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Abstract
We propose a nonparametric, probabilistic model for the automatic segmentation of medical
images, given a training set of images and corresponding label maps. The resulting inference
algorithms rely on pairwise registrations between the test image and individual training images.
The training labels are then transferred to the test image and fused to compute the final
segmentation of the test subject. Such label fusion methods have been shown to yield accurate
segmentation, since the use of multiple registrations captures greater inter-subject anatomical
variability and improves robustness against occasional registration failures. To the best of our
knowledge, this manuscript presents the first comprehensive probabilistic framework that
rigorously motivates label fusion as a segmentation approach. The proposed framework allows us
to compare different label fusion algorithms theoretically and practically. In particular, recent
label fusion or multiatlas segmentation algorithms are interpreted as special cases of our
framework. We conduct two sets of experiments to validate the proposed methods. In the first set
of experiments, we use 39 brain MRI scans—with manually segmented white matter, cerebral
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cortex, ventricles and subcortical structures—to compare different label fusion algorithms and the
widely-used FreeSurfer whole-brain segmentation tool. Our results indicate that the proposed
framework yields more accurate segmentation than FreeSurfer and previous label fusion
algorithms. In a second experiment, we use brain MRI scans of 282 subjects to demonstrate that
the proposed segmentation tool is sufficiently sensitive to robustly detect hippocampal volume
changes in a study of aging and Alzheimer’s Disease.

Index Terms
Image parcellation; image registration; image segmentation

I. Introduction
This paper investigates a probabilistic modeling framework to develop automatic
segmentation tools that delineate anatomical regions of interest in a novel medical image
scan. The objective is to learn a segmentation protocol from a collection of training images
that have been manually labeled by an expert. This protocol is then employed by the
algorithm to automatically segment a new (test) image. Such supervised segmentation tools
are commonly used in many medical imaging applications, including surgical planning [27]
and the study of disease progression, aging or healthy development [23], [50], [74]. As an
application domain, this paper focuses on magnetic resonance (MR) imaging of the brain.
However, most of the ideas we discuss here can be easily extended to other modalities and
applications, particularly with the recent development of fast algorithms for pairwise
registration in other imaging domains [71], [73]. We will thus consider the problem of
segmenting the MRI volume scan of a novel subject, based on other subjects’ MRI scans
that have been delineated by an expert.

Early MR segmentation algorithms mainly dealt with the problem of tissue classification,
where local image intensity profiles contain a significant amount of the relevant information
[10], [15], [41], [68]. A detailed parcellation of the brain anatomy into structurally or
functionally defined regions of interest (ROI) typically requires supervision, commonly in
the form of labeled training data, since the local appearance of most such structures is not
easily distinguishable [23], [30], [40], [51], [72]. The training data is commonly obtained via
a time-consuming and/or expensive procedure such as manual delineation, histology or
functional localization experiments [22], [48], [60]. Automating the painstaking procedure
of labeling improves the reliability and repeatability of the study, while allowing for the
analysis of large pools of subjects.

One of the simplest ways to automatically segment an image using a single training dataset
is to perform a nonrigid, dense registration between the labeled image and test image. The
resulting warp can then be used to map the training labels onto the coordinates of the test
image [16], [26], [31], [43]. The quality of such a registration-based approach is limited by
the accuracy of the pairwise registration procedure and the anatomical similarity between
the labeled and test subjects.

To reduce the bias due to the labeled subject and to model anatomical variability, multiple
subjects can be employed in the training phase. A common method is to use a parametric
model to summarize the training data in a common coordinate system [8], [24], [29], [36],
[48], [62]–[64], [72]. In this approach the training data are co-registered to compute
probability maps that encode the prior probability of observing a particular label at each
point in the common (atlas) coordinates. The test subject is then normalized to the atlas
coordinates through a pairwise registration with a template image that represents the average
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subject. This registration can be completed as a preprocessing step, or can be unified with
the segmentation procedure, as in [8], [18], [48], [72]. Once the test subject is spatially
normalized, one can use a variety of models of shape and appearance to devise a
segmentation algorithm. Traditionally, generative models have been popular, where simple
conditionally independent Gaussian models are used for appearance [24], [48]. More
sophisticated shape models that encourage certain topological properties have also been
proposed to improve segmentation quality [47], [62], [70].

Rather than relying on a single atlas coordinate system, an alternative strategy is to register
each training subject to the test subject separately. Similar to the registration-based
segmentation approach, these pairwise warps are then used to transfer the training labels into
the coordinate system of the test subject. Given these transferred labels, segmentation has
been commonly formulated as a label fusion problem [30], [42], [51]–[53], [58].
Intriguingly, Majority Voting, which is probably the simplest label fusion method, has been
demonstrated to yield powerful segmentation tools [1], [30], [51], [52]. Empirical results in
these studies suggest that errors in the manual labeling and registration procedures are
reduced during label fusion, resulting in accurate segmentation. Recent work has shown that
weighted averaging can be used to improve segmentation quality [6], [32], [53], [58]. The
underlying intuition is that training subjects more similar to the test subject should carry
more weight during label fusion. The practical advantages of various strategies based on this
idea have recently been demonstrated [6]. These strategies include using the whole image to
determine a single, global weight for each training subject [6], employing local image
intensities for locally adapting the weights [6], [32] and using estimates of classifier
performance in determining a weight for each label and training subject [53], [67]. To the
best of our knowledge, however, none of the label fusion segmentation methods are derived
within a probabilistic framework that explicitly models the relationship between the training
data and test subject.

Label fusion methods offer two main advantages: 1) across-subject anatomical variability is
better captured than in a single atlas, which can be viewed as a parametric model that
typically uses single mode distributions (e.g., Gaussian) to encode anatomical appearance,
and 2) multiple registrations improve robustness against occasional registration failures. The
main drawback is the computational burden introduced by the multiple registrations and
information fusion from the entire training data. To alleviate this problem, various heuristics
for selecting only a subset of the training subjects for use in registration and label fusion
have been proposed [1]. In the atlas construction literature, there has also been recent work
on estimating multiple templates from a set of images [2], [11], [54], [66]. We believe that
this approach can also be used to reduce the computational cost of label fusion by
summarizing the training data. We leave this issue for future work.

The central contribution of this paper is to propose and investigate a generative model that
leads to label fusion style image segmentation algorithms. Within the proposed framework,
we derive several methods that combine transferred training labels into a single
segmentation estimate. Using a dataset of 39 brain MRI scans and corresponding label maps
obtained from an expert, we experimentally compare these segmentation algorithms.
Additionally, we compare against other benchmarks including FreeSurfer’s whole brain
segmentation tool, which has been widely used in a large number of studies [69], and
STAPLE [67], a method that combines multiple segmentation estimates based on a
probabilistic performance model. Our results suggest that the proposed framework yields
accurate and robust segmentation tools that can be employed on large multisubject datasets.
In a second experiment, we used one of the proposed segmentation algorithms to compute
hippocampal volumes in MRI scans of 282 subjects. A comparison of these measurements
across clinical groups indicate that the proposed algorithm is sufficiently sensitive to
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robustly detect hippocampal volume differences associated with aging and early
Alzheimer’s Disease.

