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Abstract
Registration of three-dimensional ultrasound (3DUS) volumes is necessary in several applications,
such as when stitching volumes to expand the field of view or when stabilizing a temporal
sequence of volumes to cancel out motion of the probe or anatomy. Current systems that register
3DUS volumes either use external tracking systems (electromagnetic or optical), which add
expense and impose limitations on acquisitions, or are image-based methods that operate offline
and are incapable of providing immediate feedback to clinicians. This paper presents a real-time
image-based algorithm for rigid registration of 3DUS volumes designed for acquisitions in which
small probe displacements occur between frames. Described is a method for feature detection and
descriptor formation that takes into account the characteristics of 3DUS imaging. Volumes are
registered by determining a correspondence between these features. A global set of features is
maintained and integrated into the registration, which limits the accumulation of registration error.
The system operates in real-time (i.e. volumes are registered as fast or faster than they are
acquired) by using an accelerated framework on a graphics processing unit. The algorithm’s
parameter selection and performance is analyzed and validated in studies which use both water
tank and clinical images. The resulting registration accuracy is comparable to similar feature-
based registration methods, but in contrast to these methods, can register 3DUS volumes in real-
time.
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1. Introduction
Three-dimensional ultrasound (3DUS) has many benefits in that it is inexpensive, portable,
non-ionizing, and capable of accurately imaging fast moving structures such as heart valves.
However, there are several applications in which the information contained in a single
3DUS volume is insufficient and multiple registered 3DUS volumes are necessary.
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Applications include creating large field-of-view (FOV) mosaics from smaller FOV 3DUS
volumes (Poon and Rohling, 2006), stabilizing a temporal sequence of 3DUS volumes to
account for motion of the probe or anatomy (Shekhar et al., 2004), and/or compositing
images of the same anatomy acquired at various probe locations to improve image quality
(Rajpoot et al., 2011). In these applications, it is clinically desirable to register volumes in
real-time (i.e. as fast or faster than the volumes are acquired) so as to provide immediate
feedback to clinicians.

Depending on the application, 3DUS volumes are registered in either a rigid or non-rigid
fashion. Rigid registration is generally used when little or no amount of non-rigid
deformation of anatomy is expected between frames, and can be modeled as a combination
of rotation and translation. An example of this scenario would be when registering 3DUS
volumes of the heart taken at the same time during the cardiac cycle (Rajpoot et al., 2011).
Non-rigid registration is used when a considerable amount of non-rigid deformation of
anatomy is expected between frames. In these instances, aligning corresponding objects
from different images cannot be handled with a rigid registration model, but rather a
spatially varying deformation field needs to be determined.

Various approaches have been used in non-rigid registration of ultrasound to resolve the
spatially varying deformation field. Typically scale space or sub-volume approaches are
used for robustness and to improve computational efficiency (Krucker et al., 2002; Xiao et
al., 2002; Pratikakis et al., 2003; Zikic et al., 2006; Ledesma-Carbayo et al., 2006). Some
methods have used tracking or matching of features between images, where a dense
deformation field is then found from interpolation or fitting a B-spline approximation to the
feature displacements (Foroughi et al., 2006; Moradi et al., 2006). It is worth noting that
most of these methods, while designed for non-rigid registration, could be adapted to find a
rigid registration between volumes by enforcing a globally consistent deformation field.

In this manuscript, we address the issue of real-time registration of 3DUS volumes. As real-
time 3DUS volumes are acquired very quickly (typically at or above 30Hz) and typically
over only a small region of interest, we assume the amount of non-rigid deformation
between images is small, and therefore assume a rigid transformation model between
volumes. Rigid registration of 3DUS volumes is typically done using either a tracking-based
or imaged-based approach (or both). Tracking-based methods operate by tracking the
transducer with an external tracking system, usually optical or electromagnetic, and
computing transformations between images based on the position and orientation of the
tracker (Poon and Rohling, 2006; Yao et al., 2009; Zhuang et al., 2010). These systems,
along with the added expense of additional hardware, require careful calibration of the
tracker to the ultrasound image (Mercier et al., 2005). Some of these systems also make use
of image-based registration methods to refine the registration and account for other
movements that cannot be tracked by the probe (Xiao et al., 2002; Gee et al., 2003; Poon
and Rohling, 2006; Yao et al., 2009; Zhuang et al., 2010). For systems that do not use
image-based refinement, to account for the displacement of anatomy due to respiration,
either patients are put on breath-hold, images are respiration-gated (Makela et al., 2002), or
respiration is tracked and accounted for using an additional tracker on the chest or abdomen
(Wein et al., 2008). Also, careful consideration of the tracking environment needs to be
considered, as electromagnetic tracking is sensitive to metal in the field and optical trackers
need to maintain a clear line of sight between the sensor and markers.

Image-based 3DUS registration methods can be divided into two types: voxel-based and
feature-based. Voxel-based methods compute a metric over all voxels in a volume (or
overlapping voxels from volumes to be registered) and in an iterative fashion find the
parameters of the transformation between volumes (Rohling et al., 1998; Shekhar et al.,
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2003; Francois et al., 2003; Cen et al., 2004; Neemuchwala et al., 2005; Grau et al., 2007;
Wachinger et al., 2008; Rajpoot et al., 2009; Kutter et al., 2009; Wein et al., 2009). These
methods have proven to be accurate, even in the presence of large translational and
rotational displacements between images, but require that voxels be revisited several times.
Fast implementations of this type (Kutter et al., 2009; Wein et al., 2009) used accelerated
frameworks on a graphics processing unit (GPU) and simultaneously registered 3DUS
volumes to each other and to CT images. The former registered larger volumes in 1–3
seconds, depending on volume size, whereas the latter registered 10 smaller intracardiac
3DUS volumes in 0.6 seconds by assuming a linear trajectory of the transducer and
modifying only the first and last transformations.

The second image-based registration type consists of feature-based methods that compute a
transformation between images by determining a correspondence between feature sets (i.e.
segmented volume, edges, salient points, etc.) extracted from 3DUS volumes (Porter, 2004;
Soler et al., 2005; Moradi et al., 2006; Wang et al., 2007; Ni et al., 2008). These methods
can usually only handle small translational and rotational displacements between 3DUS
volumes. The fastest of these (not GPU accelerated) was shown in Ni et al. (2008), which
used a 3D SIFT implementation to register volumes in roughly one minute.

A limitation of current rigid 3DUS registration methods is that, because they typically take
several seconds or minutes to register two volumes, they cannot operate in real-time. Using
these methods, it therefore cannot be determined if sufficient or insufficient data is being
acquired for a given application until well after the images are acquired. For instance, in the
application of creating a large FOV mosaic, the extent of the mosaic cannot be immediately
assessed, and so it is not known when sufficient coverage of the anatomy of interest has
been obtained.

