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Abstract
Large point referenced datasets occur frequently in the environmental and natural sciences. Use of
Bayesian hierarchical spatial models for analyzing these datasets is undermined by onerous
computational burdens associated with parameter estimation. Low-rank spatial process models
attempt to resolve this problem by projecting spatial effects to a lower-dimensional subspace. This
subspace is determined by a judicious choice of “knots” or locations that are fixed a priori. One
such representation yields a class of predictive process models (e.g., Banerjee et al., 2008) for
spatial and spatial-temporal data. Our contribution here expands upon predictive process models
with fixed knots to models that accommodate stochastic modeling of the knots. We view the knots
as emerging from a point pattern and investigate how such adaptive specifications can yield more
flexible hierarchical frameworks that lead to automated knot selection and substantial
computational benefits.
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1 Introduction
Recent developments in Geographical Information Systems (GIS) and Global Positioning
Systems (GPS) enable accurate geocoding of locations where scientific data are collected.
Today, large spatiotemporal datasets abound in many fields and have generated considerable
interest in statistical models for location-referenced spatial data (Cressie, 1993; Banerjee,
Carlin and Gelfand 2004; and Schabenberger and Gotway 2004). Estimating hierarchical
spatial models involves matrix factorizations of the order of n3 in the number of locations n
– hence the infeasibility or “big n” problem for large datasets.

Low-rank or reduced-rank spatial models have become extremely popular for analyzing
large spatial datasets (Stein, 2008; Cressie and Johannesson, 2008; Banerjee et al., 2008).
These express the spatial effects over  in terms of its realizations over the smaller set of

“knots”, say , where n* is fixed to be much smaller than the number of
observed sites. A key issue in low-rank methods is the choice of knots, which is usually
dictated by computational cost and sensitivity to choice. In practice, we often investigate
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sensitivity of inference to different choices of n*, which entails separately estimating a
number of low-rank models. Typically, for each n* we use some space-covering design
(e.g., Royle and Nychka, 1998) to fix the knots.

Our contribution here expands upon existing hierarchical low-rank models, as explored in
the aforementioned references, to allow the knots to vary. While our formulation applies to
any low rank likelihood, we specifically work with a flexible class called predictive process
models. See Banerjee et al., (2008), Finley et al. (2009), and Eidsvik et al. (2010) for several
methodological explorations and applications, but all with the knots fixed a priori. We
assign a prior probability model for the knots to build a more automated low-rank
hierarchical model and explore what benefits, if any, such stochastic modeling will fetch in
terms of model performance and prediction.

The format of the manuscript is as follows. Section 2 provides a brief review of predictive
process models. Section 3 comprises three subsections: Subsection 3.1 discusses stochastic
modeling of the knots in our hierarchical setup, Subsection 3.2 discusses computational and
implementation details, while Subsection 3.3 discusses spatial prediction and interpolation.
Section 4 illustrates our adaptive models using a synthetic and forest inventory dataset.
Finally, Section 5 concludes the manuscript with an eye towards future work.

2 Gaussian predictive process models – A brief review
Detailed descriptions of hierarchical Gaussian predictive process models are given in
Banerjee et al. (2008), Finley et al. (2009), and Eidsvik et al. (2010). Here, we o er a brief
review and introduce new notation that makes explicit the dependence on the knots. We
envision an outcome variable y(s) along with a p×1 vector of spatially referenced predictors
x(s), which are associated through a spatial regression model E[y (s) | x(s), β, w(s)] = x (s)’ β
+ w (s). This includes a spatial process over the study region , defined by the set

 that can be viewed as a randomly realized surface (or a random function)
over the region. A more succinct notation denotes the process as w(s).

Customarily, w(s) is specified as zero-centered Gaussian Process with a parametric
covariance function C(si, sj; θ) = cov{w(si), w(sj)} so that , where

 is a (partial) realization of w(·) over  and  is the n × n matrix
whose (i, j)-th element is given by C(si, sj; θ). Often we specify C(si, sj; θ) = σ2ρ(si, sj; ϕ),
where θ = {σ2, ϕ}, σ2 is a spatial variance component and ρ(·; ϕ) denotes a spatial correlation
function.

