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traits. However, identifying the actual sequence variant(s) re-
sponsible for these linkage signals was challenging because 
of difficulties in sequencing the large regions implicated by 
each linkage peak. Current ‘next-generation’ DNA sequenc-
ing techniques have made it economically feasible to se-
quence all exons or the whole genomes of a reasonably large 
number of individuals. Studies have shown that rare variants 
are quite common in the general population, and it is now 
possible to combine these new DNA sequencing methods 
with linkage studies to identify rare causal variants with a 
large effect size. A brief review of linkage methods is pre-
sented here with examples of their relevance and usefulness 
for the interpretation of whole-exome and whole-genome 
sequence data.  Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 The identification of genes that contribute to the risk 
of a disease or the variation of a quantitative trait has long 
been one of the goals of human and medical genetics. 
Historically, both linkage and association methods have 
been used to narrow the location of such genes to small 
regions of the genome with the hope that the gene, and 
eventually the causal variant, may be identified and char-
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 Abstract 

 Linkage analysis was developed to detect excess co-segre-
gation of the putative alleles underlying a phenotype with 
the alleles at a marker locus in family data. Many different 
variations of this analysis and corresponding study design 
have been developed to detect this co-segregation. Linkage 
studies have been shown to have high power to detect loci 
that have alleles (or variants) with a large effect size, i.e. al-
leles that make large contributions to the risk of a disease or 
to the variation of a quantitative trait. However, alleles with 
a large effect size tend to be rare in the population. In con-
trast, association studies are designed to have high power to 
detect common alleles which tend to have a small effect size 
for most diseases or traits. Although genome-wide associa-
tion studies have been successful in detecting many new loci 
with common alleles of small effect for many complex traits, 
these common variants often do not explain a large propor-
tion of disease risk or variation of the trait. In the past, linkage 
studies were successful in detecting regions of the genome 
that were likely to harbor rare variants with large effect for 
many simple Mendelian diseases and for many complex 
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acterized. Recently, the focus in genetic epidemiology has 
been on genome-wide association studies (GWAS) be-
cause of the availability and affordability of dense sets of 
polymorphic genetic markers that can be genotyped on 
large numbers of individuals. GWAS examine common 
alleles for association with disease or trait phenotypes 
and have identified many regions of the genome that 
show such associations for a large number of important 
traits (http://www.genome.gov/26525384). It is impor-
tant to note that these associations do not identify spe-
cific causal variants per se, but rather relatively short can-
didate regions that include the associated allele/variant 
and all of the variants that are highly correlated with it in 
a linkage disequilibrium block. Both theoretical and ap-
plied studies have shown that most of these associated 
loci have small effects on the disease or trait in question. 
Linkage studies, on the other hand, had been the study 
design of choice for many years, mostly because they were 
feasible with much less dense sets of genetic markers, and 
because linkage methods had the power to detect co-seg-
regation over a much larger range. Linkage methods are 
particularly powerful for the detection of variants with a 
large effect size, which often are rare in the population. 
Power to detect such loci using linkage methods can be 
enhanced by ascertaining families with aggregation of 
the trait of interest (‘loaded families’). Like tests of asso-
ciation, linkage methods are also able to identify candi-
date regions, but the regions are much larger, sometimes 
spanning 40 Mb. Interest in these methods is undergoing 
a renaissance due to the availability of ‘next-generation’ 
DNA sequencing and its promise to allow identification 
of the rare variants underlying linkage signals.