To address these issues, we present an image-based 3DUS rigid registration method capable
of operating in real-time when using a GPU accelerated framework, thereby making the
registered 3DUS images immediately available to clinicians. The method is a feature-based
method, summarized in Figure 1. The presented method is designed for real-time ultrasound
acquisitions where it is assumed that small probe displacements occur between images in the
sequence. This does not mean that large translations or rotations cannot occur over the
course of the acquisition, but merely that from frame to frame these displacements are small.
As probe movement in most acquisitions is already limited, such as on the surface of the
liver or within the esophagus to view the heart, these restrictions should not limit the
registration algorithm’s usefulness. The method, however, is not designed to perform the
registration between volumes that exhibit large translational or rotational displacements,
such as used in several compositing studies (Grau and Noble, 2005; Yao et al., 2009;
Rajpoot et al., 2011). We also do not claim any novel contributions in the area of ultrasound
compositing or improving image quality, but when using the presented registration method
for mosaicing multiple 3DUS volumes, a mean compositing method is used as it is simple,
fast, and produces favorable results as found in visual inspection.

This manuscript is organized such that the details of the algorithm are outlined in Section 2.
The accuracy, parameter selection, and execution times for the algorithm, using both clinical
and water tank images, are then presented in Section 3.

2. Materials and Methods
2.1. Data Assumptions & Pre-Processing Strategies

This method is designed for real-time ultrasound acquisitions where data is streamed from
the ultrasound machine to an external CPU. Using both the CPU and an accompanying
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GPU, transformations and interpolations are computed. To expedite the processing of the
3DUS volumes, we exploit several characteristics of ultrasound sequence data. First, we
know the number of intermediate volumes (for instance, the Laplacian-of-Gaussian of a
volume) needed to process each volume before it can be registered. Therefore, to avoid the
dynamic allocation/deallocation of memory, all necessary volumes are initialized and reused
as necessary. Second, there are several intermediates – for instance, eroded data masks that
are used to eliminate edge effects at the boundary of the conical-shaped 3DUS image and
the surrounding zero-padded region needed to fill out the rectangular volume – that are the
same for every volume in a sequence. We therefore precompute and store these
intermediates so that they can be quickly queried at a later time. Lastly, there are some
computations that need to be performed at each voxel, however, in the zero-padded region
surrounding the conical-shaped 3DUS image, these operations are meaningless. Therefore,
the number and locations of the conical data voxels are stored so that efficient thread
launches on the GPU can be executed to perform these computations.

2.2. Feature Detection
Several methods can be used to find feature points in an image (Mikolajczyk, 2002), but the
most important characteristic of the feature detection is that the feature points are stable (i.e.
features are found at the same salient region) from image to image. In the 2D SIFT
implementation for photos (Lowe, 2004) and 3D SIFT implementation for 3DUS (Ni et al.,
2008), these features are found as the local extrema of a Difference-of-Gaussian (DoG)
scale-space. While finding features across multiple scales is important for photos, as the
scale of objects can change according to the orientation of the camera relative to an object,
this is unnecessary for real-time 3DUS volumes that exhibit small displacements, as the
scale of objects should not change.

We therefore simplify feature detection by searching for features at a single scale. As the
DoG has been shown to be adequate for feature detection in 3DUS (Ni et al., 2008), and as
the DoG is just an approximation to the scale-normalized Laplacian-of-Gaussian (LoG)
(Lowe, 2004), we search for features by finding the local minima of the LoG of a 3DUS
volume at a single user-specified scale, σf. We use an isotropic LoG kernel, as the resolution
of most 3DUS volumes is nearly isotropic and the kernel size is typically small compared to
the volume size. If this were not the case, however, an anisotropic kernel would be more
appropriate. We search only for local minima of the LoG, as opposed to both local minima
and maxima, because we want to avoid finding features in the middle of blood pools or
shadows that appear in a 3DUS image, and the minima are found at higher intensity
locations that typically correspond to tissue locations. To further enforce that features reside
at tissue locations, we require that the 3DUS intensity at a feature location is above a user-
specified tissue threshold, τtissue. An important trait of this feature detection method is that,
while this does not find all features at all spatial scales, because features do not change scale
in 3DUS, the same features at a constant scale are being found from image to image.
Assuming an appropriately chosen value for the scale, σf, a sufficient number of features (on
the order of several hundred features) should be found such that an accurate registration
between images can be computed.

The intent of having the user define σf and τtissue is to allow the user some control over the
number of features that are found in the images and the resulting registration time. However,
we show later how these parameters can be automatically tuned to make the registration
method fully automatic. It stands to reason that for increasingly smaller feature scales or
tissue thresholds, more features will be found. Typical values for σf and τtissue used in
studies were 1–2mm and 150–200, respectively, where 3DUS intensities were in the range
of 0 to 255.
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2.3. Feature Descriptors
A feature descriptor is a means of uniquely characterizing a feature location and allows for
the calculation of a correspondence between features from different images. Previous efforts
have been made to make these descriptors both scale and rotationally invariant in both 2D
and 3D imaging for the purpose of matching features under large rotations and changes in
scale (Lowe, 2004; Ni et al., 2008). However, when registering volumes in a real-time
3DUS sequence, the rotations from frame to frame are small. We therefore construct feature
descriptors using a simple rotationally variant method.

We construct feature descriptors by taking a sparse sampling of the 3DUS volume at and
around a feature location (Figure 2). The sampling is taken on a rectilinear 5×5×5 grid of
125 points, where the grid is oriented along the image axes and centered at each feature
location. The sample spacing, δs, is equal to Mdσf, where the scale factor Md is a constant
and ensures that the extent of the feature is represented. The samples are then organized as
feature vectors of dimension 125 normalized to unit norm. We show in several validation
studies that these descriptors provide a sufficient level of performance with regard to
registration accuracy, and additionally take little time to compute.

2.4. 3DUS Volume Registration
Volume registration is performed using the feature sets from the volumes to be registered. In
this study, we refer to the reference (stationary) volume as Vref and its features as Fref =
(Xref, Dref), where Xref and Dref are the positions and feature descriptor vectors,
respectively, of the reference feature set. The number of features in the set is nref, and the
position and feature vector for feature i in the set is Xi,ref and Di,ref, respectively. Similarly,
we refer to the volume to be registered as Vnew and its features as Fnew = (Xnew, Dnew),
where there are nnew features in the set. The source of Fref varies depending on the
registration strategy, as discussed in Section 2.7.

We compute a transformation between volumes by first finding a rough correspondence
between the features in Fref and those in Fnew using the symmetric matching algorithm
described in Section 2.4.1. This rough correspondence will contain true matches (inliers) and
false matches (outliers), and so we subsequently employ the model fitting algorithm
(RANSAC) described in Section 2.4.2 to remove outliers and to better estimate the rigid
transformation between volumes.

