungs to a polar coordinate
space

To make it easier for us to employ dynamic programming

for delineation of lung outlines, we transformed each lung in

edge gradient image to a polar coordinate space at an approxi-

mate center of the lung. The center of a lung was automati-

cally estimated in the rescaled image Fig. 1(b) by use of an

iterative thresholding method. The goal of this thresholding

method is to determine a threshold that roughly separates the

pixels inside lung regions and the pixels outside the lung

regions. A binary image was created in the first iteration by

use of an initial threshold of 300. A pixel was assigned a value

of “1” in the binary image if the corresponding pixel value in

the original image is less than the threshold. The initial lungs

in the binary image represented only a part of the lung

regions, because the threshold “300” is conservative for the

segmentation of lung regions in chest tomosynthesis images.

Subsequent iterations added more pixels to the initial lungs by

incrementing the threshold by 10. To prevent lungs from

merging with irrelevant regions, image border was checked at

each iteration. If any pixels on the border of the image were

included in the lung regions, the iterative thresholding routine

was terminated and the lung regions obtained from the previ-

ous iteration were used to calculate the centroids of the lungs,

which were used as the estimated centers of the lungs.

We then transformed a circular ROI at the estimated center

of the lung to a polar coordinate space. The radius of the circu-

lar ROI was empirically set to 30 cm to include the lungs with

a variety of sizes. We generated 360 radial lines originating

from the center of the ROI and arranged the pixels on the ra-

dial lines column-by-column to generate a transformed image

in Fig. 1(d). Because a point on a radial line may not be

located at the center of a pixel in Fig. 1(c), the value of

the point on the radial line was determined by a linear inter-

polation method using the four nearest pixels in Fig. 1(c).

The horizontal axis of the transformed image represents the
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angle of each radial line ranging from 0� to 360�, and the verti-

cal axis represents the distance from a pixel to the center of the

ROI. It is apparent in Fig. 1(d) that the outline of the lung

extends roughly in horizontal direction and thus can be

delineated conveniently by use of dynamic programming.

II.B.4. Delineation of lung outline using dynamic
programming

We used dynamic programming for delineating the optimal

outline of a lung in the transformed image. The optimal outline

of a lung was defined as a “path” with a minimum cumulative

cost; the path consisted of one and only one pixel (edge point)

on each column from the leftmost column to the rightmost col-

umn of the transformed image Fig. 1(d). Appendix defines the

cumulative cost of a path and describes the dynamic program-

ming algorithm to search for the path with the minimum cu-

mulative cost. Figure 1(e) shows the outline of the lung in the

transformed image determined by dynamic programming.27,28

II.B.5. Reconstruction of the outline of a lung

The outline of a lung in the transformed polar coordinate

space was then transformed back to the Cartesian coordinate

space. By use of the angle of a radial line (the x-axis of the

transformed image) and the distance between the center of the

ROI and the edge point (the y-axis), each edge point on the ra-

dial line had a corresponding pixel in Cartesian space. We

could thus obtain a series of points along the outline of a lung

in the original image. We connected the adjacent points with

a straight line to generate a closed outline of the lung. We

then created a binary lung mask by filling the interior of the

lung outline with “1” and by assigning a value of “0” to other

pixels. We applied a morphological closing filter with a circu-

lar kernel (radius¼ 8 pixels) to the lung mask to smooth the

outline of the lung. The contour of the smoothed lung mask

was used as the final lung outline, as shown in Fig. 1(f).

II.C. Lung segmentation in noncentral slices

The method for lung segmentation in noncentral slices is

similar to that in the central slice, with two additional steps.

In the first step, the centroid of a segmented lung in the cen-

tral slice was used as the estimated center of the lung in an

adjacent noncentral slice for polar coordinate transformation.

