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Static and Dynamic Error
of a Biplanar Videoradiography
System Using Marker-Based and
Markerless Tracking Techniques
The use of biplanar videoradiography technology has become increasingly popular for
evaluating joint function in vivo. Two fundamentally different methods are currently
employed to reconstruct 3D bone motions captured using this technology. Marker-based
tracking requires at least three radio-opaque markers to be implanted in the bone of in-
terest. Markerless tracking makes use of algorithms designed to match 3D bone shapes to
biplanar videoradiography data. In order to reliably quantify in vivo bone motion, the
systematic error of these tracking techniques should be evaluated. Herein, we present
new markerless tracking software that makes use of modern GPU technology, describe a
versatile method for quantifying the systematic error of a biplanar videoradiography
motion capture system using independent gold standard instrumentation, and evaluate
the systematic error of the W.M. Keck XROMM Facility’s biplanar videoradiography sys-
tem using both marker-based and markerless tracking algorithms under static and
dynamic motion conditions. A polycarbonate flag embedded with 12 radio-opaque
markers was used to evaluate the systematic error of the marker-based tracking algo-
rithm. Three human cadaveric bones (distal femur, distal radius, and distal ulna) were
used to evaluate the systematic error of the markerless tracking algorithm. The systematic
error was evaluated by comparing motions to independent gold standard instrumentation.
Static motions were compared to high accuracy linear and rotary stages while dynamic
motions were compared to a high accuracy angular displacement transducer. Marker-
based tracking was shown to effectively track motion to within 0.1 mm and 0.1 deg under
static and dynamic conditions. Furthermore, the presented results indicate that marker-
less tracking can be used to effectively track rapid bone motions to within 0.15 deg for
the distal aspects of the femur, radius, and ulna. Both marker-based and markerless
tracking techniques were in excellent agreement with the gold standard instrumentation
for both static and dynamic testing protocols. Future research will employ these techni-
ques to quantify in vivo joint motion for high-speed upper and lower extremity impacts
such as jumping, landing, and hammering. [DOI: 10.1115/1.4005471]
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Introduction

Biplanar videoradiography systems that directly measure three-
dimensional (3D) in vivo skeletal motion have been developed in-
part to address the inherent limitations of optical motion capture
systems that utilize skin-based marker sets [1–9]. Current skeletal
tracking algorithms are classified as marker-based tracking
[4,5,7,10,11] or markerless tracking [1,3,6,8,9,12]. Marker-based
tracking methods require implantation of at least three radio-
opaque spherical markers within each bone. The invasiveness of
this technique severely limits its applicability for studying in vivo
human joint motion. Markerless tracking makes use of algorithms
designed to match 3D bone shapes to biplanar videoradiography
data. Employing this technology to obtain quantitative data on
human joint motion first requires an understanding of its system-
atic error, particularly in the dynamic setting.

The systematic error of specific biplanar videoradiography sys-
tems has been previously documented using markerless tracking
algorithms [13–18]. These studies provide valuable information
on existing biplanar videoradiography technologies and stress the

importance of establishing error measures for specific joints and
system configurations. However, these studies typically involve
protocols where cadaveric bones undergo static, semi-static, or
gravitational based pendulum-like motion that may not simulate
high-speed lower and upper extremity impacts associated with
activities like jumping, landing, or hammering. Additionally, pre-
vious methods for evaluating systematic error have compared
markerless tracking to marker-based tracking using the same data
set (intra-specimen). While this provides a convenient and accept-
able measure of markerless tracking error, it is not ideal for inde-
pendently assessing the overall systematic error of a biplanar
videoradiography system for both marker-based and markerless
tracking techniques.