  Linkage studies have led to the identification of genes 
that cause or substantially increase the risk of many dis-
eases and birth defects. For example, linkage analyses led 
to the identification of the genes that cause many Mende-
lian disorders such as cystic fibrosis  (CFTR)   [1, 2]  and 
Huntington disease  (HTT)   [3, 4] . Linkage studies of fam-
ilies selected because of very strong aggregation of spe-
cific complex diseases have also led to the identification 
of rare, high-penetrance risk alleles in certain genes that 
cause large increases in susceptibility to complex diseas-
es, for example the  BRCA1  and  BRCA2  genes and breast 
cancer. This study design has also led to the identification 
of genes with rare risk alleles that cause moderate in-
creases in the risk for complex diseases such as the  NOD2  
gene and inflammatory bowel disease  [5–8] . Linkage 
methods have been successfully applied to quantitative 
traits as well. In a series of papers spanning almost 30 
years, the specific activity of dopamine-beta hydroxylase 

activity, an enzyme that catalyzes the conversion of do-
pamine to norepinephrine, was localized to the chromo-
somal 9q34 region, and specific variants that were re-
sponsible, at least in part, for the variation of the trait 
activity have been identified  [9–14] . It is important to 
note that in this case the phenotype, the specific activity 
of the enzyme, is functionally closely related to the un-
derlying structural locus. Other linkage studies, where 
the phenotype is not closely related to the underlying ge-
notype, have not been as straightforward, or as successful.

  However, for other Mendelian and complex disorders, 
linkage signals have been detected in family studies, but 
the causal genes and risk alleles have not yet been discov-
ered. It is thought that this may be due to a variety of rea-
sons, including (1) the previous high cost of DNA se-
quencing that precluded sequencing all genes under 
broad linkage peaks; (2) sequencing studies that included 
only exons of genes under linkage peaks, ignoring chang-
es in regulatory regions; (3) clinical and genetic heteroge-
neity, and (4) false-positive evidence of linkage. While 
some significant linkage signals reported in the literature 
are almost certainly false-positive results  [15] , those that 
have been confirmed in independent sets of families are 
more likely to be true  [16] . Advances in our understand-
ing of the complexities of the human genome have made 
it clear that sequencing only exons will not detect all 
DNA variants that contribute to disease risk or to varia-
tion in quantitative traits. New, cost-effective DNA se-
quencing methods have recently made it possible and ec-
onomically feasible to combine linkage information with 
whole-exome or whole-genome sequence data to identify 
the causal variants that contribute to the linkage signals. 
For example, Sobreira et al.  [17]  combined linkage infor-
mation for the Mendelian disease metachondromatosis 
(OMIM 156250) with whole-genome DNA sequence in a 
single proband to identify an 11-bp deletion in exon 4 of 
 PTPN11 , that alters the reading frame, resulting in pre-
mature translation termination, and that co-segregates 
with the phenotype. They confirmed this result by find-
ing a different nonsense mutation in exon 4 of this gene 
that segregates with disease in another family. Bowden 
et al.  [18]  have used a similar strategy to identify a gene 
 (ADIPOQ)  contributing to variation of a quantitative 
trait, serum adiponectin level, by (1) identifying families 
responsible for a linkage signal to plasma adiponectin 
levels  [19] ; (2) performing whole-exome sequencing of 
3 individuals in the two most strongly linked families 
with attention targeted to the region of the linkage peak, 
and (3) performing sequencing of the candidate gene 
 ADIPOQ  in additional samples from these two families 
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and from unrelated individuals, showing that the risk al-
lele is rare in the population (less than 2%) but that it ac-
counts for the linkage signal in the two most strongly 
linked families. Several groups are now using similar ap-
proaches involving linkage in conjunction with whole 
exome sequencing, whole-genome sequencing or target-
ed next-generation sequencing, leading to a resurgence of 
interest in linkage analysis methods. Therefore, we brief-
ly review classic linkage analysis methods here.

  Brief Overview and History of Linkage Analysis 

 Linkage analysis refers to a group of statistical meth-
ods that are used to map a gene to the region of the chro-
mosome in which it is located. These methods take ad-
vantage of the fact that many more genes exist than chro-
mosomes, and thus many genes are transmitted together 
from parents to offspring during meiosis. Linkage is the 
tendency of two or more genetic loci to be transmitted 
together during meiosis because they are physically close 
together on a chromosome. As such, linkage represents a 
violation of Mendel’s law of independent assortment.