2.4.1. Symmetric Matching—Symmetric matches between feature sets Fref and Fnew are
found by first computing the pairwise distances between descriptor vectors Dref and Dnew,
where distances are computed as the Euclidean norm of the vector differences. If we index
vectors Dref with α, where α ∈ {1, …, nref}, and index vectors Dnew with β, where β ∈ {1,
…, nnew}, then a symmetric match is said to occur when

. The Xref and Xnew
corresponding to the symmetric matches are stored as Mref and Mnew, where the coordinate
positions of the features from symmetric match i are Mi,ref and Mi,new and i ∈ {1, …, nsym}.

2.4.2. RANSAC—While symmetric matching generates a rough correspondence between
features in two feature sets, outliers (false matches) prevent computing an accurate
registration strictly from the symmetric matches. For this reason, we use a RANSAC
(RANdom SAmple and Consensus) algorithm (Fischler and Bolles, 1981; Hartley and
Zisserman, 2003) to remove outliers so that a more accurate registration can be computed. In
each RANSAC trial, three unique symmetric matches are used with the least-squares
registration algorithm in Arun et al. (1987) to estimate the transformation, Tt, that maps
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Mnew to Mref, where t ∈ {1, …, ntrials} and ntrials = 10nsym. The coordinates Mnew are then
transformed according to Tt, and a support for the trial, St, found as the number of matches
where ∥Mi,ref − TtMi,new∥ ≤ dransac, where dransac is a distance threshold that determines the
cut-off for when a transformed symmetric match is considered an inlier versus an outlier. A
study to determine an appropriate value for dransac is described in Section 3.1.2. The
symmetric matches that make up the support from the trial with the largest St are then used
again with the least-squares registration algorithm in Arun et al. (1987) to estimate the final
transformation, Tfinal, that transforms the new volume to the coordinate space of the
reference volume.

2.5. Interpolation
Once the transformation, Tfinal, relating the position of Vnew to Vref is determined, we
reconstruct Vnew in the coordinate system of Vref. The interpolated image, Vinterp, is
computed using a tri-linear interpolation method. Using an eroded mask of the conical data
volume, we avoid interpolating the data near the intersection (within a two voxel radius) of
the conical 3DUS image and the surrounding padding of zeros, thereby avoiding the blurring
effect that would otherwise be seen in the interpolated image. The interpolated volume,
Vinterp, is made to be the same volume size as the original volume, Vnew, but as the conical
3DUS image does not occupy the entire rectangular volume, we use a windowing operation
to limit the region within Vinterp for which the interpolation is computed to the subvolume at
which the transformed conical image resides.

2.6. Mosaicing
One application of the presented registration method is constructing large FOV mosaics
from several smaller FOV 3DUS volumes. For this application, we composite the images
using a simple averaging method, as this is simple, produces favorable results as seen
through visual inspection, and can be computed quickly on a GPU.

To composite using the averaging method, we maintain two volumes, Σdata and Σcount,
where Σdata is the summation of interpolated intensities from each Vinterp volume added to
the mosaic, and Σcount the summation of the number of voxels that have contributed to the
data in Σdata. Voxels with a value of zero (in the zero-padded region) do not factor into the
compounding, and therefore do not affect the mosaic. The compounded mosaic image is
then found as Vmosaic = Σdata/Σcount. A similar windowing operation as was used for the
interpolation procedure is used for updating the mosaic, making the process of updating the
mosaic quick and efficient.

2.7. Registration Strategies
When registering volumes in a 3DUS sequence, there are two registration strategies that
could be employed. One would be to register the next volume to the most recently registered
volume, a method which will be referred to as the Register-to-Previous (RTP) method.
While this method would be suitable for short 3DUS sequences, it would accumulate
substantial error in long sequences with many volumes (Figure 3). An alternate strategy in
registering new volumes is instead use a combination of the features from all volumes in the
sequence previous to the current volume, a method which will be referred to as the Register-
to-Global (RTG) method. The work presented in Wachinger et al. (2008) shows the benefits
of this group-wise versus pair-wise registration strategy for 3DUS.

A naive approach for the RTG method might be to simply retain the features from every
volume and store their positions and descriptors in a large database for use in registering
subsequent volumes. However, this approach is inefficient and can lead to the storage of
repeated and useless information. Rather, we record only the “good” features (i.e. features
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that are likely to be found in multiple volumes) and maintain a manageable database size by
limiting repeated features, therefore allowing for real-time execution of the registration
algorithm. To accomplish this, we start by only recording those features that make up the
support from a previous 3DUS volume registration. As these corresponding features were
found in at least two previous volumes, it is more likely they will be found in subsequent
volumes. Also, because features are required to be local minima of the LoG, it makes sense
to allow only one feature to occupy a small neighborhood. We keep track of the feature
positions for features added to the database by maintaining a volume, VDB, that is the same
size as Vinterp (or Vmosaic when mosaicing) and that indicates the positions of the previously
recorded features. A new feature is added to the database only if a feature has not already
been recorded at its location. When a new, unique feature is found, its index location in the
database is then written to the neighborhood of diameter σf centered at the feature position in
VDB. Additionally, the feature position and descriptor vector are recorded to the database.

When registering new volumes, it is unnecessary to use the entire database of features to
compare to the features of the new volume, as there will be a large number of features
whose position will be nowhere near the volume to register. Rather, the feature set that we
use as the reference feature set, Fref, when registering a new volume is a combination of a
small subset of the feature database and the features from the previously registered volume.
The features that are used from the database are those that resided at the location of the
conical data volume in the transformed previous volume, Vinterp. This is based on the
assumption that there are small displacements between consecutive frames. These features
can be quickly found by looking at the intersection of Vinterp and VDB. Additionally, all
features from the previous volume are used because neighboring volumes will have a large
number of corresponding features, and these features do not necessarily already exist in the
database.

2.8. Automatically Tuning Parameters
In the registration algorithm, there are four parameters that need to be defined that control
how the algorithm operates and performs. These parameters are the feature descriptor
sample offset scale factor (Md), RANSAC distance threshold (dransac), feature scale (σf), and
tissue threshold (τtissue). The sample offset scale factor determines, relative to the feature
scale, the extent of the sampling grid used in the feature descriptor formation process. The
feature scale is assumed to be tuned for each application depending on the image and
anatomy of interest, and so it follows that this scale factor should be a constant. An optimal
range and value for the scale factor is determined in the study shown in Section 3.1.1.
Similarly, the RANSAC distance threshold should also not need to be tuned for each
application, as it should be made as small as possible so that accurate registrations result, but
not so small as to be on the order of the original 3DUS resolution. We show this to be the
case in the study described in Section 3.1.2.