The generative model described in this paper is an extension of the preliminary ideas we
presented in recent conference papers [55], [57]. The present paper offers detailed
derivations, discussions and experiments that were not contained in those papers. The
remainder of the paper is organized as follows. Sections II and III present the generative
model and its instantiation, respectively. In Section IV, we develop several label fusion style
segmentation algorithms based on the proposed generative model. Section V presents
empirical results. In Section VI, we discuss the contributions of the paper along with the
drawbacks of the proposed algorithms, while pointing to future research directions. Section
VII concludes with a summary.

II. Generative Model
In this section, we present the probabilistic model that forms the core of this paper. We use
{Ĩn} to denote training images with corresponding label maps {L̃n}, n = 1, …, N. We
assume the label maps take discrete values from 1 to  (including a “background” or
“unknown” label) at each spatial location. While the training images are defined on a
discrete grid, we treat them as spatially continuous functions on ℝ3 by assuming a suitable
interpolator. Let Ω ⊂ ℝ3 be a finite grid where the test subject is defined. We denote Φn: Ω
↦ ℝ3 to be the spatial mapping (warp) from the test subject coordinates to the coordinates
of the nth training subject. For simplicity, we assume that {Φn} have been precomputed
using a pairwise registration procedure, such as the one described in Appendix A. This
assumption allows us to shorthand {Ĩn, Φn} and {L̃n, Φn} with In and Ln, respectively, where
we drop ~ to indicate that we know the transformation Φn that maps the training data into
the coordinates of the test subject.

The goal of segmentation is to estimate the label map L associated with the test image I.
This can be achieved via maximum-a-posteriori (MAP) estimation

(1)

where p(L, I; {Ln, In}) denotes the joint probability of the label map and image given the
training data.

Instead of using a parametric model for p(L, I; {Ln, In}), we employ a nonparametric
estimator, which is an explicit function of the entire training data, not a statistical summary
of it, as shown in Fig. 1. The model assumes that the test subject is generated from one or
more training subjects, the index or indices of which are unknown. This modeling strategy is
parallel to Parzen window density estimators, where the density estimate can be viewed as a
mixture distribution over the entire training data, and each new sample is associated with a
single training sample, the index of which is unknown and thus is marginalized over. In
dealing with images, we may want to allow for this membership index to vary spatially.
Therefore we introduce M: Ω ↦ {1, … N} to denote the latent random field that specifies
for each voxel in the test image I, the (membership) index of the training image In it was
generated from.

In the following, we make the assumption that the image intensity values I(x) and labels
L(x) at each voxel are conditionally independent (as illustrated with a plate around these
variables in Fig. 1), given the random field M, and the training data {Ln, In}. Furthermore,
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we assume that each voxel is generated from a single training subject indexed with M(x),
i.e., p(L(x)|M; {Ln}) = p(L(x)|M(x); LM (x)) and p(I(x)|M; {In}) = p{I(x)|M(x); IM(x)), which
we will shorthand with pM(x)(L(x); LM(x)) and pM(x)(I(x); IM(x)), respectively. We can thus
construct the conditional probability of generating the test image and label map

(2)

(3)

Given a prior on M, we can view the image I and label map L as generated from a mixture
model

(4)

where ΣM denotes the marginalization over the unknown random field M. Substituting (3)
into (4) yields the final cost function

(5)

The conditional independence assumption between the label map and image may seem
simplistic at first. Yet conditional independence does not imply independence and the
relationship between L and I is given by marginalizing over the unknown M as in (4).
Therefore, our model implicitly includes complex dependencies between labels and intensity
values. For instance p(I|L), a term commonly modeled explicitly in the segmentation
literature can be expressed as

Thus, given a model instantiation, the conditional intensity distribution of a particular label
at a location of interest can be estimated by examining the training subjects that exhibit that
label in the proximity of the location of interest. This is exactly what atlas-based
segmentation algorithms do, which underscores the similarity between the proposed
probabilistic model and parametric models used in the literature. But unlike atlas-based
methods that use a parametric model for p(I|L), the proposed framework explicitly employs
the entire training data set.

III. Model Instantiation
This section presents the specific instantiations of the individual terms in (5) that we use in
this work to derive segmentation algorithms.

A. Image Likelihood
We adopt a Gaussian distribution with a stationary variance σ2 as the image likelihood term
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(6)

For σ → ∞, (6) reduces to an improper distribution pn(I(x); In) ∝ C, where C is a constant.
As we discuss in Section IV-B, this simple model leads to the Majority Voting strategy in
label fusion, whereas for a finite σ2, (6) yields a weighted averaging strategy.

B. Label Prior
In this work, we investigate two representations to define the label prior term pn(L(x); Ln).
One representation uses the logarithm of odds (LogOdds) model based on the signed

distance transform [49]. Let  denote the signed distance transform of label l in training
subject n (in the native coordinates), which is assumed to be positive inside the structure of
interest. We define the label prior as

(7)

where ρ > 0 is the slope constant,  is the partition function,
and  is the total number of labels including the background label. The prior pn(L(x) = l; Ln)
encodes the conditional probability of observing label l at voxel x ∈ Ω of the test image,
given that it was generated from the nth training image.

The second representation, commonly used in the literature, employs the probability vector
image of L̃n(x): each voxel is a length-  binary vector with the lth entry equal to 1 if L̃n(x)
= 1 and 0 otherwise. To define the label prior pn(·; Ln), the transformation Φn is applied to
the probability vector image of L̃n(x). In this method, non-grid locations need to be
interpolated using a suitable method (e.g., trilinear or nearest neighbor) that ensures positive
and normalized probability values. In general, it is well known that trilinear interpolation
yields better segmentation results than nearest neighbor interpolation [51], [55]. The
LogOdds model of (7) has the advantage of yielding nonzero probabilities everywhere,
which makes the use of the logarithm of the probability numerically more stable. As
discussed in our experiments presented in Section V-A, we find that the LogOdds model
produces more accurate results.

C. Membership Prior
The latent random field M : Ω ↦ {1, …, N} encodes the local association between the test
image and training data. We employ a Markov random field (MRF) prior on M

(8)

where β ≥ 0 is a scalar parameter,  is a spatial neighborhood of voxel x, Zβ, is the partition
function that only depends on β, and δ is the Kronecker delta. This particular type of MRF is
often referred to as the Potts model. In our implementation,  includes the immediate six
neighbors of each voxel. Similar models have been used in the segmentation literature [64],
[72], mainly as priors on label maps to encourage the spatial relationships of labels observed
in the training data. In contrast, we use the MRF prior to (indirectly) pool local intensity
information from within a neighborhood in determining the association between the test
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subject and the training data. Here we adopt a simple form of the MRF that does not include
singleton and/or spatially varying terms. This is unlike the common usage of MRFs in the
segmentation literature where the label prior typically varies spatially.