  The concept that chromosomal segregation could ex-
plain the physical basis of Mendelian inheritance was 
first put forward by Sutton  [20, 21]  in the early 1900’s. 
Most early linkage studies were performed in plants and 
experimental animals. Correns  [22]  reported the first 
linkage analysis in plants, with Bateson and Punnett  [23]  
observing the presence of recombinations between syn-
tenic loci (i.e. genetic loci on the same chromosome). 
During the first meiotic prophase, pairing of the dupli-
cated homologous chromosomes (synapsis) occurs. At 
this stage, a physical exchange of chromosomal material 
occurs between homologues. These exchanges are called 
chiasmata and lead to a ‘crossover’ of the DNA between 
the two homologues. These chiasmata occur frequently, 
but it is well known that the presence of one chiasma at a 
specific chromosomal location will decrease the chances 
that other chiasmata will form nearby (chiasma interfer-
ence)  [24] . Thus, the probability that crossovers will oc-
cur between two syntenic loci is dependent on the dis-
tance between the loci  [25, 26] , but the probability of dou-
ble crossovers is disproportionately low between very 
close loci due to chiasma interference  [24] . Phase is a term 
that refers to which alleles at two syntenic loci are physi-
cally located together on the same homologue. Consider 
two syntenic loci,  A  and  B , each with two alleles, A 1  and 
A 2 , and B 1  and B 2 , respectively. A person with genotypes 
A 1 /A 2  and B 1 /B 2  is a double heterozygote. There are two 

possible phases: (1) the A 1  and B 1  alleles reside together 
on one member of the chromosome pair and the A 2  and 
B 2  alleles on the other, or (2) the A 1  and B 2  alleles reside 
together on one homologue and the A 2  and B 1  alleles on 
the other. Only odd numbers of crossovers between the 
two loci can be detected by examining the genotypes of 
the parents and offspring because an even number will 
result in the original alleles at the two loci being transmit-
ted together, maintaining the parental phase with respect 
to these two loci. When an odd number of crossovers oc-
curs between two syntenic loci, then the alleles at these 
loci are recombined, i.e. transmitted to the offspring in a 
new combination or new phase. Two loci that are far apart 
on the chromosome (syntenic loci) have a high probabil-
ity of recombination in any meiosis, such that they assort 
independently to offspring. Syntenic loci that are very far 
apart experience recombination about 50% of the time, 
and thus appear to be assorting independently, just as loci 
on different chromosomes do.

  The recombination fraction measures the proportion 
of recombinations observed between two loci in a group 
of offspring. Linkage occurs when two loci are physically 
close enough so that alleles on the same homologous 
chromosome tend to be transmitted together, and no or 
very few recombinations are observed among the off-
spring. The recombination fraction, often represented as 
 � , is estimated by counting the number of offspring that 
show recombination for a given pair of loci, divided by 
the total number of offspring (the number of recombi-
nants plus the number of non-recombinants). If two loci 
are physically next to one another, there is very little 
chance that a crossover will occur between them and the 
recombination fraction is close to zero. When the loci are 
on separate chromosomes or are far apart on the same 
chromosome, the recombination fraction is 1/2, with val-
ues between these two extremes indicating some degree 
of linkage.

  Linkage analysis in humans is more difficult than in 
experimental organisms because of limitations in family 
size, the inability to do test crosses, the long generation 
time and lack of knowledge of phase in parents who are 
heterozygous at both loci being studied. Many approach-
es have been used over the years that aim to test, directly 
or indirectly, for lower than expected observed recombi-
nations between two loci. These statistical approaches are 
of two basic types, often termed ‘parametric’ and ‘non-
parametric’ linkage analysis.