We avoid dealing with the n × n dense matrix , by projecting the process w(s) at a
generic location s onto a subspace spanned by its realization over . Under certain
optimality criteria (see, e.g., Banerjee et al. 2008), we arrive at the predictive process

, where  is the 1 × n* vector with  as the
j-th element. Finley et al. (2009) showed that the predictive process is smoother than the
parent process, which detracts from its predictive performance. A remedy is to use the “bias-
adjusted” predictive process , where

 and  is independent of .

Let y = (y(s1), y(s2), … , y(sn))’ be a vector of Gaussian outcomes. A hierarchical bias-
adjusted predictive process model, conditional upon a fixed , can be written by
marginalizing out the spatial effects  to obtain the posterior distribution
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(1)

Here X is n × p with x(si)’ as the i-th row, 
and  with a diagonal matrix whose i-th diagonal element is the variance of

. Letting , the Sherman-Woodbury-Morrison

formulas (Henderson and Searle, 1981) yield  as

 and  as . These
expressions involve inverses and determinants that are either diagonal or n* × n*.

3 Inference about the Knots
Here we present two simple one-dimensional examples to illustrate why estimating the knot
locations can be beneficial. The data used for the first example is shown in Figure 1(a) and
(b). Here, the ○ symbols represent observed values of y, which were fixed at zero and the +
symbols depict two knots located at the extremes of the x axis. Given these data, two models
were used to predict the value of y for 100 new x values between 0 and 1. First, we use
model (1) with only an intercept in the regression and the two fixed knots. Second, we let
the knots vary by assigning a simple uniform prior U(0, 1) for the position of each knot on
the x axis. Posterior inference for each model was based on 5, 000 post burn-in Markov
chain Monte Carlo (MCMC) samples. The median of each of the 100 posterior predictive
distributions produced using the fixed and adaptive knot models are indicated with the •
symbol in Figure 1(a) and (b), respectively. Here too, the associated posterior predictive
95% credible intervals are depicted with gray bands. The bottom density plot Figure 1(c)
illustrates where the adaptive knots sampled. This density plot shows the adaptive knots
move from the starting locations to locations that approximately divide the domain into
equal portions. This is an intuitive and reassuring result, given that observations are equally
distributed across the domain. Further, by comparing Figure 1(a) and (b) we can see the
adaptive knot locations tend to produce narrower posterior predictive 95% credible intervals
across the domain. For instance, the sum of the 100 95% credible interval ranges is 81 for
the fixed knot model and 77 for the adaptive knot model. This trend is seen for other knot
intensities. For example, the one and three knot intensities result in a decrease from 93 to 84
and 74 to 73 for fixed and adaptive knot models, respectively.

The second example follows the same setup, however, y is now drawn from a normal
distribution with a varying frequency sine function mean and variance of 0.01. These data
are show in Figure 2(a) and (b). Again, 100 new x values between 0 and 1 were withheld
and used to assess the models’ predictive performance. The seven knot locations, + symbols,
were considered for the candidate models. These seven knots were again allowed to vary
across the domain for the adaptive model.

The median of each of the 100 posterior predictive distributions produced using the fixed
and adaptive knot models are indicated with the • symbol in Figure 2(a) and (b),
respectively. Here too, the associated posterior predictive 95% credible intervals are
depicted with gray bands. Prediction using the fixed knot model is based only on
information at the knot locations and, as a result, produces a poor approximation of y, as
reflected by the results in Figure 2(a). In contrast, Figure 2(b) shows that by allowing the
knot locations to move along the x axis, and learn from the data, predictions from the
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adaptive knot model more accurately capture the distribution of y. The bottom density plot
Figure 2(c) illustrates where the adaptive knots sampled. This plot shows that knots tend to
sample at values of x that correspond to the stationary points on the sine curve, resulting in a
greatly improved approximation of the original data.