In the second step, the outline of the segmented lung in the

central slice was mapped to the transformed edge gradient

image of the adjacent noncentral slice. The pixels on each

column of the transformed edge gradient image were multi-

plied with a one dimensional Gaussian window function

with a sigma of 4, which was centered at the “mapped out-

line point” of the central slice. We compared the accuracy of

lung segmentation on the training dataset for different sig-

mas of 1, 2, 3, 4, 5, 6, and 7 and found that the Guassian win-

dow function with a sigma of 4 provided the highest

accuracy. The mapped outline point was multiplied with a

larger weighting factor and pixels far away from the mapped

outline point had a smaller weighting factor. Therefore, the

Gaussian window function could suppress the edge gradients

in the noncentral slice that were far away from the mapped

outline point of the central slice. It could also assure that the

shape of the segmented lungs in all slices would remain rela-

tively stable in spite of the effect of ribs and image noise.

The above process of using the segmented lungs in the

adjacent slice was applied iteratively from the central slice

to the anterior and posterior slices.

II.D. Evaluation of lung segmentation

We created reference lungs to assess the accuracy of our

lung segmentation method. The reference lungs were man-

ually delineated by JW (4 years of experience in chest imag-

ing) on an LCD screen and were confirmed (in all scans) and

revised (in 6 scans) by QL (14 years of experience). The

heart and diaphragm were excluded from the reference

lungs. In order to make the manual delineation manageable,

we delineated the lungs in every 8th slice. It should be noted

that lung segmentation was applied to all slices; however,

the evaluation of lung segmentation was applied to only

selected slices. We employed an overlap rate of lung regions,

a mean absolute distance (MAD) of lung borders, and a

Hausdorff distance30,31 of lung borders as performance met-

rics to measure the agreement between the segmented lung

volume and the reference lung volume. The overlap rate was

defined as the ratio of the intersection to the union between

an automatically segmented lung and its corresponding ref-

erence lung. The value of the overlap rate ranges from 0%,

no overlap between the segmented lung and the reference

lung, to 100%, a perfect overlap. The MAD was calculated

by measuring the average distance from all points on the bor-

der of the automatically segmented lung to the border of the

reference lung. The smaller the MAD, the closer the points

on the border of the segmented lung and the points on the

border of the reference lung. To assess the local discrepancy

between an automatically segmented lung and a reference

lung, the Hausdorff distance between the border of the seg-

mented lung and that of the reference lung was calculated.

The mean value for each of the above three metrics for a

tomosynthesis scan was defined as the average of the corre-

sponding metric in the selected slices. Please note that, by

definition, the mean Hausdorff distance for both lungs is

greater than that of either left lung or right lung.

Because we will develop in the future a CAD system to

detect lung nodules in digital chest tomosynthesis by use of

this lung segmentation method, we employed the fraction of

nodules included in the automatically segmented lungs as

another performance metric. For this purpose, an independ-

ent chest radiologist with 24 years experience used CT

examinations to identify and confirm all nodules in tomosyn-

thesis as the reference standard of nodules. The chest radiol-

ogist identified 123 nodules from 45 patients in our database.

Among the 123 nodules, 111 nodules were included in the

reference lungs and 12 nodules were located in regions out-

side the referenced lungs, including the retrocardiac, media-

stinal, and retrodiaphragmatic regions. The 111 nodules

included in the reference lungs were employed to determine

736 Wang, Dobbins III, and Li: Lung segmentation in tomosynthesis 736

Medical Physics, Vol. 39, No. 2, February 2012



the fraction of nodules included in the automatically seg-

mented lungs.

III. RESULTS

Our lung segmentation method achieved good segmenta-

tion results for the lungs in our database. Figure 2 shows (a)

three slices of a lung in a digital tomosynthesis scan, (b) the

segmented lung, and (c) the corresponding reference lung in

the three slices. The image in the middle shows the lung in

the central slice. The overlap rate, MAD, and Hausdorff dis-

tance for this lung were 90.3%, 3.3 mm, and 28.0 mm,

respectively.

Table I shows the mean, standard deviation, and range of

the overlap rates, MAD, and Hausdorff distance for the 25

test scans in our database. The mean overlap rate for left

lungs, right lungs, and entire lungs were 85.7%, 88.3%, and

87.0%, respectively; the mean MAD for left lungs, right

lungs, and entire lungs were 4.8, 3.9, and 4.4 mm, respec-

tively; and the mean Hausdorff distances for left lungs, right

lungs, and entire lungs were 25.0, 25.5, and 30.1 mm, respec-

tively. By use of two tailed t-tests for unpaired data, we found

that there was no significant difference in the mean overlap

rate (p¼ 0.15), MAD (p¼ 0.30), and mean Hausdorff distan-

ces (p¼ 0.89) between the left lungs and right lungs.