The parameter β influences the average size of the local patches of the test subject that are
generated from a particular training subject. In this work, we consider three settings of the
parameter β. With β = 0, the model assumes that each test image voxel is generated from the
training subjects with equal probability and that the membership is voxel-wise independent.
β → +∞ forces the membership of all voxels to be the same and corresponds to assuming
that the whole test subject is generated from a single unknown training subject, drawn from
a uniform prior. A positive, finite β encourages local patches of voxels to have the same
membership.

IV. Label Fusion Based Image Segmentation
In this section, we derive several label fusion style image segmentation algorithms based on
the model and MAP formulation described above. These algorithms correspond to variations
in the image likelihood, label prior and membership prior models described in Section III.

A. Local Weighted Voting
Let us assume β = 0, which, thanks to the adopted simple MRF form, implies that M(x) is
independent and identically distributed according to a uniform distribution over all labels for
all x ∈ Ω

(9)

where |Ω| is the cardinality of the image domain (the number of voxels). Using the image
likelihood term of (6), the segmentation problem in (5) reduces to

(10)

This optimization problem can be solved by simply comparing  numbers at each voxel: the
fused label of each voxel is computed via a local weighted (fuzzy) voting strategy. The local
image likelihood terms serve as weights and the label prior values serve as votes. Therefore,
at each voxel, training images that are more similar to the test image at the voxel after
registration are weighted more. Interestingly, a similar approach was recently proposed in
the context of CT cardiac segmentation by Isgum et al. [32] where the transferred training
labels are fused in a weighted fashion. The heuristic weights proposed in that paper have a
different form however and are spatially smoothed with a Gaussian filter to pool local
neighborhood information. In Section IV-D, we discuss a more principled approach to
aggregate statistical information from neighboring voxels into the weighted label fusion
procedure.

B. Majority Voting
Majority voting, which has been widely used as a label fusion method [30], [51] can be
derived as a special case of Local Weighted Voting. The key modeling assumption is to set
σ → ∞ in the image likelihood term, effectively using an improper distribution pn(I(x); In)
∝ C and assigning equal weight to all training subjects, which reduces (10) to
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(11)

If we use the probability vector image of L̃n(x) to define the label prior, we arrive at the
traditional Majority Voting algorithm where each training image casts a single, unit vote,
with no regards to the similarity between the training image and the test image. If one uses
nearest neighbor interpolation, each vote corresponds to one particular label [30], whereas
tri-linear interpolation yields a fuzzy voting strategy with each vote potentially spread over
multiple labels [51].

C. Global Weighted Fusion
Here, we consider β → +∞. As we now show, this results in an algorithm where, at each
voxel, training images that are globally more similar to the test image after registration are
weighted more. With β → +∞, the membership prior defined in (8) only takes nonzero
values if membership values at all voxels are equal, i.e.,

(12)

Thus, (4) is equivalent to a mixture model where the test subject is assumed to be generated
from a single, unknown training subject

(13)

The segmentation problem in (5) reduces to

(14)

Equation (14) cannot be solved in closed form. However, an efficient solution to this MAP
formulation can be obtained via expectation maximization (EM) [20]. Appendix B contains
the derivations of the algorithm. Here, we present the summary.

1. E-Step: Let L̂(i−1)(x) denote the segmentation estimate in the (i−1)th iteration. The
E-step updates the posterior of the membership associated with each training image

(15)

where  is the current estimate of the posterior probability that the test image was

generated from the nth training image. Therefore . The E-step in (15)
determines a single, global membership for each training image, based on all
voxels.

2. M-Step: The M-step updates the segmentation estimate (16)
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(16)

(17)

where  denotes the signed distance transform of label l in training subject n. We
note that (17) uses the LogOdds model of (7). The M-step in (16) performs an
independent optimization at each voxel x ∈ Ω; it determines the mode of a length-

 vector, where  is the number of labels. This vector is computed as a weighted

average of log label priors (i.e., signed distance transforms, ). The global
memberships computed in the previous E-step serve as weights and depend on the
current label map estimate. The algorithm iterates between the weighted averaging
of the M-step in (16) and the global weight computation of the E-step in (15). We

initialize the EM algorithm with  and terminate the
algorithm when the average change in the membership weights is less than a small
threshold, e.g., 0.01. We found that our EM algorithm typically converges in fewer
than 10 iterations.

D. Semi-Local Weighted Fusion
Finally, we consider a finite, positive β that results in an algorithm, where at each voxel,
training images that are more similar to the test image in a local neighborhood of the voxel
after registration are weighted more. Because the MRF prior couples neighboring voxels, the
exact marginalization in (5) becomes computationally intractable.

An efficient approximate solution can be obtained via variational EM (also referred to as
variational mean field) [33]. Variational EM uses a fully factorized distribution q over the
random field M

(18)

to approximate the posterior distribution p(M|L̂, I; {Ln, In}) of the random field M given the
segmentation estimate L̂, test image and the training data. qx(n) can thus be viewed as the
approximate posterior probability that voxel x was generated from the n-th training image.
The algorithm alternates between updating the approximate posterior q (the E-step) and the
segmentation L̂ (M-step). Appendix C includes the details of the derivation. Here, we
present the summary.

1. E-Step: Let L̂(i−1)(x) denote the segmentation estimate in the (i − 1)th iteration. The
approximate posterior q is the solution of the following fixed-point equation:

(19)

where . We compute (19) repeatedly, to iteratively solve for q(i).
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2. M-Step: The M-step updates the segmentation estimate L ̂ as follows:

(20)

(21)

Equation (21) uses the LogOdds model of (7) and is computed independently for
each voxel. Optimizing (21) entails determining the mode of a length-  vector,
which is a weighted average of the log label priors corresponding to each training
subject. The current approximate posterior q(i) for each training subject serve as
weights.

The variational EM algorithm consists of two levels of iterations: the inner loop that
repeatedly computes (19) in the E-step and the outer loop that alternates between the E- and
M-steps, until convergence. In the inner loop, at each iteration all qx’s are updated using
(19) and the neighboring values {qy : y ∈ } from the previous iteration. Once this inner
loop converges, the algorithm updates the segmentation using (21). To determine the
convergence of the outer loop, one can monitor the change in the segmentation estimate. In
practice, we terminate the algorithm when less than a predetermined fraction, e.g., 0.01% of
voxels change their segmentation estimate from one iteration to the next. Typically
convergence is achieved in fewer than 10 iterations.

V. Experiments
In this section, we present two sets of experiments. In the first experiment we compare
automatic segmentation results against manual delineations to objectively quantify the
accuracy of segmentation algorithms. The second experiment employs a separate collection
of brain MRI scans from 282 subjects to demonstrate that hippocampal volume
measurements obtained using the proposed label fusion framework can detect subtle volume
changes associated with aging and Alzheimer’s disease.