The adaptive knot model involves an averaging over the distribution of the knots, which
often, at least in practice, leads to reduced predictive variability. This can be seen when
comparing the coverage and width of the 95% credible interval bands in Figures 1 and 2. It
is worth pointing out that some form of an averaged predictive variance over the spatial
domain is often used as an objective function to resolve optimal spatial design (e.g., Diggle
and Lophaven, 2006; Zhu and Stein, 2005).

3.1 Modeling the knots
Fixing the number of knots, n*, based upon available computing resources, we allow knot
locations to vary, conditional upon ηD = {η(s) : s ∈ D}, where η(s) = exp(λ(s)) is an intensity
function, according to the density

(2)

We extend (1), allowing the knot locations to vary over , by

(3)

where θ1 now represents the process parameters in the data likelihood. Two practical
approaches for modeling [ηD] × [S* | ηD] are outlined below.

3.1.1 Modeling η(s) - a parametric model—Parametric forms can be prescribed for
η(s), such as basis representations or tiled surfaces (see, e.g., Diggle, 2003). Here, we
employ a random equally weighted bivariate normal mixture, and then add priors on the
parameters in the normal kernel, say θ2. More specifically, let θ2 = {u1, u2, … , um, ∑η},
where uj’s are m points in , ∑η is a common 2×2 variance covariance matrix. The intensity

is , where N2D(· | uj, ∑η) denotes a bivariate normal density,
truncated to , with mean uj and variance-covariance matrix ∑η. This parametric kernel
specification replaces [ηD] × [  | ηD] with [θ2] × [  | θ2] in (3) (suppressing the implicit
conditioning on n*).

Prior specifications for θ2 typically comprise a uniform support over  for each of the uj’s
and an inverse Wishart IW (rη , Ωη) (e.g., Gelman et al. 2004) for ∑η. Alternatively, we1

could further parametrize  and assign appropriate priors to  and ρη.

3.1.2 Modeling η(s) - a log-Gaussian model—Rather than the parametric choice
above, we can use a log-Gaussian process η(s) = exp{w2(s)} where w2(s) is a Gaussian
process with zero mean, unit variance and correlation function ρ2(·; ϕ2). There remains an
analytically inaccessible integral of w2(s). Matters are assuaged by a lower-dimensional
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representation for w2(s). One option, naturally, is the predictive process itself and we replace
w2(s) by .

More specifically, let {u1, u2, … , um} be a set of fixed knots and let  be

the corresponding predictive process, where . The

corresponding hierarchical model is still embodied by (3) with  and

, where R2(ϕ2) is the m × m correlation matrix with ρ2(ui, uj;
ϕ2) as the (i, j)-th element. Our experiments reveal that a modest value of m, usually
between 10 and 30, allows adequate exploration of most domains by the knots. For a given
size of n*, increasing m beyond ~10 did not substantially alter the final inference.

3.2 Implementation details
The parameters in (3) are updated using a combination of Gibbs and Metropolis steps. We

first update β from N(μβ|., ∑β|.), with covariance matrix ,

and mean  The inverse of ∑y (S*; θ1, τ2) is obtained from
the Sherman-Woodbury-Morrison formulas.

We update {θ1, τ2}, {S*} and {θ2} in separate blocks. The step for θ2 requires some
clarification. This involves evaluating [θ2] × [S* | θ2], which involves the integral

 in (2). We use a grid-based integration scheme. Letting  be
the grid of points covering  and each cell area equal to Δ, we approximate

. The full conditional distribution for 
depends upon how we model η(s; θ2). For the bivariate parametric kernels, as in Section
3.1.1 it is proportional to

(4)

A common choice for each  is a bivariate uniform density over .