Table II shows the overlap rate, MAD, and Hausdorff dis-

tance of lungs in anterior slices and posterior slices of the

25 test scans in our database. We used the first 32 slices

(slice 1–32) of a scan as anterior ones and the last 32 slices

FIG. 2. (a) Three slices of a right lung in a digital tomosynthesis scan, (b)

the segmented lung, and (c) the reference lung. The image in the middle

shows the lung in the central slice, the image in the left shows the lung in

the slice 40 mm above the central slice, and the image in the right show the

lung in the slice 40 mm below the central slice. The overlap rate, MAD, and

Hausdorff distance between the segmented lung and reference lung were

90.3%, 3.3 mm, and 28.0 mm, respectively.

TABLE II. The overlap rates, MAD, and Hausdorff distance for lungs in the

test dataset in anterior and posterior slices.

Anterior Posterior

Overlap

(%)

MAD

(mm)

Hausdorff

distance

(mm)

Overlap

(%)

MAD

(mm)

Hausdorff

distance

(mm)

Mean 87.9a 4.0b 24.3c 86.0a 4.3b 28.9c

SD 5.1 2.4 16.8 5.1 0.9 16.7

Max 93.3 16.6 101.4 91.9 5.6 87.2

Min 62.0 2.4 13.8 64.3 2.9 28.9

ap¼ 0.05, two tailed t-test.
bp¼ 0.10.
cp¼ 0.30.

TABLE I. The statistics of overlap rates, MAD, and Hausdorff distance for left lungs, right lungs, and entire lungs in the test dataset.

Left lungs Right lungs Both lungs

Overlap

(%)

MAD

(mm)

Hausdorff distance

(mm)

Overlap

(%)

MAD

(mm)

Hausdorff distance

(mm)

Overlap

(%)

MAD

(mm)

Hausdorff distance

(mm)

Mean 85.7a 4.8b 25.0c 88.3a 3.9b 25.5c 87.0 4.4 30.1

SD 8.0 4.1 16.9 3.5 1.2 7.2 5.1 2.3 16.3

Max 90.8 24.3 101.4 93.5 8.0 39.0 92.0 15.2 101.4

Min 49.2 3.2 13.4 75.9 2.6 15.3 64.6 2.9 16.7

ap¼ 0.15, two tailed t-test.
bp¼ 0.30.
cp¼ 0.89.
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(slice 32–63) as posterior ones. For lungs in anterior slices

and posterior slices, the mean overlap rates were 87.9% and

86.0% (p¼ 0.05), respectively; the mean MAD were 4.0 and

4.7 mm (p¼ 0.10), respectively; and the mean Hausdorff

distances were 24.3 and 28.9 mm (p¼ 0.30), respectively.

Thus, there is no significant difference in the performance

levels between lungs in anterior slices and posterior slices.

Table III shows the overlap rate, MAD, and Hausdorff

distance of lungs in tomosynthesis scans of the 25 test scans

with small (<30 mm) and large (�30 mm) Hausdorff distan-

ces. For lungs with small Hausdorff distance and large Haus-

dorff distance, the mean overlap rates were 88.3% and

84.5% (p¼ 0.18), respectively; the mean MAD were 3.6 and

5.6 mm (p¼ 0.14), respectively; and the mean Hausdorff

distances were 23.0 and 42.8 mm, respectively. Thus, for the

segmented lungs with small and large Hausdorff distances,

there is no significant difference in the mean overlap rate

and mean MAD.

