5-(Carboxymethylaminomethyl)-2-thiouridine, a new modified nucleoside found at the first letter position of the anticodon

Yuko Yamada, Katsutoshi Murao and Hisayuki Ishikura

Laboratory of Chemistry, Jichi Medical School, Minamikawachi-machi, Tochigi-ken, 329-04, Japan

Received 11 March 1981

ABSTRACT

The structure of a modified uridine derivative which was detected at the first letter position of the anticodon of *Bacillus subtilis* $tRNA_{1}^{Lys}$ was determined to be 5-(carboxymethylaminomethyl)-2-thiouridine. The determination was mainly based in its ultraviolet absorption spectra and mass spectrometric analysis of the trimethylsilyl derivative.

INTRODUCTION

We reported previously the nucleotide sequence of *Bacillus subtilis* $tRNA_1^{Lys}$ (1). It contained two unidentified modified nucleosides. One of them (K) located at the position following the 3'-end of the anticodon was recently identified as $N-[(9-\beta-\underline{D}-ribofuranosyl-2-methylthiopurin-6-yl)carbamoyl]threonine (2). Another one (U*) partly replaced the uridine residue located at the first letter position of the anticodon.$

Here, we describe the identification of U* as 5-(carboxymethylaminomethyl)-2-thiouridine.

MATERIALS AND METHODS

Isolation of U* nucleoside

In the process of purification of ms^2t^6A from *B. subtilis* $tRNA_1^{Lys}$ previously described (2), the fragment containing U*, A-C-U-U(U*)-U-U-ms²t⁶A-A-Y-C-A-G- was isolated and the content of U* was 0.3 mole/mole of the fragment. By digestion of the fragment with RNase A and alkaline phosphatase, the U*-U fragment was separated by DE 23 (Whatman Inc.) column chromatography with a TEAB gradient. After U*-U was treated with excess amounts of RNase T₂ and alkaline phosphatase, the U* nucleoside (ca. 3 A₂₆₀ units) was obtained by paper chromatography (Toyo filter paper 51 A, solvent system, isobutyric acid : 0.5 M NH₃, 5:3 by vol.).

Mass spectrometry

The trimethylsilyl derivative of U* was prepared according to McCloskey (3). To 0.8 A_{260} unit of dried U* nucleoside, 4 µl of dry pyridine and 30 µl of *N-O*-bis(trimethylsilyl)trifluoroacetamide with 1% trimethylchlorosilane were added. The mixture was heated for 1 hr at 100°C in a sealed glass tube. Low-resolution mass spectrum of trimethylsilylated U* was recorded using a JEOL JMS-01SG-2 instrument. The sample was introduced by direct inlet probe (ionizing energy 75 eV, probe templature 140-150°C).

RESULTS

UV-absorption spectra of U* (Fig. 1) showed remarkable resemblance to those of 5-(methylaminomethyl)-2-thiouridine (mnm^5s^2U) which was detected at the first letter position of the anticodon of *E. coli* tRNA^{Lys} (5-7). At pH 12, the spectrum showed an absorption maximum at 245 nm with a shoulder peak at 272 nm. This is a typical feature for 2-thiouridine derivatives. On twodimensional chromatograms, however, the positions of U*p and U* (Fig. 2) were different from those of not only mnm^5s^2Up and mnm^5s^2U , respectively, but also

Fig. 1 Ultraviolet absorption spectra of U* nucleoside (---- pH 2, ---- pH 6, ---- pH 12)

Fig. 2 Two dimensional thin layer chromatographies of U*p and U* nucleoside
a) Chromatogram of U*p on Avicel SF plate
b) Chromatogram of U* nucleoside on aluminum roll cellulose plate

any other known derivatives of 2-thiouridylate and 2-thiouridine, respectively (4,8). By DE 23 column chromatography with a TEAB gradient, the U* nucleoside was eluted more slowly than usual nucleosides. By electrophoresis on an Avisel SF plate in 0.05 M TEAB (pH 8.6), the U* migrated toward the anode $(R_{Up}=0.45)$. These behaviors suggest that the U* has a negative charge. The ninhydrin test gave the U* a reddish-brown color with sensitivity comparable to sarcosine, an imino acid. These results indicated that the U* is a 5-substituted 2-thiouridine derivative and that the substituent at the 5-position contains an imino group as well as probably a carboxyl group.

Final identification of U* as 5-(carboxymethylaminomethyl)-2-thiouridine was given by mass spectroscopy. Fig. 3a shows the mass spectrum of trimethylsilylated U* (TMS-U*). The molecular ion peak of TMS-U* was detected at the position of mass number 635. When a comparison was made with mass spectra of TMS-U* and TMS-product of 5-(carboxymethylaminomethyl)uridine

(cmnm⁵U) shown in Fig. 3b (9), this is 16 mass units more than that of the molecular ion peak of TMS-cmnm⁵U. Mass numbers of all the main fragment ion peaks of TMS-U^{*} were 16 mass units greater than those of the corresponding fragment ion peaks of TMS-cmnm⁵U, i.e., 518, 504 and 490 are 16 more than 502, 488 and 474, respectively. The difference of 16 mass units can be explained by the replacement of an oxygen atom with a sulfur atom at the 2-position of uracil ring. This fragmentation pattern clearly demonstrates that the structure of U^{*} is 5-(carboxymethylaminomethyl)-2-thiouridine as shown in Fig. 4.