Work from You et al. [13] and Bey et al. [15] has made signifi-
cant contributions to 3D skeletal motion capture technology by
describing and implementing robust markerless tracking algo-
rithms. However, these algorithms require time consuming data
processing [13] or expensive computational clusters [3]. Recent
advancements in graphics processing unit (GPU) technology
make it an ideal candidate for processing computer vision algo-
rithms such as those developed by You et al. [13] and Bey et al.
[15]. These markerless tracking algorithms can be efficiently
implemented on the GPU of a single workstation, substantially
reducing computational time [19] and equipment expenses.
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The goals of this study are to (1) provide an outline of new mar-
kerless tracking software that makes use of modern GPU technol-
ogy, (2) describe a versatile method for quantifying the systematic
error of a biplanar videoradiography system using independent
gold standard instrumentation, and (3) evaluate the systematic
error of a biplanar videoradiography system using both marker-
based and markerless tracking algorithms under static and
dynamic motion conditions.

Methods

Description of XROMM Facilities and Resources

Hardware. The biplanar videoradiography system in the W. M.
Keck Foundation XROMM Facility at Brown University (Provi-
dence, RI, USA1) consists of two Varian Medical Systems model
G-1086 X-ray tubes (Palo Alto, CA, USA), two EMD Technolo-
gies model EPS 45-80 pulsed X-ray generators (Saint-Eustache,
Quebec, Canada), two 16 in. Dunlee (Aurora, IL, USA) model
TH9447QXH590 image intensifiers (IIs), and two Phantom v10
high-speed digital video cameras (Vision Research, Wayne, NJ,
USA). The X-ray tubes are suspended from the ceiling by overhead
tube cranes, and the IIs are mounted on mobile gantries (Fig. 1). The
system can deliver pulsed X-ray generation up to 150 Hz and can re-
cord in continuous X-ray generation at up to 1000 frames-per-second
(FPS). The system’s pixel resolution is 1800 x 1800, and the overall
resolution of the imaging chain is approximately 2 line pairs/mm.

Image de-distortion and 3D space calibration for the biplanar
XROMM facility have been described in detail previously and are
available to the public [10]. Briefly, image distortion is addressed
by imaging a patterned sheet of perforated metal (Part 9255T641,
McMaster-Carr, Robinson, NJ, USA) and using a local weighted
mean (LWM) distortion correction algorithm implemented in MAT-

LAB (XrayProject, Brown University, Providence, RI, USA). To
calibrate the 3D space, an acrylic calibration cube containing 64
steel beads is imaged. The markers are tracked in both planes
using custom MATLAB software (XrayProject), and the calibration
parameters are calculated using standard direct linear transform
(DLT) techniques [20].

Software. X-ray reconstruction of moving morphology
(XROMM) is a computational process that combines motion data
from X-ray video and shape data from 3D CT-based bone scans
[10]. There are two fundamentally different ways to combine
these data, marker-based XROMM and markerless XROMM.

Marker-based XROMM, also referred to as Dynamic Radioster-
eophotogrammetric Analysis [5], requires marker sets of three of
more radio-opaque beads to be implanted into each rigid body.
The 3D positions of the radio-opaque beads are reconstructed
from the biplanar videoradiography data and then used to calcu-
late frame-by-frame motion for each marker set and, therefore, the
respective rigid body in which they are implanted. The develop-
ment of marker-based XROMM has been built on previous work
on canines [4,21] and humans [22]. Custom MATLAB software
(XrayProject) has been developed to process all marker-based
XROMM data using standard DLT techniques [20,23], as previ-
ously described by Brainerd et al. [10].

Markerless XROMM can be performed by auto-registration of
a CT volume to biplanar videoradiography data. The following
description of the auto-registration algorithm is built on previous
work described by You et al. [13] and Bey et al. [15]. The auto-
registration algorithm consists of four major components. First, a
volume visualization technique is used to generate digitally recon-
structed radiographs (DRRs) from a CT volume using a standard
ray casting approach and the known orientation of the biplanar
videoradiography system [24–26]. Second, both the radiographs
and DRRs are processed to enhance features and detect edges
[27]. Third, a normalized cross correlation is used to measure the
similarity between the radiographs and DRRs [28]. Finally, a
downhill simplex optimization algorithm iterates over the six
degree-of-freedom (DOF) motion parameters until the desired
correlation has been reached [29]. The entire autoregistration
algorithm requires an initial guess of bone position and orienta-
tion. This can be manually assigned by a user or extrapolated
from previously tracked frames.