When the log-Gaussian process, as described in Section 3.1.2, is used to model S*, the only

change in parameters arises in θ2, which now comprises . The full conditional
distribution for θ2 is proportional to

(4′)

Evaluating (4′) entails approximating the integral of the intensity surface in each iteration.
We conveniently take the ui’s in Section 3.1.2 over a grid and use the current estimate for θ2

to approximate . Details regarding the choice of priors and
updating steps are provided in Section 4 in the context of specific examples.
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3.3 Spatial prediction, interpolation and model assessment
For predicting Y (s0) at any location s0 in the domain, we sample from the posterior
predictive distribution, [Y (s0) | y] = ʃ[Y (s0) | y; θ1, τ2, S*][θ1, τ2, S* | y] using composition

(e.g., Banerjee et al. 2004). For each  for l = 1, 2,...,L, obtained from the

posterior distribution [θ1; τ2; S* | y], we draw Y (s0)(l) from . For
inference on the spatial process, , we use posterior predictive samples from

We first sample , for l = 1, 2,…,L, from the posterior distribution. Next, we

sample w(S*)(l) from  which, in fact, is a normal distribution, and
finally, we sample  from [w(s0) | w(S*)(l), θ(l), S*(l)], again, a normal distribution.

We assess model performance using independent replicates for each observed outcome: for

each si ∈ S, we draw Yrep(si)(l) from , one for one for the posterior

samples. Letting μrep,i and  be the posterior predictive mean and variance for each

Yrep(si), we compute  and . We use D = G + P (e.g.,
Gelfand and Ghosh, 1998) as a model selection criteria, [summationtext] with lower values
of D indicating better models. Further, for each analysis we used a holdout set to assess each
models’ predictive performance by computing the mean squared prediction error (MSPE),

, where  is the predicted outcome at the i-th holdout location and q
is the number of locations in the holdout set.

4 Illustrations
We use both a synthetic and forest inventory dataset to assess model performance with
regard to learning about process parameters and predicting at new locations. Posterior
inferencewas based on three chains of 25, 000 iterations (the first 5,000 iterations were
discarded as burn-in). The samplers were coded in C++ and Fortran and leveraged Intel’s
Math Kernel Library threaded BLAS and LAPACK routines for matrix computations. All
analyses were conducted on a Linux workstation using two Intel Nehalem quad-Xeon
processors.

4.1 Synthetic data analysis
The synthetic dataset comprises n = 5, 500 observations within a unit square domain with
outcome values generated from N(β01, σ2R(ϕ) + τ2I) with R(ϕ) an n × n correlation matrix
whose (i, j)-th element is e−ϕdij, dij = ∥si – sj∥ and parameters given in the first column of
Table 1. Figure 3(a) illustrates the spatial random e ect surface interpolated over the w(s)’s.
To facilitate model comparison using predictive performance, 500 observations were
withheld to serve as a holdout set. Eleven gridded knot intensities (n* = (52, 62, … , 152)
were considered for both the non-adaptive (i.e., fixed knot) and adaptive bias-adjusted pre-
dictive process models. For all models, the intercept parameter β0 was given a flat prior and
the variance parameters τ2 and σ2 each received inverse-Gamma IG(2, 1) priors. Further,
assuming an exponential spatial correlation function the prior for the spatial decay parameter
ϕ was a Uniform U(3, 300), which corresponds to support between 0.01 and 1.0 in map
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distance units. This is a broad range of support considering the maximum distance between
any two observations is 1.4. The adaptive knot models follow the log-Gaussian
parameterization of η(s), detailed in Subsection 3.1.2, with a broad prior support of U(3,
300) on ϕ2.