We evaluated the performance levels of our method for

segmentation of lungs without and with lung diseases other

than lung nodules. One of the authors (Qiang Li, 14 years of

experiences in computerized lung nodule detection) identi-

fied seven digital tomosynthesis scans with lung diseases

other than nodules in the 25 test scans using both the CT

examinations and digital tomosynthesis scans. Four scans

contain interstitial lung disease (high attenuation) in a large

section of lungs; two scans contain pleural effusion (high

attenuation) that caused the overall distortion of lung boun-

daries, especially at the basal segment of the lungs; and one

scan contains emphysema (low attenuation). Table IV shows

that for the lungs without and with other lung diseases, the

mean overlap rates were 88.2% and 83.8% (p¼ 0.25),

respectively; the mean MAD were 3.8 and 5.8 mm

(p¼ 0.41), respectively; and the mean Hausdorff distances

were 27.3 and 37.5 mm (p¼ 0.88), respectively. It is appa-

rent from Table IV that the segmentation performance level

for lungs with other diseases was slightly lower than that

without other lung diseases. This result is consistent with our

expectation.

All of the 111 nodules inside the reference lungs were

correctly included in the segmented lungs obtained with our

lung segmentation method. Therefore, our lung segmentation

method would be a reliable first step for automated detection

of lung nodules in unobscured lung regions.

IV. DISCUSSIONS

The primary reason for low segmentation accuracy in the

left lungs is the presence of the heart. For most of the scans,

the retrocardiac lung regions were excluded from the lungs

segmented by our lung segmentation method. However, the

retrocardiac lung was included as part of the left lung in one

case as shown in Figs. 3(a) and 3(b) and led to the lowest

overlap rate of 49.2%. The automated method actually more

accurately determined the true lung area in this case by

including the retrocardiac region, but in doing so gave an

artificially poor overlap value with the manual segmentation

method that did not include retrocardiac lung. In spite of

this, we decided to exclude the heart from the reference

lungs in this initial study for two reasons. First, trying to

include the retrocardiac region in the segmented lungs may

significantly increase the risk of including other irrelevant

tissues, such as chest wall and mediastinum. Second, even if

the heart is included, the detection of the nodules obscured

by heart will be a more difficult task and will require a dedi-

cated detection scheme, which is not our current goal. None-

theless, it is clear that future work will need to be done to

modify our algorithm to include true lung in retrocardiac and

retrodiaphragmatic regions. A similar challenge also applied

to all CAD method using conventional radiography.

Under segmentation in costophrenic angle regions is a

weakness of our lung segmentation method. Figure 4 illus-

trated a Bland-Altman scatter plot of the volume of reference

lungs versus the difference of lung volume between auto-

matically segmented lungs and reference lungs. Please note

that the volume was calculated in selected slices, where the

reference lungs were delineated. The mean difference

was� 61 cm3, with the limits of agreement between�272

and 150 cm3. For most of the testing tomosynthesis scans,

the lung volume of automatically segmented lungs is smaller

than that of the reference lungs due to the under segmenta-

tion in costophrenic angle regions, except one including the

retrocardiac lung regions in the segmented lungs (Fig. 3).

The ASM-based approaches (Xu et al.,20 Seghers et al.,21

TABLE III. The overlap rates, MAD, and Hausdorff distance for lungs in the

test dataset with small Hausdorff distance (<30 mm) and large Hausdorff

distance (�30 mm).

Lungs with small Hausdorff

distance (< 30 mm)

Lungs with large Hausdorff

distance (�30 mm)

Overlap

(%)

MAD

(mm)

Hausdorff

distance

(mm)

Overlap

(%)

MAD

(mm)

Hausdorff

distance

(mm)

Mean 88.3a 3.6b 23.0 84.5a 5.6b 42.8

SD 1.8 0.4 3.4 7.8 3.6 22.2

Max 92.0 4.3 29.0 89.2 15.2 101.4

Min 85.9 2.9 16.7 64.6 3.8 30.0

ap¼ 0.18, two tailed t-test.
bp¼ 0.14.

TABLE IV. The overlap rates, MAD, and Hausdorff distance for lungs in the

test dataset without and with lung abnormalities other than lung nodules.