There are several user defined parameters that control the crea-
tion of the DRRs. These include the sampling frequency of the ray
casting, the intensity if the virtual X-rays, and a threshold density,
which determines if a particular sample will contribute to the
accumulated value along each ray. Once the DRRs have been gen-
erated there are additional filters available, such as contrast
enhancement and Sobel edge detection. Contrast and edge detec-
tion filters can also be applied to the biplanar videoradiography
sequence. These settings can enhance the algorithms ability to
find a solution. For the purposes of this study, these parameters
were selected by the user to provide the best visual match between
the DRR and the biplanar videoradiography sequence (Fig. 2).

Once the user has fixed the above parameters, the objective
function takes in the x-y-z position and x-y-z orientation of the
CT volume as free parameters. It outputs a single scalar value rep-
resenting the normalized cross correlation between the grayscale
values of the DRR and radiograph. The correlation equation,
adapted from You et al. [13], used in this study is

Ciðp̂Þ ¼

P

x;y
½riðx; yÞ � riðx;yÞ�½diðx;y; p̂Þ � diðx;y; p̂Þ�

f
P

x;y
½riðx;yÞ � riðx;yÞ�2

P

x;y
½diðx; y; p̂Þ � diðx;y; p̂Þ�2g1=2

where
Ci is the correlation between the DRR and radiograph for cam-

era i;
p̂ is the vector containing the six DOF motion parameters of the

CT bone model: xyz-position and xyz-rotation;
riðx; yÞ is the radiograph from camera i after filtering with edges

added;
riðx; yÞ is the mean of the radiograph from camera i after filter-

ing with edges added;
diðx; y; p̂Þ is the DRR from camera i generated from the CT

bone model in position p̂ after filtering with edges added;
and diðx; y; p̂Þ is the mean of the DRR from camera i generated

from the CT bone model in position p̂.

The final similarity measure for a biplanar videoradiography
system is the product of the correlations from each camera,

Fig. 1 Illustrated representation of the experimental testing
environment within the W. M. Keck Foundation XROMM Facility.
The dynamic testing apparatus is positioned within the field of
view determined by the overlapping X-ray beams. A representa-
tive X-ray beam is illustrated with dotted lines projecting from
one of the X-ray sources.

1For more information on XROMM and the XROMM facility and for access to
publically available software and designs, please visit www.xromm.org.

121002-2 / Vol. 133, DECEMBER 2011 Transactions of the ASME

www.xromm.org


Cðp̂Þ ¼ C1ðp̂ÞC2ðp̂Þ

The optimization routine searches the six DOF parameter space
for the position and orientation values that maximize this
correlation.

The solution space for the algorithm is noisy and has many
local minima. To avoid local minima, the simplex is reset and run
multiple times using the result of the previous optimization as the
initial guess for the next. In general, this technique will not con-
verge if the initial guess is too far away; however, the user-
supplied initial guesses are generally close enough for quick con-
vergence. Within dynamic data sets, initial guesses extrapolated
from previous frames also converge quickly due to the high video
frame rate and good frame coherence.