Results for the 25, 36, 196, and 225 knot models are detailed in Table 1. Here, both the non-
adaptive and adaptive models produce similar estimates of β0 across the range of knot
intensities. When n* is small, the sparse grid of knots provides an over smoothed
representation of the latent spatial surface and, as a result, the non-adaptive model is not able
to accurately estimate the spatial random effect parameters σ2 and ϕ. In contrast, even at a 25
knot intensity, the adaptive model provides better estimates of these parameters. Note,
however, that the nugget, τ2, is apparently underestimated for the adaptive model. In fact,
the bias-adjustment incorporated here may tend to slightly over-fit. It is not surprising,
therefore, that the adaptive knots further overcompensate for the bias, which, after all, is
characterized only for the fixed-knot setting. The posterior predictive variances for the
response at each site is not, in our experience, affected substantially by this bias.

Considering the non-adaptive and adaptive models’ D and MSPE across knot intensities in
Table 1, it is clear that knot location influences model fit and subsequent prediction. For
example, with just 25 knots, the adaptive model produced D=45880. This level of fit was not
achieved until the ~81 knot intensity for the non-adaptive model. In addition to a
consistently better model fit (i.e., lower D), the adaptive model offers considerably lower
MSPE across all knot intensities. For instance, the 9.24 MSPE of the 225 knot non-adaptive
model is considerably larger than the 9.05 MSPE achieved by the 36 knot adaptive model.

Even with the reduced dimensionality afforded by the predictive process, fitting these
models is time consuming. The last row in each section of Table 1 gives the run time for
25,000 MCMC iterations on a single non-hyperthreaded processor. The extra complexity of
the adaptive predictive process sampler approximately doubles the run time across all knot
intensities. Importantly, however, the adaptive model can produce an MSPE of 9.05 in 12
hours versus the non-adaptive model’s substantially larger 9.24 MSPE of the 225 knot
model, which requires a 28.5 hour run time. Further, the 225 knot non-adaptive model’s fit,
of D=37007, is achieved by the 81 knot adaptive model, which had a run time of 23.0 hours.

The plots in Figure 3 can help us understand the adaptive model’s advantage over the fixed
knot model. Figure 3(b) is a trace plot of knot movement for the adaptive 25 knot model.
Here, the • symbols mark the states of one MCMC chain over the domain. The density
surface associated with Figure 3(b) is illustrated in Figure 3(c), where higher values (darker
shades) indicate the regions where the knots were sampled more intensely. By comparing
the true spatial random effect surface Figure 3(a) with Figure 3(c) it is apparent that the
knots tend to move to regions of extreme w(s) values (as seen in the one-dimensional
example offered in Section 1). This is a trend repeated across the adaptive predictive process
models. Figures 3(d) and (e) were generated by interpolating over the median of each
location’s spatial random effect posterior distribution calculated using the non-adaptive and
adaptive 25 knot predictive process models, respectively. Comparing these surfaces with
Figure 3(a) shows that the adaptive knots provide a more detailed representation of the
spatial random effect surface, hence improved model fit and predictive ability.

Given the trade-off between the non-adaptive and adaptive knot models’ run time and
predictive performance, we considered a hybrid scheme that used the knot locations of the
1000-th MCMC iteration of an adaptive model. Here, the choice of the 1000-th iteration was
arbitrary; however, the idea was to allow enough iterations for the knots to move about the
domain, while keeping the run time to a minimum. As summarized in the last column in the
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second row of Table 1, this hybrid model seems to enjoy the improved fit and lower MSPE
of the adaptive model and the shorter run time advantage of the non-adaptive model.

4.2 Forest biomass data analysis
Spatial prediction of forest biomass is critical to many important contemporary global-,
regional-, and local-scale decisions, including assessments of current carbon stock and flux,
bio-feedstock for emerging bio-economies, and impact of deforestation. In the United States,
the Forest Inventory and Analysis (FIA) program of the USDA Forest Service collects the
data needed to support these assessments.