Lungs without lung

abnormalities

Lungs with lung

abnormalities

Overlap

(%)

MAD

(mm)

Hausdorff

distance

(mm)

Overlap

(%)

MAD

(mm)

Hausdorff

distance

(mm)

Mean 88.2a 3.8b 27.3c 83.8a 5.8b 37.5c

SD 1.7 0.5 7.1 9.0 4.2 28.9

Max 92.0 4.7 38.8 90.3 15.2 101.4

Min 85.6 2.9 16.7 64.6 3.3 19.8

ap¼ 0.25, two tailed t-test.
bp¼ 0.41.
cp¼ 0.88.
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van Ginneken et al.,22–24 and Shi et al.25) may provide more

accurate delineation of the lung boundary at costophrenic

angle regions. However, we did not employ an ASM-based

approach because (1) we did not have a large database to

create accurate lung shape models, (2) in order to segment

lungs in each slice of tomosynthesis scan using ASM, we

need to create different shape models for different slices,

which would make our segmentation scheme unmanageable

and impractical, and (3) the under segmentation of costo-

phrenic angle regions should have very limited effect on

computerized nodule detection.

Before we transformed the lungs to polar coordinate space,

we compressed the lungs by half in the vertical direction. If

we did not compress the lungs, the intersection points between

lung outlines and radial lines described in Sec. II B 3 would

be denser on the two sides than on the top or bottom of the

lung outline, as shown in Fig. 5(a). This would affect the per-

formance of dynamic programming algorithm. By compress-

ing the original image by half in the vertical direction, the

density of intersection points became approximately even on

all segments of the lung outlines, as shown in Fig. 5(b).

The in-plane resolution of slice images in the digital

tomosynthesis scans was high, whereas the image resolution

across slices was low due to the limited angle of x-ray tube

movement. In addition, the sliding average of seven adjacent

slices blurred the border of lungs and led to overlapping of

lungs and ribs in the first and last few slices of the lungs.

Therefore, we first segmented the lungs in the central slice

and then used the segmented lungs in the central slice to

guide the lung segmentation in noncentral slices. This strat-

egy made the shape of segmented lungs more stable and

more consistent across slices than independent processing of

each slice.

Our database contained only 45 digital tomosynthesis

scans. A larger database may help us to improve, and reli-

ably estimate, the performance of our lung segmentation

method. Furthermore, we created the reference lungs in ev-

ery 8th slice rather than every slice in each scan. Although

we might more reliably estimate the performance of the

FIG. 5. Illustration of intersection points between the outline of a lung and

radial lines in (a) a lung with original size and (b) a lung after compression

in vertical direction. The intersection points in (b) are roughly evenly dis-

tributed on the lung outline.

FIG. 3. Segmentation result of a left lung with low

overlap rate. (a) Original image, (b) the segmented

lung, and (c) the reference lung. The overlap rate,

MAD, and Hausdorff distance between the segmented

lung and the reference lung was 49.2%, 24.3 mm, and

101.4 mm, respectively.

FIG. 4. Bland-Altman scatter plot for the volume of reference lungs and

automatically segmented lungs.
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segmentation algorithm by creating reference lungs in more

slices, doing so would make it hard for us to manage our

evaluation process; more importantly, the conclusion of this

study would not likely change by use of more reference

lungs in more slices than those we currently use. For exam-

ple, the overlap rates for the segmented lungs in Fig. 2(b)

were 90.9%, 91.4%, and 90.3%, respectively, when the ref-

erence lungs were delineated in every 2nd, 4th, and 8th slice.

V. CONCLUSIONS

Accurate lung segmentation is important for improving

the performance of lung disease detection in digital chest

tomosynthesis. Our automated lung segmentation method

achieved good performance and would be useful for the de-

velopment of CAD schemes in digital chest tomosynthesis.
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APPENDIX: DYNAMIC PROGRAMMING FOR LUNG
SEGMENTATION

1. Local cost

Dynamic programming is an optimization method and is

often used for tracing object outlines and thin objects, such

as road network in satellite photographs.27–29 In this study,

we employed dynamic programming to determine an opti-

mal outline with the lowest cumulative cost. The optimal

outline of a lung consisted of one and only one edge point

on each of the 360 columns of the transformed edge gradi-

ent image in Fig. 1(d). The cumulative cost was defined as

the sum of local costs of all edge points on the lung outline.