The described auto-registration algorithm for extraction of skel-
etal kinematics from markerless XROMM data has been imple-
mented in an open source software package that is available to the
public (Autoscoper, Brown University, Providence, RI, USA).
The software provides a graphical interface for markerless bone
tracking over a video sequence (Fig. 2). The images displayed in
Figs. 2(a) and 2(b) show the DRRs and video sequences for the
two X-ray sources before auto-registration. The DRR is dis-
played in orange and the videoradiography sequences are dis-
played in blue. The images displayed in Figs. 2(c) and 2(d) show
the DRR and biplanar videoradiography sequence for the two
X-ray sources after auto-registration is completed. The overlay
of the DRR with the videoradiography sequence is represented
in white. In addition to implementing the auto-registration algo-
rithm, the software allows the user to rotate and translate the 3D
CT volume to best match the DRRs to the biplanar videoradiog-
raphy sequence. This can be done by using the constrained-axis
rotation and translation manipulators shown in Figs. 2(a) and
2(b) and Figs. 2(c) and 2(d), respectively. All six position and
orientation parameters can be plotted within the software to
assist the user in identifying registration inconsistencies between
video frames.

The implementation of the auto-registration algorithm makes
significant use of general purpose computation on a GPU. Highly
parallelized GPU implementations of this algorithm have shown
significant speed improvements over the traditional central proc-
essing unit (CPU) implementations [19]. Specifically, the DRR
generation, image processing, and similarity measure all take
place on a single GPU with NVIDIA’s Fermi architecture
(GeForce GTX 480, EVGA, Brea, CA, USA). To generate the
DRR, each ray was processed independently by a separate thread.
The image processing was done in a similar manner, with each
pixel processed independently by a separate thread. The normal-
ized cross correlation similarity measure was also parallelized
using a tree-based parallel sum, and the resulting output is read
off the GPU. It was not necessary to parallelize the downhill sim-
plex optimization algorithm as the bottleneck exists in DRR gen-
eration, image processing, and similarity measure calculation. As
a result, the described auto-registration algorithm converges in
less than one second for a single frame on a GPU equipped work-
station (Precision T7400, Dell, Round Rock, TX, USA).

Systematic Error Testing Protocols

Static Testing Protocol. Static error was evaluated by translat-
ing and rotating a set of human cadaver bones and a polycarbonate
marker flag by known increments with high precision linear (NB4
Series, Newmark Systems, Mission Viejo, CA, USA) and rotary
(RT-3 Series, Newmark Systems) positioning stages with accura-
cies of 0.001 mm and 0.002 deg, respectively (Fig. 3(a)). The
bones used in this study include a distal femur, distal radius, and
distal ulna (Fig. 4). The bones were manually stripped of soft tis-
sue, cleaned using tergazyme in a hot water bath, disinfected with
hydrogen peroxide, and dried at room temperature. The proximal
end of each bone was rigidly fixed in a polyvinyl chloride pot
using urethane resin (Smooth-Cast 300Q, Smooth-On, Easton,
PA, USA). The marker flag was created by embedding 12 one-
millimeter diameter tantalum markers into two cylindrical poly-
carbonate posts (Fig. 3(b)).

Fig. 3 Static (a) and dynamic (b) testing apparatus. Both appa-
ratuses were rigidly fixed to a concrete pedestal (Fig. 1) for all
static and dynamic testing.

Fig. 2 XROMM Autoscoper 3D software environment. This fig-
ure illustrates the before ((a) and (b)) and after ((c) and (d))
results obtained from the auto-registration algorithm using an
initial guess that was extrapolated from the previous frames.
Additionally, the constrained-axis rotation and translation
manipulators are shown in (a) and (b) and (c) and (d), respec-
tively. The Autoscoper software (executable and source) is pub-
lically available.

Journal of Biomechanical Engineering DECEMBER 2011, Vol. 133 / 121002-3



For each bone and the marker flag, twenty trials of 15 transla-
tional motion steps (0.000, 0.001, 0.010, 0.100, 1.000, 10.000,
10.100, 25.000, 25.100, 50.000, 50.100, 75.000, 75.100, 100.000,
and 100.100 mm) and 15 rotational motion steps (0.000, 0.002,
0.010, 0.100, 1.000, 10.000, 10.100, 25.000, 25.100, 50.000,
50.100, 75.000, 75.100, 100.000, and 100.100 deg) were per-
formed using the static testing apparatus shown in Fig. 3(a). An
average reference position for the translational and rotational tests
were determined from an additional twenty trials at 0.000 mm and
0.000 deg, respectively. All marker tracking was performed using
the marker-based software discussed earlier.