The program has established field plot centers in permanent locations using a sampling
design that produces an equal probability sample (Bechtold and Patterson, 2005). Locations
of the 7.32 m radius forested plots are determined using GPS receivers. The state of
Michigan, in which the study area is located, has a sampling intensity of approximately one
plot per 800 ha. On these plots, field crews recorded stem measurements for all trees with
diameter at breast height (dbh; 1.37 m above the forest floor) of 12.7 cm or greater. Given
these data, established allometric equations were used to estimate each plot’s forest biomass
per ha. Here, we model the log metric tons of forest biomass per ha. A July, 2003 mosaic of
Landsat TM imagery, was used to calculate tasseled cap components of brightness (TC1),
greenness (TC2), and wetness (TC3) to serve as predictor variables (Huang et al., 2002).
Figure 4(a) illustrates the georeferenced forest inventory data consisting of 6,538 forested
FIA plots measured between 1999 and 2006 across the lower peninsula of Michigan.

Candidate models include a simple non-spatial regression and the non-adaptive and adaptive
bias-adjusted predictive process models. Similar to the synthetic data analysis, we
considered a range of knot intensities. Knot locations were chosen by applying a k-means
clustering algorithm (Hartigan and Wong, 1979) to the observed locations. For the adaptive
models these knot locations served as starting values. As in Section 4.1, we considered an
additional non-adaptive candidate model, that used the knot locations of the 1000-th MCMC
iteration of an adaptive model.

Based on results from an initial variogram analysis of the non-spatial model’s residuals, the
priors for τ2 and σ2 for the non-adaptive and adaptive predictive process models followed
IG(2 0.5). Assuming an Exponential spatial correlation function the prior for the spatial
decay parameter ϕ followed a U(0.006 3), which corresponds to support from 1–500 km.
Again, this is a broad range of support, given the maximum distance between any two plots
is 460 km. For all models the regression coeffcients each received a flat prior. The prior on
the adaptive knot locations, , was defined by a rectangular domain that covered the extent
of the irregularly shaped study area.

Here, we opted to use the parametric parameterization of η(s) detailed in Section 3.1.1.
Priors for the parameters comprising the bivariate normal mixture covariance matrix ∑η

were an IG(2, 1) for  and U(−1, 1) for ρη. The mixture was evaluated over a grid of m=25
locations. We experimented with a range of m, 25–100, and found that it had negligible
influence on parameter estimates and subsequent prediction.

Candidate models were assessed based on their fit to observed data, predictive performance
at new locations, and run time. To assess predictive performance, 653 observations (i.e.,
10%) were selected randomly to serve as a holdout set. The remaining 5,885 observations
were used to fit the candidate models.

Figure 4(b) is an interpolated surface of the non-spatial model residuals. We would expect
the fitted spatial random effects of the candidate models to look somewhat similar to this
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residual surface. Figure 4(c) provides the density plot of the adaptive knot locations
over25,000 MCMC iterations for the 50 knot model. Here, darker colors correspond to
regions where the knots sampled more intensely and the • symbols indicate the starting
location of the 50 knots. As in Section 4.1, the knots moved from the starting locations to
sample at locations where the absolute value of the residual surface is large. This figure also
shows the knots generally sample at locations close to the observed data (i.e., they did not
sample much beyond the state’s bounding polygon). Figure 4(d) and (e) provide interpolated
surfaces of the median of spatial random effects posterior distribution for the adaptive and
non-adaptive models, respectively. Here, we see the adaptive model produces spatial
random effects that more closely approximate Figure 4(b) and hence provide improved
model fit and prediction over the fixed knot model as detailed in Table 2.

Table 2 shows parameter estimates for candidate models with different knot intensities. Both
the non-adaptive and adaptive predictive process models produce comparable estimates of
the regression coe cients – several of which explain a significant amount of variability in log
biomass. We again see a discrepancy between non-adaptive and adaptive models’ estimates
of the variance components. Specifically, the non-adaptive model seems to estimate a larger
nugget, τ2, and a smaller partial sill, σ2, whereas the opposite trend appears in the adaptive
model. This was also observed in Section 4.1 and other exploratory analysis we conducted.
Results suggest that ~100 fixed knots are needed to produce MSPE and model fit, D,
comparable to that of the 50 knot adaptive model. However, this advantage is lessened by
the near equal run times of the two models (as noted in the last row of Table 2). The last
column in this table presents the results for the non-adaptive model that used the knot
locations of the 1000-th MCMC iteration of the 50 knot adaptive model. Similar to the
synthetic analysis, this hybrid model offers the improved fit and predictive ability of an
adaptive knot model with a run time comparable to that of the fixed knot model.