A. Experiment I: Comparison Against Manual Segmentation
The first set of experiments employs 39 brain MRI scans and corresponding manual
delineations of nine anatomical regions of interest (ROI) in two hemispheres. The images
were selected from a large data set, including an Alzheimer’s cohort, the recruitment of
which is described elsewhere [19], [35], [38]. The 39 subjects were selected to span a wide
age range and reflect a substantial anatomical variation due to dementia pathology. We note
that these are the same subjects used to construct FreeSurfer’s released probabilistic
segmentation atlas. Out of the 39 subjects, 28 were healthy and 11 were patients with
questionable (N = 5, Clinical Dementia Rating 0.5) or probable Alzheimer’s (N = 6, CDR
1). Ten of the healthy subjects were young (less than 30 years), nine middle-aged (between
30 and 60 years), and nine old (older than 60 years). The MRI images are of dimensions 256
× 256 × 256, 1 mm isotropic voxels and were computed by averaging three or four scans.
Each scan was a T1-weighted MP-RAGE, acquired on a 1.5 T Siemens Vision scanner. All
scans were obtained in a single session. Acquisition details are as follows: TR 9.7 ms, TE
4.0 ms, TI 20 ms, Flip angle 10°. These high quality images were then gain-field corrected
and skull-stripped. All the preprocessing steps were carried out using FreeSurfer tools [69].
The anatomical ROIs we used1 are white matter (WM), cerebral cortex (CT), lateral
ventricle (LV), hippocampus (HP), thalamus (TH), caudate (CA), putamen (PU), pallidum
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(PA), and amygdala (AM). The labeling protocol we employed was developed by the Center
for Morphometric Analysis and has been published and validated elsewhere [13], [28], [37],
[59]. An example segmentation obtained via the local weighted voting method of Section
IV-A is visualized in Fig. 2.

We use a volume overlap measure known as the Dice score [21] to quantify the quality of
automatic segmentations. Given an automatic segmentation L̂ and the corresponding manual
segmentation L, the Dice score of label l is defined as

(22)

where |·| denotes set cardinality. The Dice score varies between 0 and 1, with 1 indicating a
perfect agreement between the two segmentations.

1. Setting the Free Parameters Through Training: The proposed label fusion
algorithms have two stages, registration and label fusion, each with several input
parameters. To set these parameters properly, we initially performed training on
nine out of the 39 subjects. These nine subjects were then only used as training
subjects during the testing phase. Therefore, all results reported in this paper are on
the remaining 30 subjects and reflect generalization performance.

The registration stage has two independent parameters (as described in Appendix
A): γ controls the step size in the Gauss–Newton optimization and α determines
the smoothness of the final warp. We registered 20 random pairs of the nine
training subjects for a range of values of γ and α. For each pair of subjects, we
measured pairwise overlap by computing the Dice score between the warped
manual labels of the “moving” subject and the manual labels of the “fixed” subject.
We then selected (γ*, α*) that resulted in the best registration quality as measured
by the average pairwise label overlap.

The label fusion stage also has several independent parameters, depending on the
method used. These include the standard deviation σ of the image likelihood in (6),
the slope ρ of the distance transform used to compute the label prior in (7), and the
Markov weight β which is nonzero for the semi-local method in Section IV-D and
controls the average size of the image patches associated with the same training
subject.

To determine ρ, we performed nine leave-one-out segmentations on the training
subjects using the Majority Voting method of Section IV-B and label prior model
of (7) for a range of ρ values. The value that achieved the best segmentation
accuracy was ρ* = 1. We employed Local Weighted Voting (Section IV-A) and
Global Weighted Fusion (Section IV-C) to determine a local and global optimal
value for σ* (10 and 30), respectively. The optimal standard deviation for σ* the
local model was then used to determine the optimal value for β* (0.75) for the
semi-local model.

We performed leave-one-out cross-validation on the 30 test subjects using these
optimal parameters. For each test subject, all remaining 38 subjects were treated as
training subjects.

1The data included more ROIs, e.g., cerebellum, brainstem, third ventricle, which we did not use in our analysis.
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2. Comparison of Label Prior Models: Using the Majority Voting method (Section
IV-B), we compare three different label prior models (Section III-B): the LogOdds
(based on the signed distance transform) model of (7) and two instantiations of the
common approach that interpolates the vector image L̃n(x) of indicator probability
vectors, based on nearest neighbor interpolation (e.g., [30]) or tri-linear
interpolation (e.g., [51]). Fig. 3 shows a box-plot of Dice scores for these three
different models and all the ROIs. These results indicate that the LogOdds
representation provides a significantly better label prior for the label fusion
framework. This finding is in agreement with the main point of [52], where the
authors propose to employ signed distance transforms when “fusing” labels,
essentially arguing that this representation is more suitable for averaging complex
shapes such as the cortex. In the remainder of the paper, we use the LogOdds
model based on the signed distance transform to compute the label prior. Note that
the corresponding majority voting procedure is different from simply averaging the
signed distance transforms as proposed in [52] since the signed distance transforms
are exponentiated [see (7) and (11)] and converted into probabilities before
averaging. Interestingly, however, in Global and Semi-local Weighted Fusion, the
algorithms apply a weighted averaging to the signed distance transforms directly at
each iteration [see (17) and (21)].

3. Comparison of Label Fusion Methods and Benchmarks: In this section we provide
a comparison between the three weighted label fusion algorithms we derived in our
framework and four benchmarks.

The first benchmark is the whole-brain segmentation tool available in the
FreeSurfer software package [69]. The FreeSurfer segmentation tool employs a
unified registration-segmentation procedure that models across-scanner intensity
variation [24], [29]. We consider this a state-of-the-art whole-brain segmentation
tool since numerous imaging studies across multiple centers have shown
FreeSurfer’s robustness and accuracy as a segmentation tool. Furthermore, this is
our only benchmark that does not rely on the preprocessing step of pairwise
registering each training image with the test image. FreeSurfer’s segmentation tool
uses a probabilistic atlas constructed from the training data. In our experiments, we
constructed a separate leave-one-out atlas for each test subject based on the
remaining 38 subjects.

The second benchmark is the Majority Voting scheme based on the LogOdds prior,
which is similar to the shape averaging method proposed in [52] and other voting
based algorithms, e.g., [30], [51].

Our third benchmark uses the STAPLE algorithm [67] to fuse the propagated
labels. STAPLE was originally developed to combine manual tracings of the same
subject from multiple raters and estimate the underlying “ground truth” labeling. In
doing so, it ignores MRI intensity information and utilizes a probabilistic model
that encodes and estimates the rater performance for each label. STAPLE employs
Expectation Maximization to efficiently solve the estimation problem. One can also
use STAPLE to combine the transferred labels from each training subject, as
suggested in [53]. In our experiments we implemented a multilabel version of
STAPLE to combine the transferred training labels.

Our fourth benchmark is a modified version of majority voting that efficiently
selects a subset of training subjects that are “closest” to the test subject to vote on
the labels [1]. Various strategies to define the similarity between images have been
proposed. In our experiments, we found that the following strategy gave us the best
results. First, all training subjects were co-registered using an affine transformation
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model. The test subject was then normalized to this space by an affine registration
with the group mean image. Next, we computed the sum of squared intensity
differences (SSD) between each training subject and test subject within a
predefined mask. Similar to [1], the mask was computed as the intersection of the
foreground labels in all training subjects. Finally, the training subjects that had the
smallest SSD were used for majority voting. In the results we present here, we fix
the number of training subjects that were used to 10 and call the algorithm
“Majority10.” Later in this section, we investigate the effects of varying the
number of training subjects.