Translational and rotational errors were determined as the dif-
ference between the computed rigid body translation or rotation
and the true linear or rotary stage value.

Dynamic Testing Protocol. Dynamic error was evaluated
using the same bones and the marker flag employed in the static
testing protocol. A specifically designed impact pendulum was
fabricated (Fig. 3(b)). A computer-aided design of the impact pen-
dulum is publically available. The fulcrum of the pendulum was
attached to a high precision (60.06 deg) angular displacement
transducer (ADT: Series 600, Trans-Tek Inc., Ellington, CT,
USA). This allowed the pendulum arm to spin along the same axis
as the mechanical axis of the ADT. Angular displacement trans-
ducer data were collected at 5000 Hz and synchronized with the
biplanar videoradiography system.

For each bone and the marker flag, five pendulum drop-impact
trials were performed using the apparatus shown in Fig. 3(b). For
each trial, the pendulum arm was dropped from a position held
outside the field of view (FOV) of the XROMM system. As the
arm fell, it entered the FOV and impacted a concrete pedestal.
The motion of the arm and the attached bone or marker flag was
recorded for all pendulum impacts until a stationary, steady state
was achieved. Additionally, an average reference position for
each bone and the marker flag were determined by collecting a
stationary trial at the impact position. All markerless tracking was
performed using the auto-registration software discussed earlier.

Rotational error was determined for each bone and the marker
flag by calculating the difference between the computed rigid
body rotation and true ADT value.

Imaging Parameters. The X-ray tube voltage and current
were set at 70 kVp and 200 mA, and the source to image distance
(SID) was set to �140 cm for each testing protocol. For all static
testing, the biplanar videoradiography system recorded in pulsed
(4 ms) X-ray generation mode at 60 fps. During dynamic testing,
the biplanar videoradiography system recorded in continuous
X-ray generation mode at 250 fps. To optimize image quality and
eliminate motion blur (dynamic protocol), each high-speed video

camera was shuttered between 1/1300 and 1/2000 s depending on
the bone or marker flag being imaged.

Clinical CT scans for each bone were acquired in the axial
plane (Lightspeed, GE, Piscataway, NJ) at 80 kVp, using GE’s
SMART mA and Bone Plus reconstruction algorithm. The table
speed and pitch were set at 0.562 deg and 5.62 mm/rotation for
each scan. The image volumes contained 243 image slices for the
distal femur and 218 image slices for the distal radius and distal
ulna. In-plane image resolution was set at 512� 512 pixels for a
voxel size of 0.217� 0.217� 0.625 mm3. Each bone was isolated
from its entire volume using thresholding and segmentation tools
implemented in commercially available software (Mimics 14,
Materialise, Ann Arbor, MI). These procedures follow well estab-
lished techniques [30,31].

Data Analysis. All analyses were performed on unfiltered
data. Helical axis of motion rotation (HAM) rotation and transla-
tion variables were used to describe all rigid body kinematics
obtained from the XROMM system. This permits a direct compar-
ison of values without the need to define a common identical coor-
dinate system in both the XROMM and testing apparatuses space.
Systematic error, defined as the difference between the measured
rigid body motion (XROMM) and the true value of the parameter
being measured (stages or ADT), was determined for every static
and dynamic data point. These data are summarized using sample
median, 25–75 percentile, and range statistics. Absolute error data
are summarized using sample mean and standard deviation (SD)
statistics.

The distributions of angular velocities and angular accelerations
were determined for the maker flag and each bone in order to
highlight the motions being imaged during the dynamic protocol.
Angular velocity was defined as the discrete derivative of the
measured position data. Angular acceleration was defined as the
discrete second derivative of the measured position data. Correla-
tions between error, angular velocity, and angular acceleration
were determined for all dynamic trials using standard linear
regression techniques.