5 Discussion and future work
The current manuscript integrates modeling of knots in low rank predictive process models
within a hierarchical framework, thereby circumventing issues underlying the choice of
“knots”. Indeed, we were able to obtain essentially indistinguishable inference with fewer
number of stochastic knots than with fixed knots. Also, our approach applies seamlessly to
other low-rank models that use kernel convolutions or other nonstationary covariance
structures (e.g., Higdon, 2002; Cressie and Johannesson, 2008).

In the fixed knot setting, adding the bias-adjustment to the predictive process usually
reduces smoothing and yields improved parameter estimates (Banerjee et al., 2010).
However, the results of the analyses presented here show the bias-adjusted adaptive
predictive process slightly underestimates τ2. Remedies for avoiding such over-fitting could
be achieved by tapering the bias-adjustment using a tapered covariance function (e.g., Furrer
et al., 2006). Feasibility of alternative estimation strategies such as INLA (Rue et al., 2009;
Eidsvik et al., 2010) can also be explored.

Any random probability measure for  will yield a valid hierarchical model in (3). If
we eschew spatially informative priors for the knots, a fully non-parametric option using
realizations from a Dirichlet Process will be viable. Algorithms to estimate such models
have been outlined, among others, by Neal (1998). Stochastic modeling for random
locations also arise when the outcome is “preferentially sampled” (Diggle et al., 2010),
which seeks joint modeling for the process and the set of observed locations . Pati et al.,
(2011) recently proposed a hierarchical Bayesian geostatistical model for preferentially
sampled data. An adaptive predictive process can be envisioned through distributions for

 in (3) that would add an additional level of hierarchy. Finally, one can compare the
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performance of the adaptive predictive model with different design-based strategies for fixed
knot selection as outlined in recent work by Gelfand, Banerjee and Finley (2011). Such
explorations will include random sampling strategies as well as further investigations into
sensible “hybrid schemes” that combine adaptive strategies to arrive at fixed knot
configurations. These constitute some ongoing projects.
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Figure 1.
Knot inference and prediction results for a fixed and adaptive knot model, (a) and (b)
respectively. Models fit using observed data (○) and knot locations (+). Models’ estimated
posterior predictive median (•) and associated 95% credible interval (gray band) for 100 new
locations. Adaptive knot model’s posterior density of knot locations illustrated in (c).
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Figure 2.
Knot inference and prediction results for a fixed and adaptive knot model, (a) and (b)
respectively. Models fit using observed data (○) drawn from a normal distribution with a
varying frequency sine function mean and knot locations (+). Models’ estimated posterior
predictive median (•) and associated 95% credible interval (gray band) for 100 new
locations. Adaptive knot model’s posterior density of knot locations illustrated in (c).
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Figure 3.
Synthetic data and associated estimates for the 25 knot predictive process models: (a)
synthetic spatial random effect surface generated using 5,000 observations; (b) 25,000
MCMC iteration trace plot of the adaptive knot locations; (c) density plot associated with
the MCMC iteration in (b); (d) non-adaptive predicted process model estimated spatial
random effects, and (e) adaptive predicted process model estimated spatial random effects.
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Figure 4.
Forest biomass dataset and associated estimates for the 50 knot predictive process models:
(a) location of forest invetory plots; (b) interpolated surface of the non-spatial model
residuals; (c) density plot of the adaptive knot locations over 25,000 MCMC iterations; (d)
adaptive predicted process model estimated spatial random effects with knot starting
locations, and; (e) non-adaptive predicted process model estimated spatial random effects
with knot locations.
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