Fig. 4 reports segmentation accuracy for benchmarks and the three weighted label
fusion methods: Local Weighted Voting, Global Weighted Fusion, and Semi-Local
Weighted Fusion. Table I provides the mean Dice scores averaged over all subjects
and both hemispheres. Fig. 5 provides an overall comparison between the average
Dice scores achieved by the algorithms.

Semi-local Weighted Fusion yields the most accurate segmentations in all ROIs but
the Cortex (CT). The difference with the benchmarks is statistically significant (p <
0.05, Bonferroni corrected) for all ROIs, except the CT for which FreeSurfer yields
the best accuracy. Similarly, Local Weighted Voting yields statistically better
segmentations than the benchmarks.

On average, Local Weighted Voting and Semi-local Weighted Fusion yield better
segmentations than Global Weighted Fusion, mainly due to the large improvement
in the white matter, cerebral cortex and lateral ventricles, the segmentation of
which clearly benefits from the additional use of local intensity information. A
paired permutation test between the Local and Semi-local models reveals that in all
ROIs, a statistically significant improvement is achieved with the MRF model that
pools local intensity information (p < 0.05, Bonferroni corrected). Yet, as can be
seen from Fig. 6, this improvement is overall quite modest: less than 0.14% per
ROI.

Majority Voting which has gained recent popularity [1], [30], [42], [51], performs
significantly worse than the weighted label fusion methods. This result highlights
the importance of incorporating image similarity information into the label fusion
framework. We note, however, that the results we report for our Majority Voting
implementation are lower than the ones reported in [30]. This might be due to
differences in the data and/or registration algorithm. Specifically, normalized
mutual information (NMI) was used as the registration cost function in [30].
Entropy-based measures such as NMI are known to yield more robust alignment
results. We leave a careful analysis of this issue to future work.

Majority10 performs slightly better than Majority Voting. The improvement is
particularly significant in subcortical ROIs such as the caudate. STAPLE, an
alternative weighted fusion strategy, also yields slightly better average
segmentation accuracy than Majority Voting. STAPLE’s performance, however, is
significantly worse than the three weighted label fusion algorithms derived based
on the proposed probabilistic framework. Once again, this difference underscores
the importance of employing the MRI intensity information in determining the
weights for label fusion. FreeSurfer, which we consider to represent the state-of-the
art atlas based segmentation, on average, yields better segmentation accuracy than
our remaining benchmarks. Yet we stress that FreeSurfer integrates registration and
segmentation, while the performance of the remaining benchmarks were limited by
our choice of the pairwise registration preprocessing step.
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Fig. 7 illustrates the most common mistakes made by Global Weighted and Semi-
local Weighted Fusion. Overall, we observe that Global Weighted Fusion tends to
over-segment convoluted shapes such as the cortex. This is probably due to the
difficulty of aligning such shapes. Majority voting has no way of recovering from
such errors since it does not utilize image intensity information. Local Weighted
Voting and Semi-local Weighted Fusion do not employ information on
neighborhood structure, whereas atlas-based methods, such as FreeSurfer, do. For
example, FreeSurfer uses a non-stationary, anisotropic Markov Random Field
model to encode that the pallidum is more medial to the putamen and there is no
white matter in between the two, i.e., they border each other. Our label fusion
framework does not model such high-level topological information and thus may
yield segmentations where anatomical relationships are violated.

4. The Effect of the Number of Training Subjects: In the previous section, for all the
algorithms we employed a leave-one-out validation strategy, where for each test
subject all remaining 38 subjects were treated as the training data. In this section,
we explore how the accuracy results vary as one varies the number of training
subjects. This point has received considerable attention in prior work, e.g., [1],
[30]. We investigate two strategies: 1) randomly selecting a set of training subjects,
2) selecting the best training subjects that are globally most similar to the test
subject. As described in the previous section, based on [1], [42], we implemented
strategy 2 by computing the sum of squared differences between the intensity
values of the test subject and each training subject in a predefined mask after affine
registration. This strategy does not add a substantial computational burden to the
algorithm, since the training subjects are co-registered offline and the affine
normalization of the test subject takes negligible time compared with the pairwise
registrations required for the label fusion stage. We compare the performance of
two segmentation algorithms using these two strategies: Majority Voting and Local
Weighted Voting. Fig. 8 reports the mean Dice score as a function of the number of
training subjects. The mean Dice score is an average over all ROIs, all 30 test
subjects, and at least 20 random trials (in strategy 1). The individual results for
each ROI are qualitatively similar to this average plot and thus are not shown. For
strategy 1, i.e., the random selection of the training subjects, average segmentation
performance monotonically improves as a function of the number of training
subjects for both Majority Voting and Local Weighted Voting. With Majority
Voting, this monotonic behavior was also observed and modeled in [30]. The
difference between the two label fusion algorithms is approximately constant. The
rate of improvement seems to be flattening around mid-thirties, suggesting that we
should not expect a significant improvement in performance with the addition of
more subjects within the observed anatomical variation. For a fixed number of
training subjects, selecting the globally most similar training subjects, i.e., strategy
2 improves the performance of both algorithms. With strategy 2, Majority Voting’s
performance however is not monotonic and starts to decrease beyond 10. In
agreement with the empirical observations in [1], as the number of training subjects
approaches the total number of available training subjects in the database, the
performance of the strategies for training set selection converges to the same level,
the accuracy obtained by employing the whole dataset for training. This level of
accuracy is higher for Local Weighted Voting, the performance of which
monotonically increases with the number of training subjects for both strategies.
Interestingly, with strategy 2, the performance of Local Weighted Voting flattens
around 15 training subjects. Based on this observation, we conclude that we can use
strategy 2 to speed up Local Weighted Voting substantially with minimal effect on
segmentation accuracy.
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5. The Effect of the MRF Prior: To investigate the effect of the MRF membership
prior we applied the Semi-local Weighted Fusion method with four different values
of β = {0.5, 0.75, 1.0, 1.25} to the 30 test subjects. Note that during the training
phase, we established β = 0.75 as optimal. Fig. 9 reports the average Dice scores
for Semi-local Weighted Fusion with these β values, Global Weighted Fusion,
which corresponds to β → ∞, and Local Weighted Voting, which corresponds to β
= 0.

In four out of the nine ROIs (WM, CT, LV, TH) Semi-local Weighted Fusion with
β = 0.075 achieves the best results. In the remaining ROIs, β = 0.75 yields one of
the best. This underscores the importance of pooling local intensity information in
the label fusion procedure and the success of our training phase. The improvement
over Global Weighted Fusion is particularly pronounced for the white matter,
cerebral cortex and lateral ventricle, which are essentially defined by tissue
intensity. For putamen (PU) and pallidum (PA), Global Weighted Fusion achieves
one of the best results. This suggests that the segmentation of these two ROIs has
little to gain by employing local intensity information. The gap between the Semi-
local (β = 1.25) and Global Weighted Fusion in these two ROIs is probably because
variational EM fails to find good optima for these regions whereas Expectation
Maximization is better at exploring the space of solutions in the simpler case of
global memberships. Furthermore, this difference can be due to the fact that the
image intensities in the putamen and pallidum are similar to neighboring structures
and thus local intensity information is less useful in segmenting these ROIs.