The local cost of each pixel (edge point) on the outline

was composed of two components, namely, an internal cost

and an external cost. The internal cost measured the

smoothness between edge points on adjacent columns and

was given by

Eint xi; yið Þ ¼ yi � yi�1j j= yi þ yi�1ð Þ i ¼ 1;…m;

x ¼ 1;…m; y ¼ 1;…n

where xi and yi are the x- and y-coordinates of the ith edge

point on the ith column of the transformed image; m and n
are the width and height of the transformed image, respec-

tively. The denominator was a normalization term. A curve

with a relatively smooth shape would have a low internal

cost.

The external cost of an edge point was determined by its

edge strength. We used the negative value of edge gradient

G (xi, yi) at each pixel (xi, yi) as its external cost,

Eext xi; yið Þ ¼ �G xi; yið Þ

where G (xi, yi) was determined by use of the kernels defined

in Eq. (1). Thus, a pixel with stronger edge strength was

assigned a lower external cost.

The local cost of an edge point (xi, yi) was defined as the

weighted sum of the internal and external costs

E xi; yið Þ ¼ wintEint xi; yið Þ þ wextEext xi; yið Þ

where wint and wexe represent the weighting factors for the

internal cost and external cost, respectively. We empirically

selected a combination of wint¼ 1 and wext¼ 0.1, based on

the accuracy of lung segmentation on the training dataset.

2. Cumulative cost

The cumulative cost of an outline was dynamically calcu-

lated on a column-by-column basis from the first column

through the last column of the transformed image. First, the

cumulative cost c(x1, y1) of each pixel (x1, y1) on the first

column was initialized with its external cost only, because

its previous pixel did not exist and its internal cost could not

be defined.

c x1;y1ð Þ ¼ Eext x1;y1ð Þ
The cumulative cost of a pixel (xi, yi) on other columns was

then calculated by a recursive process,

cðxi; yiÞ ¼ min
t1�l�t2

c xi�1; yi�1 þ lð Þ þ E xi; yið Þf g:

Thus, the cumulative cost at a pixel on the ith column was

defined as the minimum sum of the cumulative cost at the

(i – 1)th column and the local cost at (xi, yi). The parameters

t1 and t2 were used to control the searching interval in the

vertical direction, so that a large “jump” between two edge

points on adjacent columns was prevented. In this study,

t1¼� 10 and t2¼þ 10.

3. Backward searching of the optimal outline

After calculating the cumulative costs for all edge points

on the last column, a backward searching strategy was used

to determine the optimal outline path. We first selected in

the last column a pixel with the lowest cumulative cost. This

cumulative cost represents the total cost of the optimal

“path” from the first to the last column. We then traced the

path backward from the selected pixel on the last column m
to find a pixel on the column (m� 1); this procedure was
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repeated to find the pixels on the optimal “path” on columns

(m� 2), …, 1. The pixels on the optimal path were then con-

nected together to form the outline of the lung.

a)Author to whom correspondence should be addressed. Electronic mail:

li.qiang@duke.edu
1J. T. Dobbins III and D. J. Godfrey, “Digital x-ray tomosynthesis: Current

state of the art and clinical potential,” Phys. Med. Biol. 48, R65–R106 (2003).
2J. Vikgren, S. Zachrisson, A. Svalkvist, A. A. Johnsson, M. Boijsen, A.

Flinck, S. Kheddache, and M. Bath, “Comparison of chest tomosynthesis

and chest radiography for detection of pulmonary nodules: Human ob-

server study of clinical cases,” Radiology 249, 1034–1041 (2008).
3J. T. Dobbins III, H. P. McAdams, J. W. Song, C. M. Li, D. J. Godfrey,

D, M. DeLong, S. H. Paik, and S. Martinez-Jimenez, “Digital tomosyn-

thesis of the chest for lung nodule detection: Interim sensitivity results

from an ongoing NIH-sponsored trial,” Med. Phys. 35, 2554–2557

(2008).
4K. Doi, “Overview on research and development of computer-aided

diagnostic schemes,” Semin Ultrasound CT MR 25, 404–410, (2004).
5Q. Li, F. Li, K. Suzuki, J. Shiraishi, H. Abe, R. Engelmann, Y. Nie, H.