By an attempt for desulfurization of the U* according to Saneyoshi and Nishimura (10), the U* gave three spots on a thin layer chromatogram developed with the same solvent systems as shown in Fig. 2a, although 2-thiocytidine was converted with a 100% yield to cytidine when treated under the same condition. One of the three spots, 20% of total products, was located at the same position as given by cmnm⁵U (9). Its UV-absorption spectra quite resembled those of cmnm⁵U at pH 2 and pH 12. We guess that 20% of cmnm⁵s²U was converted to cmnm⁵U, while the rest were by-products.

DISCUSSION

The structure of a new compound detected in tRNA₁^{Lys} from *B. subtilis* was determined to be 5-(carboxymethylaminomethyl)-2-thiouridine. Usually, 2-thiouridine derivatives located at the first letter of the anticodon show preferential affinity towards A of the third letter of the codons (11). It was reported that the removal of 2-thio group from mcm⁵s²U of yeast tRNA₁^{Lys} re-

Fig. 4 Chemical structure of U* nucleoside

duced the activity of protein synthesis (12). Unfortunately, the coding property of cmnm⁵s²U was unable to be determined, because in our growing condition only a slight percentage of uridine located at the first letter of the anticodon was modified to cmnm⁵s²U. In fact, our tRNA₁^{Lys} preparation showed an equal extent of stimulation in the binding to ribosome of lysyl-tRNA₁^{Lys} by A-A-A and A-A-G (1).

When the 5-substituted uridines from *B. subtilis* are compared with those from *E. coli*, 5-methoxyuridine (mo⁵U) is present in *B. subtilis* tRNA^{Va1}, tRNA^{Ala} and tRNA^{Thr} (13), while uridin-5-oxyacetic acid (cmo⁵U), a carboxylated form of mo⁵U, is present in *E. coli* tRNA^{Va1}, tRNA^{Ala} and tRNA^{Ser} (14) On the other hand, cmnm⁵s²U detected in *B. subtilis* tRNA^{Lys} is a carboxylated form of mnm⁵s²U present in *E. coli* tRNA^{Lys}, tRNA^{Glu} and tRNA^{Gln}. Thus, in the two groups of codon-related uridine modification (mo⁵U vs. cmo⁵U : cmnm⁵s²U vs. mnm⁵s²U), the carboxylation (or decarboxylation) patterns of the substituents at the 5-position of uracil ring are completely opposite between tRNAs from *B. subtilis* and *E. coli*. The meaning of this interesting finding must await further elucidation.

This work was partly supported by Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

Abbreviations: $cmnm^5s^2U$, 5-(carboxymethylaminomethyl)-2-thiouridine; $cmnm^5U$, 5-(carboxymethylaminomethyl)uridine; mo^5U , 5-methoxyuridine; cmo^5U , uridin-5oxyacetic acid; mcm^5s^2U , 5-(methoxycarbonylmethyl)-2-thiouridine; mnm^5s^2U , 5-(methylaminomethyl)-2-thiouridine; TEAB, triethylammonium bicarbonate.

REFERENCES

- 1. Yamada, Y. and Ishikura, H. (1977) Nucl. Acids Res. 4, 4291-4303
- 2. Yamada, Y. and Ishikura, H. (1981) J. Biochem. 89, in press
- McCloskey, J. A. (1974) in Basic Principles in Nucleic Acid Chemistry, Vol. 1, pp.209-309, Academic Press, New York
- Rogg, H., Brambilla, R., Keith, G., and Staehelin, M. (1975) Nucl. Acids Res. 3, 283-296
- 5. Hall, R. H. (1971) The Modified Nucleosides in Nucleic Acids, Columbia University Press, New York and London
- 6. Carbon, J., David, H., and Studier, M. H. (1968) Science 161, 1146-1147
- 7. Chakraburtty, K., Steinschneider, A., Case, R. V., and Mehler, A. H. (1975) Nucl. Acids Res. 2, 2069-2075
- Nishimura, S. (1972) in Progress in Nucleic Acid Research and Molecular Biology, Davidson, J. N. and Cohn, W. E., eds. Vol. 12, pp.49-85 Academic Press, New York
- 9. Murao, K. and Ishikura, H. (1978) Nucl. Acids Res. Special Publication No. 5, s333-s336
- 10. Saneyoshi, M. and Nishimura, S. (1970) Biochim. Biophys. Acta 204, 389-399

- 11. Yoshida, M., Takeishi, K., and Ukita, T. (1971) Biochim. Biophys. Acta 228, 153-166 12. Sen, G. C. and Ghosh, H. P. (1976) Nucl. Acids Res. 3, 523-535 13. Murao, K., Hasegawa, T., and Ishikura, H. (1976) Nucl. Acids Res. 3,
- 2851-2860
- 14. McCloskey, J. A. and Nishimura, S. (1977) Acc. Chem. Res. 10, 403-410