6. Runtime: Table II lists the average run-times for the seven algorithms compared
above. Majority10 and FreeSurfer are the fastest algorithms with less than 10 h of
CPU time required for each test subject. Majority10 uses only 10 training subjects,
which are globally most similar to the test subject as measured by the sum of
squared differences after affine-normalization. The initial training subject selection
stage takes about an hour. The second stage, i.e., Majority Voting with 10 training
subjects takes about a quarter of what Majority Voting takes with all 38 training
subjects. FreeSurfer, on the other hand, employs a parametric atlas and needs to
compute only a single registration. The remaining algorithms take more than 20 h
of CPU time on a modern machine (Intel Xeon 3 GHz with a 32 GB RAM), most
of which is dedicated to the many registrations of the test image with the training
data. Local Weighted Voting and Majority Voting require minimal computation
time once the registrations are complete, since they simply perform voxelwise
averaging. The remaining three algorithms (STAPLE, Global and Semi-local
Weighted Fusion) employ iterative optimization methods (EM, EM and variational
EM, respectively) and require longer run-times. It is important to note that these
run times can be reduced substantially using the same preselection strategy as
Majority 10. In particular, our experiments with Local Weighted Voting suggest
that we can lower the run time of this method by at least a half with almost no
reduction in accuracy.

B. Experiment II: Hippocampal Volumetry
In a second set of experiments, we aim to demonstrate that the proposed label fusion
framework yields accurate volumetric measurements of the hippocampus. Hippocampal
volume has been shown to correlate with aging and predict the onset of probable
Alzheimer’s Disease [25], [34].

We use a FreeSurfer tool (mri_label_volume) [69] that computes volumetric measurements
from a given label map to obtain hippocampal volume measurements. This tool uses a
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partial volume model for boundary voxels to accurately estimate the volume of a particular
ROI. As an initial experiment, we compare hippocampal volume measurements obtained via
automatic segmentations (FreeSurfer, Global Weighted Fusion, Local Weighted Voting, and
Semi-local Weighted Fusion) against the ones computed from manual delineations in the 39
subjects used in the first experiment. Fig. 10(a) reports volume differences between the
automatic and manual segmentations;

Fig. 10(b) shows relative volume difference values, defined as in [16]

(23)

where V(l, L) denotes the computed volume of label in label l map L. These results indicate
that both Local Weighted Voting and Semi-local Weighted Fusion provide more accurate
hippocampal volume measurements than Global Weighted Fusion and Majority Voting.

Since Local Weighted Fusion is much less computationally expensive than Semi-local
Weighted Fusion, we choose to employ the former algorithm in the second part of the
experiment, where we automatically segment brain MRI scans of 282 individuals. This data
set excludes the 39 subjects used in training. The MRI images are of dimensions 256 × 256
× 256 with 1 mm isotropic voxels and were obtained using the same processing and
acquisition protocol as the 39 images of the first experiment. The population included young
(less than 30 years, N = 105), middle-aged (between 30 and 60 years, N = 30) and old
subjects (older than 60 years N = 78) (see Fig. 11), in addition to patients suffering from
very mild to mild Alzheimer’s Disease (AD) (N = 69). Among the patients, 48 subjects met
the Clinical Dementia Rating (CDR) [44] criteria of questionable AD (CDR 0.5) and 21
subjects had probable AD (CDR 1). The CDR 0.5 subpopulation contained 32 women,
whereas the probable AD group included 21 women. The groups did not differ in years of
education. Detailed descriptions of the recruitment procedures and criteria for subject
recruitment have been published elsewhere [19], [35], [38].

Based on age and clinical data, we subdivided the 282 subjects into five groups. The first
three groups contained healthy individuals of different age groups: young, middle-aged, and
old. The fourth group included the questionable AD patients (CDR 0.5) and the fifth group
included the probable AD (CDR 1.0) subpopulation.

Fig. 12 shows the average hippocampal volume measurements for these five groups.
Volumetric reduction due to aging and AD can be seen from this figure. These findings are
in agreement with known hippocampal volume changes in AD and aging [23] and
demonstrate the use of the proposed label fusion method on a large pool of subjects, for
which manual segmentation may not be practical.

VI. Discussion
Our experiments demonstrate the accuracy and usefulness of the label fusion framework as a
segmentation tool. The proposed framework yields better accuracy than current state-of-the-
art atlas-based segmentation algorithms, such as FreeSurfer.

The proposed framework should be viewed as an initial attempt to generalize segmentation
algorithms based on label fusion, or a multi-atlas approach, which have recently shown
promise and gained popularity with hardware advancements and developments of fast
registration algorithms. In this paper, we investigated several modeling assumptions and
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derived four different instantiations of label fusion, one of which is the popular Majority
Voting.

Majority Voting simply determines the most frequent label at each voxel, where each
training subject gets an equal vote. Yet, recent work suggests that incorporating the
similarity between the test image and training subjects can improve segmentation quality.
For example, [1] employs a subset of training subjects that are close in age to the test
subject. Alternative strategies include using an image-based measure to quantify anatomical
similarity, either at a local or global level. This similarity can then weigh the label votes
during fusion, where more similar training subjects are given a larger weight.

Our theoretical development based on the proposed nonparametric probabilistic model
yields three such algorithms, which solve the same problem for different settings of a single
model parameter β. This parameter controls the interactions between neighboring voxels in
the Markov prior we construct on the latent membership random field encoding the
(unknown) association between the test subject and training data. Smaller β values allow for
this association to vary more locally. Specifically, β = 0 treats each voxel independently,
whereas β → ∞ corresponds to assuming a single association for the whole image. A finite,
nonzero β encourages local patches of voxels to have the same membership.

These three cases are solved with different inference algorithms. The most efficient case
corresponds to β = 0, where the global optimum can be computed via simple voxelwise
counting. The other two cases are solved with more expensive iterative optimization
methods, such as Expectation Maximization and Variational EM. Exact inference for the
finite, nonzero β case is intractable, yet our experiments suggest that approximate numerical
solutions yield good segmentation accuracy.

The development of the proposed framework makes several simplifying assumptions. In the
following, we discuss a number of directions that can be explored to relax these
assumptions. We consider these as important avenues for future research, which promise to
improve the performance of label fusion style segmentation.

1. In the graphical model of Fig. 1, we made the convenient assumption that the
transformations {Φn} are known and solved for these in a preprocessing pairwise
registration step (see Appendix A). Ideally, however, one would like to integrate
over all possible transformations, which has a prohibitively high computational
cost. Recent work attempted to approximate this integration for a single registration
[3], [40]. A more practical approach is to compute the registrations jointly with the
segmentations, cf. [8], [72]. Here, we avoided this particular route, since the
multiple registrations performed between the test subject and training data were
already computationally challenging.