Results

The distributions of error values (minimum, 25th percentile,
median, 75th percentile, and maximum) for the static rotational
(Fig. 5(a)) and translational (Fig. 5(b)) movements were lower
and more tightly clustered for the marker flag than for each bone
tracked using the described markerless tracking software. For
marker-based tracking of the marker flag, the mean static rota-
tional and translational absolute errors were estimated to be
0.09 6 0.08 deg (Fig. 5(c)) and 0.12 6 0.08 mm (Fig. 5(d)), respec-
tively. For markerless tracking, the mean static rotational absolute
errors were 0.30 6 0.18 deg, 0.39 6 0.18 deg, and 0.44 6 0.26 deg
for the distal femur, distal radius, and distal ulna, respectively (Fig.
5(c)). The markerless tracking mean static translational absolute
errors were 0.25 6 0.16 mm, 0.33 6 0.27 mm, and 0.30 6 0.30 mm
for the distal femur, distal radius, and distal ulna, respectively
(Fig. 5(d)).

For the dynamic protocol, the minimum, 25th percentile, me-
dian, 75th percentile, and maximum angular velocity was 0.0,
47.2, 95.8, 172.7, and 6.2� 103 degrees/s, respectively (Figs. 6(a)
and 6(b)). The minimum, 25th percentile, median, 75th percentile,
and maximum angular accelerations was 0.0, 1.3� 103, 2.9� 103,
5.1� 103, and 1.6� 106 degrees/s [2], respectively (Figs. 6(c) and
6(d)). Approximately 50% of the velocities and accelerations
were above 95 degrees/s and 2900 degrees/s [2], respectively.

The distribution of dynamic rotational error values (minimum,
25th percentile, median, 75th percentile, and maximum) were
similar for the marker flag and each bone tracked using the
described markerless tracking software (Fig. 7(a)). However, the
total range of error values was lower for the marker flag. For
marker-based tracking, the mean dynamic absolute error was esti-
mated to be 0.10 6 0.06 deg (Fig. 7(b)). For markerless tracking,

Fig. 4 Images displaying the morphology of the three bones
used in this study. Panels (a), (b), and (c) are the 3D CT models
of the distal femur, distal radius, and distal ulna, respectively.
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the mean dynamic absolute error was estimated to be 0.14 6 0.09
deg, 0.10 6 0.09 deg, 0.14 6 0.12 deg for the distal femur, distal
radius, and distal ulna, respectively (Fig. 7(b)). In addition, angu-
lar velocity and acceleration were found to be very poor predictors

of systematic error for the marker flag and all bones (R2� 0.01).
Furthermore, the change in error for a unit change in either angu-
lar velocity or acceleration was below 0.036 for the marker flag
and all bones.

Fig. 6 Cumulative distributions of all velocities and accelerations tested during the dynamic
protocols. The full cumulative distributions of velocities and accelerations are shown in (a) and
(c), respectively. The majority of velocities and accelerations are shown in (b) and (d), respec-
tively. These data are taken from the data windowed by the vertical dotted lines present in (a)
and (c).

Fig. 5 Static error results. (a) and (b). Box and whiskers rotational (a) and translational (b) plot
displaying range, 25–75 percentile, and median static error for each specimen. (c) and (d). Mean
(11 SD) rotational (c) and translational (d) absolute static error for each specimen.
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Discussion

The goals addressed by this study were threefold. First, an out-
line of new markerless tracking software that makes significant
use of modern GPU technology has been provided. Second, a ver-
satile method for quantifying the systematic error of a biplanar
videoradiography system using independent gold standard instru-
mentation was described. Finally, these methods were applied to
evaluate the systematic error of a biplanar videoradiography sys-
tem using marker-based and markerless tracking algorithms under
static and dynamic motion conditions.