  Parametric or model-based or model-dependent link-
age analysis (often called LOD score linkage analysis) as-
sumes that the genetic models underlying both the trait 
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and marker loci are known. Thus, assumed values (pa-
rameters) for qualitative traits that must be specified for 
use in the analysis include the allele frequencies at the 
trait and marker loci, dominance relationships among 
the alleles, and relationships between genotypes and phe-
notypes at both the trait and marker loci (penetrance). 
For quantitative traits, the parameters that must be spec-
ified include allele frequencies at the trait and marker 
loci, the means and variances of the phenotype for each 
genotype, and the relative frequencies of the genotypes. 
The main difference between parametric linkage analysis 
for qualitative and quantitative traits is that definitive re-
combinants can be identified for qualitative trait linkage 
analysis but not for the linkage analysis of quantitative 
traits. This is due to the nature of the models underlying 
each type of trait. Because normal probability densities 
are used to model the genotypic distributions in quantita-
tive linkage analysis, and these densities asymptotically 
approach, but never reach, zero in both tails, every indi-
vidual has a non-zero probability for having each geno-
type. This is problematic when trying to identify recom-
bination events that help to localize candidate regions, 
but methods have been developed to classify individuals 
based on their most probable genotype  [27] .

  Non-parametric or model-free (or model-independent 
or weakly parametric) linkage methods make fewer as-
sumptions about the underlying trait genetic model, al-
though these methods still assume that the marker locus 
model(s) is known. These methods of analysis were first 
developed in the 1930’s, with Fisher’s  [28]  publication of 
maximum-likelihood scoring procedures called  u -scores 
(parametric) and Penrose’s  [29]  development of the sib-
pair method (non-parametric). Fisher’s  u -scores and 
Finney’s  [30–35]  extensions assumed specific models for 
the mating types at a trait locus and further assumed that 
the resulting score was normally distributed. Haldane and 
Smith  [36]  developed an ‘inverse probability’ ratio test, 
now known as a likelihood ratio test, that is the basis of 
modern parametric likelihood ratio tests for linkage. In 
this test, given a particular set of data, the likelihood of a 
hypothesis of linkage with some specific recombination 
fraction ( �   !  1/2) is compared to a hypothesis of no link-
age, i.e. the independent assortment of the alleles at the 
two loci ( �  = 1/2). Smith  [37]  proposed taking the log of 
this test, and in 1955, Morton applied Wald’s  [38]  sequen-
tial probability ratio test to combine results from a series 
of families and to determine appropriate significance lev-
els for this sequential test  [39] . Morton  [39]  coined the 
term LOD score, although the term ‘LODs’ was originally 
defined by Bernard  [40]  as the logarithm of the backward 

odds (the likelihood ratio). The two-point LOD score be-
tween a trait and a single marker locus is typically calcu-
lated over several recombination fractions between 0 and 
1/2, and the recombination fraction that maximizes the 
likelihood (the maximum LOD score) is considered to be 
the best estimate of the recombination fraction. Tradi-
tionally, when the maximum LOD score is greater than 3 
(a backward odds ratio of 1,000:   1), the null hypothesis of 
independent assortment is rejected and linkage between 
the trait and the marker locus is assumed. Conversely, for 
those recombination fractions where the LOD score is less 
than –2, the null hypothesis of independent assortment is 
not rejected and linkage is assumed to be excluded. LOD 
scores can be converted to p values; a LOD score of 3 cor-
responds to a large-sample significance level of 0.0001  [39, 
41, 42]  and a reliability of 0.991  [43] . Morton subsequent-
ly extended the test to nuclear families, multiple allelic 
loci, sex linkage and genetic heterogeneity  [44–46] .