2. The simple additive Gaussian noise model presented in Section III-A has two
crucial consequences: 1) the registration cost function is a sum of squared intensity
differences, and 2) in weighted label fusion, the weights are a function of sum of
squared intensity differences, i.e., anatomical similarity is measured based on
squared differences of intensity values. This model makes the algorithm sensitive
to intensity variations due to imaging artifacts. Thus, the presented algorithms are
only suitable for intensity-normalized images. An alternative strategy is to employ
a more sophisticated image likelihood model that would motivate information
theoretic similarity measures, such as mutual information.

3. The main drawback of label fusion style algorithms is the computational
complexity introduced by the multiple pairwise registrations and the manipulation
of the entire training data. Traditional atlas-based segmentation approaches avoid
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this problem by using parametric models of anatomical variation in a single
coordinate system. In recent work, we used a mixture modeling strategy, called
iCluster, to model anatomical heterogeneity with multiple atlases [54]. We believe
a combination of the label fusion framework presented in this paper and iCluster
can be employed to reduce the computational burden by summarizing the training
data with a small number of templates [66].

4. An alternative strategy to reduce the computational demand of label fusion is to
employ a nonparametric model in a single coordinate system, to which the test
subject is normalized with a single registration procedure. This approach, which
entails the co-registration of the training subjects akin to atlas-based segmentation,
was recently shown to produce accurate segmentation [5], [17]. The application of
this strategy within the proposed label fusion framework is a direction to be
explored.

5. Another strategy to reduce computational burden is to preselect the most useful
training subjects and apply label fusion on these, as recently proposed by Aljabar et
al. [1]. We explored one particular instantiation of this approach, where the subset
of training subjects was selected to include the training subjects globally most
similar to the test subject after affine normalization. It is clear that this criterion to
preselect the most relevant training subjects is related to our definition of the image
likelihood term p(I; In). Yet, a crucial difference is that the image likelihood term is
computed by nonlinearly registering the training and test images, while the
preselection is done based on an affine normalization. Alternative preselection
strategies should also be investigated.

VII. Conclusion
In this paper, we investigated a generative model that leads to label fusion style image
segmentation methods. Within the proposed framework, we derived several algorithms that
combine transferred training labels into a single segmentation estimate. With a dataset of 39
brain MRI scans and corresponding label maps obtained from an expert, we empirically
compared these segmentation algorithms with FreeSurfer’s widely-used atlas-based
segmentation tool [69]. Our results demonstrate that the proposed framework yields accurate
and robust segmentation tools that can be employed on large multi-subject datasets. In a
second experiment, we employed one of the developed segmentation algorithms to compute
hippocampal volumes in MRI scans of 282 subjects. A comparison of these measurements
across clinical and age groups indicate that the proposed algorithms are sufficiently sensitive
to detect hippocampal volume differences associated with early Alzheimer’s Disease and
aging.
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Appendix A. Pairwise Registration
In deriving the segmentation algorithms in this paper, we make a crucial simplifying
assumption that the warps {Φn} that map individual training images to the test image
coordinates are observed. In practice, we compute these warps via a pairwise registration
algorithm. Over the past decade, a wide variety of registration algorithms have been
proposed in the literature. The optimal choice of a registration algorithm remains an open
question that can be partially guided by a recent study that compares a broad set of pairwise
registration algorithms [39]. Here, we make our choice based on the following three criteria.

1. Speed and computational efficiency. Since the test subject must be registered with
each training subject, we need to perform registration many times. Recent
algorithms based on Thirion’s Demons algorithm [61] yield fast and efficient inter-
subject registration.

2. Rich deformation model. The quality of the segmentation results depends on the
accuracy of the alignment. The Klein et al. study [39] found that a rich, dense
deformation model, in general, yields better alignment accuracy. In this work, we
rely on a particular parametrization of diffeomorphic—smooth and invertible—
transformations.

3. SSD similarity measure. To be consistent with our choice of the image likelihood
model in (6), we use the sum of squared differences (SSD) as the similarity
measure. As we discuss in Section VI, this particular choice is probably not optimal
and can be improved by employing more sophisticated similarity measures, e.g.,
mutual information.

Based on these criteria, we choose the asymmetric bidirectional image-template registration
algorithm, details of which are presented in [56]. This method is based on an efficient
Demons-style algorithm [65] that uses a one-parameter subgroup of diffeomorphism. The
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warp Φ is parameterized with a smooth, stationary velocity field v: ℝ3 ↦ ℝ3 via an
Ordinary Differential Equation (ODE) [4]

and the initial condition Φ(x, 0) = x. The warp Φ(x) = exp (v)(x) can be computed efficiently
using scaling and squaring and inverted by using the negative of the velocity field: Φ−1 =
exp(−v) [4].

We impose an elastic-like regularization on the stationary velocity field

(24)

where λ > 0 is the warp stiffness parameter, Zλ is a partition function that depends only on
λ, and xj and vk denote the jth and kth component (dimension) of position x and velocity v,
respectively. Higher values of the warp stiffness parameter λ yield more rigid warps.

To construct the registration objective function, we assume a simple additive Gaussian noise
model that leads to the following optimization problem for registering the nth training image
to the test subject

(25)

where σ2 is the stationary noise variance, and Φn ≜ exp(v̂n).

Note that (25) warps the training image (i.e., template) which makes the model truly
probabilistic (for a discussion see [2], [40]). Bi-directional or symmetric approaches that
apply warps to both images seem to yield more accurate alignment [7], [9], [14], [65].
Recently, we proposed an objective function that reconciles the practical advantages of
symmetric registration with the asymmetric nature of image-template registration [56]

(26)

where det(∇ exp(−v)(y)) denotes the determinant of the Jacobian of the inverse
transformation exp(−v)(·) with respect to the spatial coordinates and arises from the change
of coordinates y = Φ(x) and discretization of the continuous similarity measure ∫ℝ3 [I(x) −
Ĩn (Φ(x))]2 dx. The Jacobian term is larger than 1 in regions where an area in image I is
mapped to a smaller area in Ĩn and less than 1 elsewhere.

We solve (26) using the log-domain Demons framework [65], which decouples the
optimization of the first and second terms by introducing an auxiliary transformation. The
update warp is first computed using the Gauss–Newton method. The regularization is
achieved by smoothing the updated warp field. It can be shown that the smoothing kernel
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corresponding to (24) can be approximated with a Gaussian; ,
where α = γ/8λσ2 and γ > 0 controls the size of the Gauss-Newton step [12], [46].

Appendix B. Derivation of the EM Algorithm
Here, we present the derivation of the EM algorithm for the Global Weighted Fusion method
presented in Section IV-C. We first rewrite (1) using (4)

(27)

Let q be any distribution on M. The objective function of (27) is bounded from below by

(28)

where KL(·||·) denotes the nonnegative Kullback–Leibler (KL) divergence defined as

(29)

Equation (28) is the negative of what is usually called the free energy [33], which we will
denote (q, L) since it is a function of two unknown variables: the label map (segmentation)
L and the distribution q. The KL divergence achieves zero only at q*(M) = p(M|L, I; {Ln,
In}), in which case the negative free energy (q*, L) is merely a function of L and is equal
to the objective function of (27).