The results presented in this article indicate that the biplanar
videoradiography hardware and Autoscoper software described
here are capable of measuring sub-millimeter and sub-degree
bone motion under the given testing conditions. The results were
obtained using independent instrumentation as a gold standard,
rather than an intra-specimen marker-based comparison. This pro-
vides two advantages: first, the systematic error of both marker-
based and markerless tracking can be assessed independently; and
second, eliminating the need to remove all marker signatures from
the biplanar videoradiography data saves considerable preprocessing
time and effort. The presented results are consistent with similar
studies investigating errors associated with markerless bone tracking.
A study by Bey et al. reports markerless tracking of the glenohum-
eral joint [15] to be within 0.5 mm of marker-based tracking.
In another study, Bey et al. reports markerless tracking of the patello-
femoral joint [16] to be within 0.455 mm and 0.987 deg of marker-
based tracking. A study from Martin et al. [3] reports markerless
tracking errors on a separate system to be within 0.25 mm of marker-
based tracking for the distal femur and pelvis. Additional studies
have shown similar markerless tracking results for the knee [6,18].

As anticipated, the systematic error of the biplanar videoradiog-
raphy hardware and Autoscoper software system fell below 1 mm
and 1 deg for both static and dynamic marker-based and marker-
less tracking. It was expected that the marker-based tracking
would be equivalent for both the static and dynamic protocols
because the W. M. Keck XROMM Facility is equipped with digi-
tal video cameras capable of capturing at high shutter speeds that
effectively stop the motion at a given frame. Additionally,
because spherical markers were being tracked, changes in marker
flag orientation and location throughout the imaging FOV were
not expected to affect tracking. The absolute error for the marker-
based static and dynamic error were not statistically significant
(P¼ 0.10) from each other.

Conversely, a surprising finding was the larger error observed
for the static markerless tracking protocol compared to the
dynamic markerless tracking protocol. The dynamic markerless
tracking protocol showed lower error values for all bones tested
(P< 0.01 for the distal femur, distal radius, and distal ulna). These
findings may be associated with the initial guess required as input

to the markerless tracking algorithm. During static testing, each
frame is tracked independent of the previous and succeeding trial.
During dynamic testing, each frame uses position and orientation
information from the previous (or succeeding) frame or frames to
determine the bone position and orientation at the current frame.
The variation in error observed between different bones is thought
to be a consequence of factors reported in previous studies [16].
Particularly, 3D bone shape, bone density, edge definition, and
orientation within the FOV contribute to the observed measure-
ment error. As an example, the relatively large errors observed for
the distal ulna are thought to arise from a lack of bony features
compared to the distal radius and distal femur. As a result of this
deficiency, the 2D projection (radiograph and DRR) of the distal
ulna appears similar for multiple 3D orientations. This highlights
the need to conduct study specific error measurements on the sys-
tem configuration being used and the bones being tracked. Estab-
lishing a method for testing the systematic error of a biplanar
videoradiography system allows these measurements to be made
consistently and relatively easily.

The described method for quantifying the systematic error of a
biplanar videoradiography system allows for the independent
assessment of marker-based and markerless tracking techniques
under static and dynamic motion conditions. Specifically, the abil-
ity to assess errors at high speeds and during large accelerations
such as highly dynamic impacts and direction changes is impor-
tant for studying complex activities like jump-landing or hammer-
ing. Few studies have assessed markerless tracking error using
independent “gold standards.” Li and colleagues [14] have eval-
uated the systematic error of a biplanar fluoroscope system using
a high accuracy materials testing machine with favorable results;
however, the low video capture frame rates (�30 fps) limit the
system’s ability to measure highly dynamic joint motions [32].
The method described herein was successful in measuring the sys-
tematic error of a biplanar videoradiography system tracking bone
motion during high-speed impact conditions.