  Elston and Stewart  [47]  developed a method (common-
ly called the Elston-Stewart algorithm) to compute the 
likelihood of a simple extended pedigree recursively and 
incorporated a general trait model that allowed for de-
creased penetrance and quantitative traits. Many types of 
trait models can be used with this algorithm. These are 
outside the scope of this overview, but comprehensive re-
views are available in several articles and texts  [27, 48–64] . 
Ott  [65]  implemented the Elston-Stewart algorithm to cal-
culate the likelihood ratio test for linkage in human fam-
ilies of arbitrary size in LIPED, the first widely available 
computer program for this purpose. Many additional ex-
tensions to these methods have been published, including 
multipoint linkage analysis that uses information from 
multiple genetic markers, incorporation of variable age at 
onset and genetic heterogeneity, and methods that can an-
alyze pedigrees with marriage or inbreeding loops  [49, 
66–75] . However, the computation time for multipoint 
linkage using the Elston-Stewart algorithm is prohibitive. 
Computation time for this algorithm scales linearly with 
the number of meioses but exponentially with the number 
of marker loci. Another major development was the Lan-
der-Green algorithm for rapidly performing maximum-
likelihood multilocus linkage computations  [67, 76, 77] . 
The computation time for this algorithm scales linearly 
with the number of markers; however, it is only suitable 
for small pedigrees since the amount of computer memo-
ry required becomes prohibitive in pedigrees with a large 
number of meioses. Algorithms that calculate approxima-
tions to the likelihood of a pedigree for multipoint link-
age, such as SIMWALK2  [78] , offer a middle ground be-
tween these two options. Excellent treatments of these 
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subjects are found in several reviews and texts  [79–87] . 
With the advent of dense maps of marker loci and multi-
point linkage analysis (where the hypothesis of no linkage 
is tested assuming a recombination fraction of zero at 
thousands of locations along the chromosomal map), 
Lander and Kruglyak  [88]  proposed alternative signifi-
cance thresholds based on an ‘infinitely dense’ map of 
marker loci to control the genome-wide probability of ob-
serving a false-positive linkage at 5%. Their proposed ‘ge-
nome-wide significant’ threshold of a LOD of 3.3 (p = 4.9 
 !  10 –5 ) for parametric maximum-likelihood multipoint 
linkage analysis generated substantial controversy and 
methods development  [41, 89–95]  but has become a fairly 
standard guideline, as have their suggested significance 
thresholds for non-parametric allele-sharing linkage 
analyses (e.g. 2.2  !  10 –5  in sibling pairs). Other factors 
that affect significance levels in linkage analyses are test-
ing multiple parametric models  [96–101] , utilizing hetero-
geneity LOD scores  [102–105] , and the presence of inter-
marker linkage disequilibrium when using a linkage 
method that assumes linkage equilibrium  [106–108] .

  Non-parametric or model-free linkage methods do 
not require the specification of parameters for the mode 
of inheritance for the trait being linked to marker loci. 
These methods are based on testing whether relatives 
with similar trait phenotypes are also more similar than 
expected at a specific marker locus, implying low recom-
bination rates between the unobserved trait locus and the 
specific marker locus. Non-parametric methods have 
also undergone substantial development since Penrose’s 
introduction of the sib-pair test for qualitative and quan-
titative traits  [29, 109] . These early tests were based on the 
proportion of alleles that a sib pair shared identical-by-
state (IBS), which is also sometimes called identical-in-
state (IIS). The number or proportion of alleles at a locus 
that are shared IBS by a pair of individuals is based sole-
ly on sharing the same allele(s) at the marker locus. More 
recent methods of model-free linkage are usually based 
on identity-by-descent (IBD) sharing among relatives, 
that is, the number or estimated proportion of alleles at a 
locus that are shared by a pair of relatives because they 
are copies of the same ancestral allele (inherited from a 
common, recent ancestor). Haseman and Elston  [110]  de-
veloped a model-free sib-pair linkage test based on esti-
mates of IBD sharing among the sibling pairs for quanti-
tative traits, and Suarez et al.  [111]  developed a similar 
IBD-based sib-pair linkage test for a qualitative trait. 
Amos et al.  [112]  extended these methods to other relative 
pairs in addition to sibs. Multipoint estimates of IBD 
sharing in sibling pairs at any genomic location were de-

veloped by Kruglyak et al.  [113]  and Kruglyak and Lan-
der  [114]  based on the Lander-Green algorithm and later 
extended to additional types of relative pairs  [77] .