By simple algebraic manipulations, the free energy can be equivalently expressed as

(30)

where H(q) denotes the entropy of q.

One interpretation of the Expectation Maximization algorithm is based on a minimization of
the free energy over the two variables q and L [45]. The free energy provides a bound on the
true objective function, which is optimized via coordinate-descent by alternating between
the optimization over L for fixed q and vice versa. Crucially, we can see from (29) that for a
fixed L̂, q* (M) = p(M|L̂, I; {Ln, In}) minimizes (·, L ̂). The computation of q*(M) is called
the E-step. In the M-step, the algorithm minimizes (q*(M), L) over L. Since (q*, L̂) is
equal to the objective function evaluated at L̂, the M-step is guaranteed to improve the
objective function, effectively guaranteeing convergence to a local optimum.

We can now derive the update equations for the two steps.

E-Step
For a fixed segmentation estimate L ̂(i−1), we obtain

Sabuncu et al. Page 24

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 January 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(31)

where (31) follows from the assumptions of the generative model presented in Section II.
Since, in the global model we assume β → ∞, p(M) (and therefore q*(M)) is zero unless
M(x) is equal to a constant index n ∈ {1, …, N} for all x ∈ Ω. We denote these nonzero
elements with mn. Thus, the E-step can be simplified to

(32)

M-Step

For a given q(i) (or, equivalently ), the label maps are updated using (30)

(33)

where (33) uses (32) and the assumptions of the generative model presented in Section II,
and omits terms that are constant with respect to L. Note that in (33), each voxel can be
optimized independently.

Appendix C. Derivation of the Variational EM Algorithm
Here, we derive the variational EM algorithm for the Semi-local Weighted Fusion method
presented in Section IV-D. The key difference between the EM algorithm derived in the
previous section and the variational EM algorithm is due to the MRF prior p(M) (Section
III-C) with a finite, nonzero β that allows M(x) to vary spatially, while encouraging
neighboring voxels to take the same value. The coupling between neighboring voxels
introduced by the MRF prior makes the M-step of the algorithm computationally intractable.
One approach to compute an approximate solution is to impose a structure on q[33]. This
loosens the lower bound of (28), since q*(M) = p(M|L, I; {Ln, In}) may not have the
structure we impose on q. In other words, variational EM relaxes the optimization problem
by replacing the objective function with an easier-to-optimize loose lower bound.

In our model, we use a (standard) fully factorized structure for q

(34)

E-Step
First, we derive the update rule for q for fixed L ̂(i−1). Substituting (3) into (28) and omitting
terms not containing M, we obtain
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(35)

(36)

(37)

where  denotes expectation with respect to q. Using (8), we rewrite the first term of (37) as

(38)

(39)

where we used the linearity of expectation and 〈qx, qy〉 denotes the inner product between
the probability vectors qx and qy. Inserting (39) into (37) we obtain

(40)

To solve (40), we can differentiate the objective function with respect to each qx and equate

to zero. With the probability constraint, i.e., , ∀x ∈ Ω, this implies (19).

M-Step
With the structure of (34), the segmentation update can be computed using (30)

(41)

(42)

Since each voxel can be considered independently, we obtain (20).
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Fig. 1.
Graphical model that depicts the relationship between the variables. Squares indicate
nonrandom parameters, circles indicate random variables. Replications are illustrated with
plates (bounding L(x) and I(x)). The |Ω| in the corner of the plate indicates the variables
inside are replicated that many times (i.e., once for each voxel), and thus are conditionally
independent. Shaded variables are observed.
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Fig. 2.
A typical segmentation obtained with the local mixture model. 2D slices are shown for
visualization only. All computations are done in 3D.
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Fig. 3.
Dice scores obtained using Majority Voting and various label prior models: Nearest
Neighbor (red), Tri-linear (green), and LogOdds (blue). Dice scores for the two hemispheres
were averaged. On each box, the central mark is the median, the edges of the box are the
25th and 75th percentiles. The whiskers extend to 2.7 standard deviations around the mean,
and outliers are marked individually as a “*.”
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Fig. 4.
Dice scores for all methods (top: left hemisphere, bottom: right hemisphere): FreeSurfer
(red), Majority Voting (black), STAPLE (light green), Majority10 (dark green), Global
Weighted Fusion (light blue), Local Weighted Voting (dark blue), Semi-local Weighted
Fusion (purple). On each box, the central mark is the median, the edges of the box are the
25th and 75th percentiles. The whiskers extend to 2.7 standard deviations around the mean,
and outliers are marked individually as a “*.”
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Fig. 5.
Average Dice scores for each algorithm (FS: FreeSurfer, Majority: Majority Voting,
STAPLE, Majority10, Global: Global Weighted Fusion, Local: Local Weighted Voting, and
Semi-Local: Semi-local Weighted Fusion). Error bars show standard error. Each subject and
ROI was treated as an independent sample with equal weight.
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Fig. 6.
Average Dice differences: Semi-Local Weighted Fusion minus Local Weighted Voting.
Overall, Semi-Local Weighted Fusion achieves better segmentation. Error bars show
standard error.
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Fig. 7.
The segmentations of the subject that Semi-local Weighted Fusion performed the worst on.
Left to right: FreeSurfer, Global and Semi-local Weighted Fusion. Common mistakes
(indicated by arrows): (A) Global Weighted Fusion tends to over-segment complex shapes
like the cortex. (B) Semi-local Weighted Fusion does not encode topological information, as
FreeSurfer does. Hence it may assign an “unknown” or “background” label (white) in
between the pallidum (blue), putamen (pink), and white matter (green).
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Fig. 8.
The average Dice score for Majority Voting (Majority) and Local Weighted Voting (Local)
as a function of the number of training subjects. We consider two strategies to select the
training subjects: (1) randomly selecting a set of training subjects (Rand), (2) selecting the
best training subjects that are globally most similar to the test subject (Best). The average
Dice score reaches 83.9% for Majority Voting and 87.8% for Local Weighted Voting, when
all 38 subjects are used.
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Fig. 9.
Average Dice scores for different β values in the MRF membership prior of (8). Error bars
show standard error.
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Fig. 10.
Hippocampal volume differences on the data from Experiment 1. On each box, the central
mark is the median, the edges of the box are the 25th and 75th percentiles. The whiskers
extend to 2.7 standard deviations around the mean. (a) Automatic minus Manual volumes.
(b) Relative volume differences [(23)].
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Fig. 11.
Age histogram of 282 subjects in Experiment 2.
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Fig. 12.
Hippocampal volumes for five different groups in Experiment 2. Error bars indicate standard
error across subjects. Stars indicate that the volume measurements in the present group are
statistically significantly smaller than the measurements in the neighboring group to the left.
(Unpaired, single-sided t-test. * p < 0.05, ** p < 0.01). (a) Left hippocampus. (b) Right
hippocampus.
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