Moreover, the versatility of this method allows it to be applied
to diverse experiments and testing conditions that require different
system configurations and bones. It has become increasingly evi-
dent that quantifying errors associated with different bones and
system configurations is an important and recommended part of
any biplanar videoradiography study [10,11,14–18,33,34]. The
variation in error observed for the different bones reported herein
as well as those reported in the literature further highlight the im-
portance of quantifying study specific errors. Additional static
measurements were performed where each bone was rotated about
its long axis (axis through the diaphysis), and the results were con-
sistent with those reported. The axis of rotation would most likely
affect a bone with few distinguishing features. The bones tested
in this study provided enough features for the algorithm to
successfully converge for multiple orientations. For studies

Fig. 7 Dynamic error results. (a) Box and whiskers plot displaying range, 25–75 percentile, and
median dynamic error for each specimen. (b) Mean (11 SD) absolute dynamic error for each
specimen.
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investigating specific rotations for a uniformly featured bone, the
axis of rotation associated with the outcome measure would need
to be validated. Both testing apparatuses allow for the attachment
of specimens in any orientation and could be tailored to suit these
study specific validation questions. These methods can be used in
conjunction with the described auto-registration software to effi-
ciently evaluate systematic error for the majority of biplanar vid-
eoradiography studies.

The XROMM Autoscoper software provides the user with an
elegant interface (Fig. 2) for markerless bone tracking. Its use of
GPU hardware significantly improves the speed over standard
CPU implementations. You and colleagues [13] report total proc-
essing time to be 100 seconds per frame for two radiographic
images. This can translate to hours of processing time for a single
data set. Specifically, highly dynamic motions and impacts that
occur during high-speed lower and upper extremity impacts
require high video capture frame rates (>150 fps) [35–40]. These
types of data sets produce hundreds of frames for a single motion
capture trial. Bey et al. [15] and Martin et al. [3] have taken steps
to reduce processing times by making use of multi-workstation
computational clusters that allow the algorithm to parallelize its
computations over many processors; however, this amount of
computational power can be prohibitively expensive and may be
impractical for many laboratories attempting to process biplanar
videoradiography data. Making use of modern GPU technology
significantly speeds up computation time without the need for
large computational clusters. The current implementation of
XROMM Autoscoper on one desktop workstation with a single
GPU (480 processing cores) provides a substantial cost advantage.
This particular configuration requires between 0.5 and 1.5 seconds
per frame depending on the size of the CT volume and visualiza-
tion parameters. These time estimates will vary with different
GPU hardware. Overall, implementing auto-registration algo-
rithms on GPUs successfully reduces processing time, financial
commitments, and saves valuable laboratory space.

Previous studies have thoroughly documented the limitations of
biplanar videoradiography technology. Compared to traditional
optical motion capture technology, biplanar videoradiography
technology is not as readily available. Additionally, the X-ray ex-
posure increases risk to subjects, and the relatively small imaging
volume (�2,000 in3) limits the range of activities that can be stud-
ied when compared to traditional motion capture technology [37].
Furthermore, the registration algorithm presented herein does
require at least one user-supplied initial guess that is visually close
to the actual bone position and orientation. In practice, user input
is typically required throughout data processing to assist the auto-
registration algorithm converge on a final solution. The Autosc-
oper software requires different degrees of user input based on the
quality of the collected data and the complexity of the joints and
motions being processed. The results presented in this study are
limited to idealized tracking situations. Only one bone was
tracked during each test and no soft tissues were present. This
eliminates bone and soft tissue overlap, which may increase proc-
essing time and measurement errors in vivo.

In summary, the results presented herein indicate that the bipla-
nar videoradiography hardware and the publically available GPU-
based markerless tracking software can be used to effectively
track rapid bone motions to within 0.15 deg for the distal aspects
of the femur, radius, and ulna. Future research will employ these
techniques to quantify in vivo joint motion for high-speed upper
and lower extremity impacts such as jumping, landing, and ham-
mering. Furthermore, additional algorithms and image processing
techniques will continue to be explored in hopes of further
improving markerless tracking performance and efficiency.
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