  These IBD estimates are utilized somewhat differently 
in model-free tests of linkage for quantitative and qualita-
tive traits. For quantitative traits, Haseman and Elston 
 [110]  proposed regressing the square of the difference of 
the trait values in the sibling pair against the estimated 
proportion of alleles shared IBD at a single marker locus 
with an extension to several loci without epistatic interac-
tion. Amos and Elston  [115]  extended this to the squared 
trait difference for various other types of relative pairs. The 
slope of this regression line is expected to be zero under the 
null hypothesis of no linkage, inferring that the estimated 
proportion of alleles shared IBD has no effect on the trait 
difference. Similarly, the slope of the regression is non-ze-
ro in the presence of linkage, so a one-sided t test for a non-
zero slope is the test of interest. Further extensions were 
also made to allow for dominance variance and epistatic 
interactions  [116–118] . Variance components analysis has 
also been used for linkage for quantitative traits  [119, 120]  
by modeling the variance of the quantitative trait into 
components due to a causal gene linked to a specific loca-
tion on the marker map and residual polygenic and envi-
ronmental components. These methods have been extend-
ed to allow for analyses of large pedigrees  [121, 122] . Elston 
et al.  [123]  introduced a revised Haseman-Elston regres-
sion method that has similar power to variance compo-
nents methods. Several reviews of these methods exist 
 [124–127] .

  For qualitative or dichotomous traits, one can utilize 
the methods for quantitative traits by simply coding af-
fected individuals as ‘1’ and unaffected individuals as ‘0’ 
to create a quantitative phenotype and testing the differ-
ence between the means of the two groups. However, oth-
er approaches are often taken for qualitative traits, where 
the IBD sharing at marker loci is studied conditional on 
affection status. These methods include the ‘affected 
pairs’ methods. In 1953, Penrose  [128]  introduced an af-
fected sib-pair linkage test that tests whether the propor-
tion of alleles IBD at a marker was larger than expected, 
and many other methods building on this concept have 
been proposed  [111, 129–139] . Tests for linkage when the 
trait is caused by multiple loci have also been developed 
 [140–144] . Tests have also been developed that allow all 
affected pairs in a pedigree to be tested for excess IBD 
sharing together  [135, 145–148] .

  Parametric and non-parametric methods have differ-
ent strengths and weaknesses  [149] . Parametric linkage 
analysis is more powerful than non-parametric linkage 
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methods if the genetic model for both trait and marker 
loci are correctly specified; however, for complex traits 
where such correct model specification is difficult, non-
parametric methods may be more powerful.

  Linkage and Complex Diseases and Traits 

 Linkage studies have been successful in leading to the 
discovery of genetic loci that contribute to the risk of dis-
eases or variation of quantitative traits. For example, the 
 BRCA1  gene with hundreds of rare, high-penetrance risk 
alleles that cause major increases in the risk of breast and 
ovarian cancer was first discovered  [150]  after its location 
was identified via a linkage study  [151] . Since then, more 
genes have been identified with inherited mutations that 
predispose to breast or ovarian cancer, but most risk al-
leles in these loci are individually rare in the population. 
Walsh et al.  [152]  recently showed that genomic capture 
and massively parallel sequencing of these genes can de-
tect a wide array of known mutations in 21 of these breast-
ovarian cancer risk loci.