The feature scale and tissue threshold, however, are dependent on the imaging and anatomy
being imaged, as the scale of the dominant features and the 3DUS intensity at prospective
feature locations will change for different tissue and anatomic structures. These values
therefore need to be tuned for each application. The effect of varying these values is studied
and described in Section 3.1.3 and Section 3.1.4.

To facilitate the tuning of the feature scale and tissue threshold (i.e. to keep the user from
having to tune these parameters for every application or 3DUS sequence) and make the
registration algorithm fully automatic, we designed an auto-tune method for these
parameters. The method starts by assuming values for these parameters, and in iteratively
registering two example 3DUS volumes, the parameters are modified such that either a
desired number of matching features are found or a desired registration time results.
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As later shown and described in Section 3.1.3 and Section 3.1.4, suitable starting values for
the feature scale and tissue threshold are 1.0mm and 170, respectively. Also shown is that, in
general, registration time and support (i.e. final number of matching features) are inversely
proportional to these parameters. Therefore, at each iteration, a greedy algorithm can be
employed and depending on whether the registration time or support is too large or small, σf
and τtissue are increased or decreased, respectively, in step sizes of 0.1mm for σf and 10 for
τtissue. The parameter modification that results in the largest change to the registration time
or support is adopted (i.e. only one parameter value is changed in each iteration), and the
process iterated until the time or support falls within a desired range. This auto-tune method
typically takes less than a few seconds to perform.

3. Validation and Performance
We performed several studies to characterize the behavior of the algorithm. These studies
either explored the parameter space of the algorithm to determine suitable ranges for
parameter values or explored the algorithm performance for different applications. Data was
acquired for these studies using a 3DUS machine (iE33 Echocardiography System with
transesophageal X7-2t and transthoracic X7-2 probes, Philips Healthcare, Andover, MA,
USA) with the capability to stream 3DUS images to an external PC (Dell Alienware Aurora,
Intel Core i7 processor @ 2.67GHz, 6GB RAM, NVIDIA GTX260 graphics card). Several
studies were done using images that were acquired at known positions (i.e. known
translation and rotation offsets). This used the water tank setup shown in Figure 4, which
features a translation stage (to which we attached the X7-2 ultrasound transducer) and a
rotation stage (to which we attached a porcine heart for imaging). We also explore the
accuracy of the registration algorithm when used for stabilizing clinical ultrasound
sequences of valves in a beating heart.

3.1. Parameter Selection
As previously described, there are four parameters (σf, τtissue, Md, dransac) that control
algorithm operation and performance. The studies contained in this section show how
varying these parameters affects algorithm performance. As explained earlier, Md and
dransac should not need to be tuned, and so optimal ranges and values for these parameters
are determined. The effect of varying σf and τtissue on registration time and accuracy are also
described, and suitable ranges for these parameters are explored.

The studies described in this section were performed using images acquired in a water tank
(Figure 4) using combinations of known translations (0, 3, 6, and 9 mm) and rotations (0, 4,
and 8 degrees). The objective of the registration algorithm is to register images at a frame
rate of roughly 30Hz, and so this range translates to probe motions upwards to 0.27 meters
per second and 242 degrees per second, which is expected to be an upper bound on expected
probe motion. The ultrasound volume size was 144 × 80 × 112 voxels along the lateral,
elevational, and axial directions, respectively, with a resolution of 0.75 × 0.65 × 0.83 mm/
voxel. For the following studies, the images were registered to an image at 0 mm of
translation and 0 degrees of rotation using the described parameters, and registration errors
computed according to the offset of each image. The measurement of “support” shown in
the accompanying plots comes from the RANSAC algorithm and is a measure of the number
of final matches used to compute the transformation between images.

3.1.1. Sample Offset Scale Factor, Md—The size of a feature is related to the
designated feature scale at which the LoG is computed. When computing the LoG, for a
detection error of less than 0.1%, the width of the LoG kernel is suggested to be roughly 8.5
times the feature scale (Gunn, 1999). Therefore, the extent of the grid used to compute the
feature descriptor should be at least as large, meaning the corresponding sample offset scale
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factor would have a value of at least 2.125. If Md was made to be too large, sample points
would be so spread out that the descriptor would include distant image data unrelated to the
feature.

We therefore explored how varying Md would affect registration performance to determine
an optimal range for the value of Md. We did this by registering the images of known
position using varying Md from 1 to 8. The registrations were computed using dransac =
1.5mm, τtissue = 150, and three different feature scales (σf = 1, 1.5, and 2mm). The three
spatial scales were determined qualitatively to be a reasonable range for the feature scale for
the given images. As the RANSAC algorithm is a random process, the registration results
can vary slightly from one execution to the next, and so we performed the registrations 10
times for each feature scale, resulting in 30 trials for each scale factor. The results of this
analysis are averaged over all feature scales and trials, a plot of which can be seen in Figure
5.

The plot indicates that when Md is between 3 and 4, the support is at its maximum.
Meanwhile, the registration error (both translation and rotation) is roughly constant for Md
between 2 and 6. Therefore, in the interests of generating the maximum support and limiting
error, we use Md = 3.5 for the remaining studies.

3.1.2. RANSAC Distance Threshold, dransac—The RANSAC distance threshold
should be made as small as possible to limit registration error, but the lower bound on the
threshold value is near the spatial resolution of the 3DUS volume. To show this, we
analyzed the effect of the RANSAC distance threshold, dransac, on the algorithm
performance in much the same way as was done for Md, with the difference being that for
this study we fixed Md at 3.5 while dransac varied between 0.5 and 5mm. The results were
averaged over all feature scales and trials (Figure 6). As anticipated, for dransac below the
spatial resolution of the volume (about 0.75mm/voxel) and for large values, the registration
performance diminished. Appropriate values for dransac would then be those between 1 and
2mm, as registration error is comparatively small and constant in this region. Accordingly,
we use a dransac value of 1.5mm for the remaining studies.

3.1.3. Feature Scale, σf—As previously mentioned, an appropriate feature scale at which
to detect features will depend on the imaged tissue and anatomy. To elucidate the effect of
varying feature scale on registration performance, we computed the registrations for the
same images as used in the previous two studies, using the optimal values of Md = 3.5 and
dransac = 1.5mm and making τtissue = 150. The value of the feature scale was varied between
0.25mm and 3.5mm, and similar to the previous studies, several trials (25 trials) were
performed for each feature scale. The performance values were then averaged over all trials.
The effect of the feature scale on the number of matches found and the registration time can
be seen in Figure 7(a), while Figure 7(b) shows the effect of the scale on the registration
accuracy.