MacMahon, and K. Doi, “Computer-aided diagnosis in thoracic CT,”

Semin Ultrasound CT MR 26, 357–363, (2005).
6C. White, T. Flukinger, J. Jeudy, and J. Chen, “Use of a computer-aided

detection system to detect missed lung cancer at chest radiography,” Radi-

ology 252, 273–281 (2009).
7X. Xu and K. Doi, “Image feature analysis for computer-aided diagnosis:

Accurate determination of ribcage boundary in chest radiographs,” Med.

Phys. 22, 617–626 (1995).
8S. G. Armato III, M. L. Giger, and H. MacMahon, “Automated lung seg-

mentation in digitized posteroanterior chest radiographs,” Acad. Radiol. 5,

245–255 (1998).
9E. Pietka, “Lung segmentation in digital radiographs,” J. Digit Imaging 7,

79–84 (1994).
10J. Duryea and J. M. Boone, “A fully automated algorithm for the segmen-

tation of lung fields on digital chest radiographic images,” Med. Phys. 22,

183–191 (1995).
11M. Carreira, D. Cabello, and A. Mosquera, “Automatic segmentation of

lung fields on chest radiographic images,” Comput. Biomed. Res. 32,

283–303 (1999).
12M. Brown, L. Wilson, B. Doust, R. Gill, and C. Sun, “Knowledge-based

method for segmentation and analysis of lung boundaries in chest x-ray

images,” Comput. Med. Imaging Graph. 22, 463–477 (1998).
13M. McNitt-Gray, H. Huang, and J. Sayre, “Feature selection in the pattern

classification problem of digital chest radiograph segmentation,” IEEE

Trans. Med. Imaging 14, 537–547 (1995).
14O. Tsujii, M. Freedman, and S. Mun, “Automated segmentation of ana-

tomic regions in chest radiographs using an adaptive-sized hybrid neural

network,” Med. Phys. 25, 998–1007 (1998).

15B. van Ginneken, and B. ter Haar Romeny, “Automatic segmentation of

lung fields in chest radiographs,” Med. Phys. 27, 2445–2455 (2000).
16N. Vittitoe, R. Vargas-Voracek, and C. Floyd, Jr., “Markov random field

modeling in posteroanterior chest radiograph segmentation,” Med. Phys.

26, 1670–1677 (1999).
17J. Besag, “On the statistical analysis of dirty pictures,” J. R. Stat. Soc. Ser.

B (Methodol.) 48, 259–302 (1986).
18L. Li, Y. Zheng, M. Kallergi, and R. Clark, “Improved method for auto-

matic identification of lung regions on chest radiographs,” Acad. Radiol.

8, 629–638 (2001).
19Y. Shi, F. Qi, Z. Xue, L. Chen, K. Ito, H. Matsuo, and D. Shen,

“Segmenting lung fields in serial chest radiographs using both population-

based and patient-specific shape statistics,” IEEE Trans. Med. Imaging 27,

481–494 (2008).
20T. Xu, M. Mandal, R. Long, and A. Basu, “Gradient vector flow based

active shape model for lung field segmentation in chest radiographs,”

Proc. IEEE EMBS, 3561–3564 (2009).
21D. Seghers, D. Loeckx, F. Maes, D. Vandermeulen, and P. Suetens,

“Minimal shape and intensity cost path segmentation,” IEEE Trans. Med.

Imaging 26, 1115–1129 (2007).
22B. van Ginneken, A. Frangi, J. Staal, B. ter Haar Romeny, and M. Vierg-

ever, “Active shape model segmentation with optimal features,” IEEE

Trans. Med. Imaging 21, 924–933 (2002).
23B. van Ginneken, S. Katsuragawa, B. ter Haar Romeny, K. Doi, and M.