  However, for many traits, existing genome-wide sig-
nificant  [88]  and replicated linkage results have not re-
sulted in the identification of the genes responsible for the 
linkage signals. There are several possible reasons for this 
phenomenon. First, as with any statistical test, false-pos-
itive results (type I errors) are to be expected. The more 
linkage studies that are carried out for a specific disease 
or trait, the higher the chance that a highly significant 
false-positive linkage will be observed  [15] . While ge-
nome-wide significant linkage results have high reli-
ability  [41, 43, 100] , linkage results with ‘suggestive’ sig-
nificance levels are not as reliable and have a higher 
proba bility of being false-positive results  [43] . However, 
performing linkage analyses appropriately (without vio-
lation of the assumptions of the analysis methods), calcu-
lating significance levels appropriately for the specific 
analysis methodology  [100, 105] , requiring stringent sig-
nificance levels to declare ‘genome-wide significance’ 
 [88]  and also requiring replication of a significant linkage 
in an adequately powered  [88, 153]  independent dataset 
(a practice that is also common in GWAS) before consid-
ering a linkage result to have strong support, will help to 
control this  [16] . However, such stringent control of false-
positive rates will decrease power to detect linkage. A sec-
ond reason that significant linkage results have not re-
sulted in the identification of the genes responsible for the 
linkage signals is that the correct gene has been identi-
fied, but its function and the effect of mutations on this 

function are not yet well enough understood for research-
ers to realize that it is the causal locus. In addition, gene-
gene or gene-environment interactions may cause incon-
sistent associations when mutations discovered in linked 
families are subsequently evaluated in population-based 
association studies. However, for many linkage findings, 
the reason that a causal locus has not been found may be 
that adequate DNA sequencing has not yet been per-
formed. In the past, when only Sanger sequencing meth-
ods were available, DNA sequencing of the entire region 
under a linkage peak was prohibitively expensive because 
these linked candidate regions can often cover 100–200 
megabases. Sequencing in these regions has often been 
limited to only a few exons in a few candidate genes. As 
the Human Genome Project has progressed, our under-
standing of DNA structure and function has grown, such 
that we now realize that we must sequence not just exons 
but also promoters, splice sites, 3 �  UTRs, microRNAs, 
long non-coding RNAs and other non-coding regulatory 
elements. For many candidate linkage regions, the failure 
to identify the causal disease gene may simply mean we 
have not yet sequenced enough DNA in the region on a 
large enough sample of people. Next-generation DNA se-
quencing holds the promise to allow us to eliminate the 
last two possibilities by making it economically feasible 
to thoroughly sequence the DNA of an adequate number 
of affected individuals for many diseases. However, we 
must recognize that these methods are not a panacea, and 
that complex diseases and traits are indeed complex.

  Benefits of Combining Linkage and DNA Sequence 

Information 

 As large samples of whole-exome and whole-genome 
sequence data have been accumulated, certain issues have 
become clear. First, rare variants are individually rare, 
but each person will have thousands of such rare variants 
across their genome. It can be difficult to determine 
whether a novel variant is a sequencing artifact or wheth-
er it is a true variant when only a single individual in a 
sample exhibits this variant. However, one expects that 
even rare variants should segregate within a family. Thus, 
family studies of DNA sequence data can be useful for 
determining which rare variants are likely to be real vari-
ants and also which variants segregate with a disease or 
trait within the family, and analogously whether copy 
number variants are likely to be inherited or novel, al-
though identifying variants based on repeated sequences 
is still somewhat problematic at this point in time. This 
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method of measuring the co-segregation of any sequence 
variant with disease is simply linkage analysis. Linkage 
analysis results can be used to identify families that are 
most likely to segregate genetic variants and to guide in-
terpretation of whole-exome and whole-genome sequenc-
ing results or to choose regions for targeted DNA se-
quencing. Results from the recent Genetic Analysis 
Workshop 17 suggested that analyses of rare variants in 
whole-exome sequence data would require much larger 

sample sizes in studies of unrelated individuals than in 
family studies, since family studies allow amplification of 
effect of the rare variants because many family members 
carry the same rare variant  [154] . Combining linkage 
studies with sequencing can allow the identification of 
important genes and gene pathways, which can then be-
come candidates for sequencing in much larger samples 
of individuals with the pertinent disease or trait.
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