With regards to the accuracy, it can be seen in Figure 7(b) that in an effort to keep the
translation error as low as possible, a value of σf between 0.5mm and 2mm should be used.
In this range, the rotation error is smallest for smaller σf, and so it might be assumed that a σf
of 0.5mm should be used. However, as seen in Figure 7(a), the registration time for small
feature scales becomes large due to the increased number of features being detected. It
would therefore be prudent to choose a small enough feature scale to maintain registration
accuracy, but large enough that the registration time will allow for real-time operation. For
example, if the frame rate is 30Hz, the registration time should be ≤ 30ms, therefore an
appropriate feature scale would be 1–1.5mm. It is important to note that the registration time
is dependent on the GPU hardware and architecture. While this study was performed using
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an NVIDIA GTX260 graphics card, more recent hardware releases would prove to
substantially reduce the reported registration times. A more detailed analysis of registration
time versus GPU hardware can be found in Section 3.6.

3.1.4. Tissue Threshold, τtissue—The tissue threshold is primarily used to limit how
many features are found in an image, and so it is important to understand its effect on the
registration performance. We examine the effects of the tissue threshold on the registration
performance using the same water tank images from the previous three studies. For this
study, Md = 3.5, dransac = 1.5mm, and σf = 1.0mm, while we made τtissue to vary between 20
and 240 (assuming intensities are in the range of 0–255). For each value of τtissue, 25 trials
were performed. The results of the registration performance, shown in Figure 8, were then
found by averaging across these trials.

For larger values of τtissue, fewer features are being found in each image and therefore a
lower support results. While this has the effect of lowering the registration time, this has
little effect on the registration accuracy when τtissue is below roughly 200. As a result, τtissue
is a suitable parameter to tune to adjust the registration time to below acceptable limits
without affecting accuracy. For instance, it can be seen in Figure 8 that changing τtissue from
120 to 170 has almost no effect on the registration accuracy, yet the registration time is cut
in half.

3.2. Registration Accuracy Under Artificial Rotation
Given that we have chosen to construct rotationally variant feature descriptors, it is helpful
to know the extent to which these features can accurately register two images that are rotated
relative to each other. In an ideal scenario, where the imaging is independent of the
ultrasound probe orientation to the anatomy, the feature descriptors are affected by rotation
but not translation. To analyze the effect of image rotation on the registration accuracy, we
perform a study similar to that done in Ni et al. (2008), where the stability of feature
matching under rotation was analyzed for a registration method that used the rotationally
invariant 3D SIFT feature descriptor.

For this study, we generated a set of artificially rotated images by applying a known
rotational transformation to a baseline image. We then registered the transformed image to
the baseline image (Md = 3.5, dransac = 1.5mm, σf = 1.5mm, and τtissue = 150) and computed
the registration error. This was done for rotation angles between 0 and 40 degrees. The
resulting support (normalized by the support from the 0 degree image registration) and the
registration accuracy for a clinical image generated using the X7-2 transducer can be seen in
Figure 9. The results suggest that rotations up to roughly 20° can be resolved using the
presented registration method.

3.3. Drift Analysis for Different Registration Strategies
As we are proposing to use the presented registration algorithm to generate arbitrarily large
3DUS volumes, it is important that the algorithm accumulate minimal error as more and
more volumes are added to the mosaic, especially if the same region is imaged several times
throughout an acquisition. To analyze the accumulation of error for the RTP and RTG
registration strategies discussed in Section 2.7, we conducted a study which analyzed the
accumulation of registration error by computing the difference between the first and last
frame in a loop trajectory of the ultrasound probe. For this study, we again used the water
tank setup shown in Figure 4, allowing us to accurately acquire the first and last frames of
the loop in the same position. The parameter values used were Md = 3.5, dransac = 1.5mm, σf
= 1.5mm, and τtissue = 150. The trajectories were created using a series of translations and
rotations along and about the y-axis of the image, where translations and rotations are
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traversed in 3mm and 4° increments, respectively. If we designate a translation as T and
rotation as R, then the studied trajectories were as follows:

1. T(48mm), T(−48mm)

2. T(48mm), R(20°), T(−48mm), R(−20°)

3. T(48mm), R(60°), T(−48mm), R(−60°)

The accumulated error for the three trajectories can be seen in Table 1. While the RTG
method exhibited roughly constant error for the three different trajectories, the RTP method
exhibited a larger error than the RTG method for every trajectory, and also accumulated an
increasing amount of error as the number of frames and total rotation throughout the
trajectory increased. This suggests that the RTG method is better suited for registering
several volumes to create a 3DUS mosaic. Qualitative verification of this conclusion can be
seen by comparing the mosaics generated using the RTP and RTG methods shown in Figure
3 (Md = 3.5, dransac = 1.5mm, σf = 1.5mm, τtissue = 150), which were created from a left
ventricular axis sweep (437 3DUS volumes of size 160 × 64 × 208 voxels and resolution
0.56 × 0.70 × 0.58mm/voxel) of a porcine heart in a water tank. The mosaic created using
the RTG method shows clear boundaries and texture within the tissue, while the mosaic
created using the RTP method has much less definition and a different overall shape. This
again supports the conclusion that the RTG method is better suited for creating 3DUS
mosaics from many images.

3.4. Registration Accuracy in Stabilizing 3DUS Volumes of Heart Valves Over a Cardiac
Cycle

To study fast moving heart valves using 3DUS, it is beneficial to view the valves at a higher
frame rate than what can be originally acquired on a 3DUS machine. This can be done using
ECG-gating and acquiring images at specific times during the cardiac cycle over several
heartbeats. However, depending on the desired frame rate, the acquisition process can take a
long time, upwards to several minutes. During this time, it is likely that the ultrasound probe
will shift, and it is typically not possible to cease respiration during this time. Therefore, in
the gated sequence there will be small shifts of the valve relative to the probe which appear
in the images. These shifts can be accounted for using a rigid transformation model.

As the shifts are generally small relative to the size of the volume, which is typically made
large enough to view the entire valve, we studied the effectiveness of the presented rigid
registration algorithm to stabilize the images across the gated sequence. As the gated 3DUS
sequence is of a beating heart, there is inevitably some amount of non-rigid deformation of
the tissue between frames. We therefore acquired gated sequences at multiple sample rates
across the cardiac cycle to determine at what rates the rigid registration algorithm could
accurately register the gated sequence in the presence of this non-rigid tissue deformation.