Viergever, “Automatic detection of abnormalities in chest radiographs using

local texture analysis,” IEEE Trans. Med. Imaging 21, 139–149 (2002).
24B. van Ginneken, M. Stegmann, and M. Loog, “Segmentation of ana-

tomical structures in chest radiographs using supervised methods: A

comparative study on a public database,” Med. Image Anal. 10, 19–40

(2006).
25Y. Shi and D. Shen, “Hierarchical shape statistical model for segmentation

of lung fields in chest radiographs,” Proceedings of MICCAI, pp. 417–424

(2008).
26C. M. Li and J. T. Dobbins III, “Preliminary assessment of the temporal

subtraction of tomosynthesis images for improved detection of pulmonary

nodules,” SPIE Proc. 6142, 61425C (2006).
27M. Aoyama, Q. Li, S. Katsuragawa, F. Li, S. Sone, and K. Doi,

“Computerized scheme for determination of the likelihood measure of

malignancy for pulmonary nodules on low-dose CT images,” Med. Phys.

30, 387–394 (2003).
28S. Timp and N. Karssemeijer, “A new 2D segmentation method based on

dynamic programming applied to computer aided detection in

mammography,” Med. Phys. 31, 958–971 (2004).
29J. Wang, R. Engelmann, and Q. Li, “Segmentation of pulmonary nodules

in three-dimensional CT images by use of spiral-scanning technique,”

Med. Phys. 34, 4678–4689 (2007).
30R. Rockafellar and R. Wets, Variational Analysis (Springer-Verlag, New

York, 2005).
31J. Wang, F. Li, and Q. Li, “Automated segmentation of lungs with severe

interstitial lung disease in CT,” Med. Phys. 36, 4592–4599 (2009).

741 Wang, Dobbins III, and Li: Lung segmentation in tomosynthesis 741

Medical Physics, Vol. 39, No. 2, February 2012

http://dx.doi.org/10.1088/0031-9155/48/19/R01
http://dx.doi.org/10.1148/radiol.2492080304
http://dx.doi.org/10.1118/1.2937277
http://dx.doi.org/10.1053/j.sult.2004.02.006
http://dx.doi.org/10.1053/j.sult.2005.07.001
http://dx.doi.org/10.1148/radiol.2522081319
http://dx.doi.org/10.1148/radiol.2522081319
http://dx.doi.org/10.1118/1.597549
http://dx.doi.org/10.1118/1.597549
http://dx.doi.org/10.1016/S1076-6332(98)80223-7
http://dx.doi.org/10.1007/BF03168427
http://dx.doi.org/10.1118/1.597539
http://dx.doi.org/10.1006/cbmr.1999.1510
http://dx.doi.org/10.1016/S0895-6111(98)00051-2
http://dx.doi.org/10.1109/42.414619
http://dx.doi.org/10.1109/42.414619
http://dx.doi.org/10.1118/1.598277
http://dx.doi.org/10.1118/1.1312192
http://dx.doi.org/10.1118/1.598673
http://dx.doi.org/10.1016/S1076-6332(03)80688-8
http://dx.doi.org/10.1109/TMI.2007.908130
http://dx.doi.org/10.1109/TMI.2007.896924
http://dx.doi.org/10.1109/TMI.2007.896924
http://dx.doi.org/10.1109/TMI.2002.803121
http://dx.doi.org/10.1109/TMI.2002.803121
http://dx.doi.org/10.1109/42.993132
http://dx.doi.org/10.1016/j.media.2005.02.002
http://dx.doi.org/10.1117/12.654540
http://dx.doi.org/10.1118/1.1543575
http://dx.doi.org/10.1118/1.1688039
http://dx.doi.org/10.1118/1.2799885
http://dx.doi.org/10.1118/1.3222872

	s1
	s2
	s2A
	s2B
	s2B1
	s2B2
	F1
	s2B2
	E1
	s2B3
	s2B4
	s2B5
	s2C
	s2D
	s3
	F2
	T2
	t2n1
	t2n2
	t2n3
	T1
	t1n1
	t1n2
	t1n3
	s4
	T3
	t3n1
	t3n2
	T4
	t4n1
	t4n2
	t4n3
	F5
	F3
	F4
	s5
	app1
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31