For this study, we acquired gated 3DUS sequences across a cardiac cycle in 34 clinical
cases. Images were taken of either the mitral or aortic valve, and were acquired using either
a transesophageal or transthoracic approach. Gated sequences were acquired at 5Hz, 10Hz,
25Hz, 50Hz, and 100Hz across the cardiac cycle. We did not cease respiration nor did we
perform respiration gating for the acquisitions. In the context of this study, “gated sequence”
refers to the resulting collection of frames acquired over several cardiac cycles and
represented relative to the single cardiac cycle. Any frame in this sequence is referred to as a
“gated frame” and the frequency of the gated frames in the gated sequence is referred to as
the “gated frequency.” For each patient, we constructed several gated sequences of varying
gated frequencies.
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To quantify registration error, we first registered the gated frames in a gated sequence in a
successive fashion using the RTG method. We did this in several trials for each gated
sequence such that the start frame was varied among all gated frames in a gated sequence.
For instance, if there were three gated frames in the gated sequence, {F1,F2,F3}, we would
run three different trials, where the registration order would be either {F1,F2,F3},
{F2,F3,F1}, or {F3,F1,F2}. In the first trial, for instance, F2 would be registered to F1, and
then F3 registered to the already registered F2. We then registered the first frame in the trial
to the already registered last frame. For instance, in the first example trial, we would register
F1 to the already registered F3. The registration error was then the position and orientation
offset of the registered first frame from the original first frame in the trial, where the position
offset is measured at the center of the conical 3DUS volume. Ideally, if there was no
registration error, if we were to register the first frame in the gated sequence to the last
frame after all frames were stabilized, the first frame and the registered first frame would be
in the same location and orientation as the heart follows a cyclic motion. The position and
orientation displacements were averaged across all trials performed on the gated sequence
and represent the average registration error that accumulated across the entire gated
sequence. The feature scale and tissue threshold were tuned only once for each gated
sequence using the auto-tuning method and two consecutive gated frames, and the
determined parameter values then used for all trials. For the auto-tuning method, parameters
were modified until the support was in the range of 100–150. This resulted in average
registration times of roughly 100ms. The longer registration time was a result of the volume
being quite large so that the entire valve could be imaged. The average time to acquire each
volume was roughly 125ms, and the average cardiac cycle time was roughly 670ms (i.e.
heart rate of roughly 90 beats per minute).

The average registration errors in position and orientation across all trials for the different
gated frames rates in the 34 clinical cases are shown in Figure 10. It can be seen that larger
registration errors were typically found for lower gated frame rates. In these cases, the time
between gated frames was larger and therefore a larger amount of non-rigid tissue
deformation occurred. The RMS registration errors in position and orientation across the 34
clinical cases are summarized in Figure 11. If we assume suitable registrations to be those
whose error was less than the limits of visual inspection, which were shown in Bankman
(2000) to be 2mm in position and 2° in orientation in the registration of MR and CT brain
images (Shekhar et al., 2004), then the lowest allowable gated frame rate at which the
presented registration algorithm can accurately stabilize the gated sequence is roughly 25Hz
(i.e. maximum allowable time between gated frames is roughly 40ms). Images from a gated
sequence of the aortic valve before and after stabilization can be seen in Figure 3.4.

3.5. Registration Accuracy in a Water Tank Mosaic
To assess the accuracy of the registration algorithm for the purpose of generating a 3DUS
mosaic, we manually selected fiducials in a mosaic and compared the image-based inter-
fiducial distances versus the actual inter-fiducial distances. The object being imaged was a
porcine liver in a water tank (Figure 13), and the fiducials (A, B, C, and D in Figure 13)
were the intersections of sutures placed in a grid pattern directly above the liver. We
acquired sweeping ultrasound data (using the X7-2 ultrasound transducer) by starting at
fiducial A or B and ending at D or C, respectively. Typically 50–80 volumes were acquired
in each sweeping acquisition, where each volume had dimensions of 144 × 112 × 112 voxels
and a resolution of 0.55 × 0.54 × 0.63mm/voxel. For each fiducial pair (AD or BC), 15
mosaics were created using the RTG strategy and the fiducials in those mosaics manually
selected. A cross-section from one of the mosaics is shown in Figure 14. The parameters
used for the registration were Md = 3.5, dransac = 1.5mm, σf = 1.5mm, and τtissue = 150. A
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summary of the results from this study are shown in Table 2, where it is shown that an
average error of less than 1% was found.

3.6. Registration Running Times
The presented feature-based registration algorithm can operate in real-time, but it is helpful
to know how the registration time is distributed over the different components of the
algorithm. For this, we have included a detailed time analysis (Figure 15) of the registrations
performed to compute the mosaics shown in Figures 3 and 14. For these mosaics, the same
Md and dransac values were used as found in the studies described in Sections 3.1.1 and
3.1.2, while τtissue and σf were tuned for the different types of images. The time analysis
does not include the time to render the mosaic as this can be done in a separate thread.

To determine the effect of the graphics card on the registration time, we also performed the
same analysis as was done above but instead of using an NVIDIA GTX 260 (which has 192
cores), we used an NVIDIA GeForce 8600M GT (which has 32 cores). We found nearly
identical results with regard to the percentage of time that each component took, however,
the average total registration time was roughly six times longer (about 170ms). This
indicates a linear relationship between the number of cores and the registration time. This
also suggests that if for instance the same registrations were performed on the latest
NVIDIA hardware (i.e. NVIDIA GTX 580 with 512 cores), a 2.6× speed increase could be
achieved (i.e. registration time decrease from 30ms to 12ms).

It is worth noting that with the CUDA and device architecture used in all of the presented
studies (NVIDIA GTX 260 Graphics Processing Unit, Driver/Runtime Version 3.0,
Compute Capability 1.1, NVIDIA Corporation, Santa Clara, CA, USA), the time to load a
3DUS volume (~1283) onto the GPU as a texture took about 20 times longer than loading
the volume onto the GPU as a linear memory block. Therefore, linear memory blocks in
global memory were used for all data loaded onto the GPU in this study.

4. Discussion
4.1. Registration Algorithm Performance

In this paper we have presented a feature-based 3DUS rigid registration algorithm capable of
registering volumes in a 3DUS sequence in real-time. The registration algorithm is most
closely related to the method in Ni et al. (2008), which is a SIFT-based method that ensures
that features are detected at multiple spatial scales and also that feature descriptors are scale
and rotationally invariant. This is a consequence of the original design of SIFT, which was
designed for detecting and matching features in 2D photos (Lowe, 2004). However, while
features in 2D photos may appear at different scales simply by changing the position and
orientation of the camera relative to the imaged objects, the scale of features in 3DUS
should not change, especially in the case of real-time 3DUS where it is assumed that the
probe undergoes small displacements between frames. Also, in assuming the probe
undergoes small displacements, the need for a feature descriptor that can handle large
rotational and translational displacements becomes unnecessary. It has also been shown that
ultrasound is not a rotationally invariant imaging modality (Grau et al., 2007; Schneider et
al., 2010), as the appearance of anatomy is dependent on the direction of acoustic
propagation relative to the imaged structures, making rotationally invariant feature
descriptors unnecessary.

We therefore only search for features at a single spatial scale. We also devised a simple
rotationally variant feature descriptor formation method. The simplified feature detection
and descriptor formation methods, as well as using a GPU accelerated framework, results in
at least a 1000× speed increase (from 1 minute down to under 100ms for single volume

Schneider et al. Page 13

Med Image Anal. Author manuscript; available in PMC 2013 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



registration) compared to the method in Ni et al. (2008). While a substantial speed increased
was realized, we showed in several validation studies that this was not at the expense of
registration accuracy. Comparable performance was in fact found in those studies (Sec. 3.2
and Sec. 3.5) where a similar study was performed for the 3D SIFT method.

Comparable registration accuracy and fast execution was made possible through the use of
the RTG registration strategy. In maintaining a minimal but representative set of global
features and storing and indexing these features efficiently, we were able to limit the
accumulation of registration error, even when mosaicing several hundred 3DUS volumes.
The most promising results for the RTG method were those described in Sec. 3.3, where for
loop trajectories in a water tank, the RTG method accumulated less than 0.5mm and 0.5° of
translation and rotation error, respectively.

To determine the clinical usefulness of the presented rigid registration algorithm, and to also
determine the ability of the algorithm to handle varying degrees of non-rigid tissue
deformation, we studied the accuracy of the registration method in stabilizing an ECG-gated
3DUS sequence acquired over the cardiac cycle at varying gated frame rates. The 3DUS
images in the clinical studies were of the mitral or aortic valve in a beating heart, acquired
using either a transesophageal or transthoracic approach without the use of respiration gating
or ceasing respiration. Due to small probe movements and respiration during the long
acquisition times, the location of the valves would shift relative to the ultrasound probe
causing the gated images to appear to shift (Figure 3.4). The rigid registration algorithm was
therefore employed to cancel out this undesired movement as seen in the images. We found
that the registrations were accurate (within the limits of visual inspection (Bankman, 2000))
for gated frame rates of 25Hz or less (i.e. time between frames is less than 40ms). This
suggests that the rigid registration algorithm is accurate even in the presence of small
degrees of non-rigid deformation in 3DUS volumes. A similar study of rigidly aligning
misaligned or shifted 3DUS images of the beating heart was shown in Shekhar et al. (2004)
for stress echocardiography studies, which suggests that the presented method might also be
suitable for this application.

As there was no gold standard to use for directly measuring accuracy in the clinical
validation study, the registration error was found as the drift across the sequence by finding
the position and orientation difference between the frame at the start of the sequence and the
same frame registered to the end of the stabilized sequence. Since the heart follows a cyclic
motion, these frames should ideally be in the same location were there no registration error.
A limitation of this measurement is that it relies on the assumption of perfect cyclic motion
of the heart, or that the heart is always in the same configuration at corresponding times
relative to the R-peak in the ECG signal (i.e. the event by which frames were gated). This
assumption breaks down in the presence of increasing beat-to-beat variation or arrhythmias,
however, we did not observe any significant heart rate variations in the examined cases.

In the clinical validation study, we showed that registration accuracy declined for low frame
rates, which was due to larger amounts of non-rigid deformation between frames that could
not be resolved by the rigid transformation model. For this reason, we can assume that the
proposed registration method would not be suitable for motorized 3D probes when imaging
fast moving cardiac structures, as these probes generally have lower frame rates and a large
amount of non-rigid tissue deformation would be expected. However, the proposed method
should prove sufficient when imaging relatively static structures, such as the liver, using a
motorized 3D probe and assuming small displacements between frames. The same could
also be assumed for freehand 3DUS volumes.
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While the registration method is accurate even in the presence of small degrees of non-rigid
deformation, this type of deformation will be most noticeable in the application of stitching
together (mosaicing) several 3DUS volumes. For larger degrees of non-rigid deformation,
stitching artifacts would be expected. However, the presented registration algorithm is not
designed for these situations, but rather a non-rigid registration method should be employed.
In the case of mosaicing, the presented method is best suited for images of static tissue, or
for images of moving tissue taken at the same time during its motion (for instance, images of
the heart taken at the same time during the cardiac cycle). Also, while we used an averaging
method for compositing mosaics, this was done because this method is simple, operates
quickly on the GPU, and produces favorable results as seen in visual inspection. However,
this is not a novel contribution in the area of improving image quality. There are more
sophisticated compositing methods which better integrate the information from multiple
3DUS images (Grau and Noble, 2005; Yao et al., 2009; Rajpoot et al., 2011).

The presented registration algorithm operates under a small-displacement assumption to
compute accurate transformations in real-time. While it is tempting to define “small” as a
percentage of volume size, in the case of the presented feature-based registration method, it
is rather a function of image content. The method requires a coincidence of features from
frame to frame, and so more important than volume overlap is overlap of salient regions. It
is important to take this into consideration when registering anatomy with “dead zones” that
have little or no saliency, as these regions will not contribute to the registration. These
regions have the potential to cause larger than expected registration errors if 3DUS volumes
are roughly the same size (i.e. if the “dead zone” occupies a large percentage of the 3DUS
image). For instance, this likely will not be an issue when imaging the liver, as it is a dense
organ with unique and varying internal structure and texture. However, regions such as the
pools of amniotic fluid as seen in fetal ultrasound, or the blood pool of the left ventricle as
seen in echocardiography, have the potential to be more problematic.

While the algorithm requires that the feature scale and tissue threshold parameters be tuned
for a given application, we have shown that these parameters can be tuned automatically
using a very simple greedy algorithm that attempts to force the resulting registration support
or time to fall within a desired range. In particular, this auto-tuning method was used
extensively in the clinical validation study to stabilize the gated 3DUS volumes. The auto-
tuning method exploits information that we gathered from the sensitivity studies,
specifically, that the registration support and time are inversely proportional to the feature
scale and tissue threshold. While not shown, it can be reasoned that an online auto-tuner (i.e.
one that adjusts the parameter values during the registration process) could also prove useful
if, for instance, it was important to regulate registration time. While the feature scale could
not be changed (as the detected features need to be at a single scale) the tissue threshold
could be adjusted accordingly from one registration to the next to keep the registration time
within acceptable limits.

The registration algorithm makes it possible to register 3DUS volumes online without the
need for external tracking systems (such as electromagnetic or optical tracking systems),
which means that when acquiring data to use with the presented method, any existing 3DUS
system should suffice. A limitation of the presented method, however, compared to systems
that use a tracking system, is that because a continuous stream of 3DUS volumes is required,
any interruption in that stream, such as lifting the probe from the object being imaged, will
likely cause subsequent volume registrations to fail under the RTG and RTP registration
strategies. For this reason, tracking systems can still be a valuable registration tool,
especially if used in combination with an image-based registration method.
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4.2. Future Work
The presented work has obvious applications other than those shown, such as in hepatic
tumor location and intervention, echocardiography and intracardiac echocardiography, and
fetal ultrasound. However, to be more robust and useful for these applications, there are
several aspects of the algorithm that could be improved. The development of a real-time
non-rigid registration algorithm would be especially helpful for applications where soft
tissue, such as the breast, is imaged, as soft-tissue deforms in a largely non-rigid fashion,
especially due to ultrasound probe contact. Other areas of possible improvement are to
integrate a real-time temporal registration algorithm based on the ECG signal so that, for
instance, a large FOV 4D image of the heart could be constructed in real-time. Lastly, in
order to composite images that were acquired in acquisitions where the probe underwent
large displacements, it would be best to use instead of averaging a more elegant compositing
method (for example, Rajpoot et al. (2011)) that takes into account the appearance of
anatomy under largely varying probe orientations. The challenges with the proposed future
work are not the methods themselves, but integrating the methods into the current system
and maintaining a real-time architecture.

5. Conclusion
The presented 3DUS rigid registration algorithm takes into account the nature of real-time
3DUS volumes to simplify the process of feature detection and extraction, and in doing so,
along with using a GPU accelerated framework, is able to operate in real-time (i.e. register
volumes as fast as they are acquired). The method also uses techniques to maintain and
integrate a set of global features into the registration process, which helps to limit the
accumulation of registration error. Several studies revealed appropriate ranges and values
for the algorithm parameters, and provided insight into the effects of varying parameter
values on the registration performance. An auto-tune method was also described which
automatically tunes necessary parameters, making the registration method fully automatic.
Accuracy studies showed that the algorithm’s performance is comparable to similar existing
methods, and a clinical validation study showed that the registration method could
accurately stabilize gated sequences of the beating heart for gated frame rates at and below
25Hz, indicating the registration method is able to operate in the presence of small degrees
of non-rigid deformation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Summary of the feature-based 3DUS rigid registration algorithm. The specific processes can
be found in the indicated sections.
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Figure 2.
The feature detection and feature descriptor formation process. (a) Slice from a clinical
3DUS image of the heart. (b) Corresponding slice from the Laplacian-of-Gaussian (LoG)
computed for the original volume shown in (a) (σf = 2.0mm). The image in the top right
corner of (b) shows the center slice of the LoG kernel (to scale) corresponding to σf. (c)
Same slice as (a) with detected feature locations found as the local minima of the volumetric
LoG and with intensity greater than τtissue = 150. (d) 2D depiction of sample points about a
feature to construct the feature descriptor. (e) Example of points sampled in 3D relative to
the feature point (starred) to construct the feature descriptor. The shaded spheres represent
the sampled intensities of the 3DUS volume. The grid axis is aligned with the example
image axis shown in (d). Note that while a 3×3×3 grid is shown, the actual grid used to
compute feature descriptors is a 5×5×5 grid with a sample offset of δs.

Schneider et al. Page 20

Med Image Anal. Author manuscript; available in PMC 2013 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Mosaic of a porcine heart in a water tank created from 437 3DUS volumes. (Left) Example
of a single 3DUS volume used in the mosaic. (Center) Cross-sections of the mosaic created
using the RTG method and (Right) RTP method. Notice how the RTP mosaic lacks
definition and is a different shape compared to the RTG mosaic, indicating significant
registration error. (LA – left atrium; LV – left ventricle)
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Figure 4.
Water tank setup that allows for the acquisition of an ultrasound image with a known
ultrasound probe position/orientation relative to the object being imaged. Shown are a
porcine heart (A) attached to a rotation stage (B), and an ultrasound probe (C) attached to a
translation stage (D).
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Figure 5.
Effect of the feature descriptor sample offset scale factor (Md) on registration performance.
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Figure 6.
Effect of the RANSAC distance threshold (dransac) on the registration performance.
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Figure 7.
Effect of feature scale (σf) on (a) the registration support and execution time and (b) the
registration accuracy.
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Figure 8.
Effect of the tissue threshold (τtissue) on (a) the registration support and execution time and
(b) the registration accuracy.
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Figure 9.
Registration accuracy and normalized support for an artificially rotated clinical 3DUS
image.
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Figure 10.
Registration position (a–c) and orientation (d–f) accuracy for the stabilized ECG-gated
3DUS sequences. Gating was done at varying rates over the cardiac cycle. Images were of
mitral and aortic valves acquired in 34 clinical studies using either a transesophageal or
transthoracic approach. Respiration was not stopped nor was respiration-gating used for the
acquisitions.
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Figure 11.
Position and orientation RMS registration error for corresponding frame rates across the 34
clinical studies. Acquisitions were ECG-gated over a cardiac cycle. Images were of mitral
and aortic valves using either a transesophageal or transthoracic approach. Respiration was
not stopped nor was respiration-gating used for the acquisitions.
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Figure 12.
Short axis images of the aortic valve in a gated 3DUS sequence across the cardiac cycle
acquired using a transesophageal approach. (Top) Originally acquired gated 3DUS
sequence. (Bottom) Stabilized 3DUS sequence. Notice the position of the valve in the
original sequence varies within the image, whereas the position of the valve in the stabilized
images is relatively constant throughout the sequence. The displacements in the original
images were due to respiration and movement of the probe during the gated acquisition.
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Figure 13.
Water tank setup showing a porcine liver with surrounding fiducials - suture intersections A,
B, C, and D (occluded).

Schneider et al. Page 31

Med Image Anal. Author manuscript; available in PMC 2013 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 14.
Cross-sections from a single 3DUS volume (left) and corresponding mosaic (right) of a
porcine liver in a water tank. The dotted lines in the image on the right correspond to the
size and location of the volume on the left within the mosaic.
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Figure 15.
Average running times for the components of the registration algorithm relative to the
average total registration time. Results are for the RTG mosaic shown in Figure 3 (dark
gray) and the mosaic shown in Figure 14 (light gray), where the average registration times
were 28.7ms and 24.4ms, respectively.
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Table 1

Registration strategy comparison – position and orientation error between the first and last images registered
in an ultrasound sequence acquired using a loop trajectory of the transducer

Error

Trajectory
Registration

Strategy
Translation

(mm)
Rotation
(degrees)

1
RTG 0.36 0.39

RTP 0.56 1.06

2
RTG 0.28 0.36

RTP 1.73 2.81

3
RTG 0.27 0.31

RTP 4.70 4.15

Avg.±Std. Dev.
RTG 0.30 ± 0.05 0.35 ± 0.04

RTP 2.33 ± 2.13 2.67 ± 1.55
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Table 2

Summary of the mosaic accuracy study which measured inter-fiducial distances AD and BC. Variability is
reported as avg. ± std.dev.

AD BC Both

n 15 15 30

Volumes in Mosaic 68.9 ± 7.9 65.2 ± 9.2 –

Actual Length (mm) 121 118 –

Length in Mosaic (mm) 120.5 ± 0.1 116.7 ± 0.9 –

Error (mm) 0.9 ± 0.8 1.4 ± 0.7 1.1 ± 0.8

Error (%) 0.72 ± 0.64 1.20 ± 0.59 0.96 ± 0.65
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