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BACKGROUND AND PURPOSE
NO produced by endothelial NOS is needed for normal vascular function. During diabetes, aging and hypertension, elevated
levels of arginase can compete with NOS for available L-arginine, reducing NO and increasing superoxide (O2

.-) production
via NOS uncoupling. Elevated O2

.- combines with NO to form peroxynitrite (ONOO-), further reducing NO. Oxidative species
increase arginase activity, but the mechanism(s) involved are not known. Our study determined the mechanism involved in
peroxynitrite and hydrogen peroxide-induced enhancement in endothelial arginase activity. We hypothesized that oxidative
species increase arginase activity through PKC-activated RhoA/Rho kinase (ROCK) pathway.

EXPERIMENTAL APPROACH
Arginase activity/expression was analysed in bovine aortic endothelial cells (BAEC) treated with an ONOO- generator (SIN-1)
or H2O2. Pretreatment with inhibitors of Rho kinase (Y-27632) or PKC (Gö6976) was used to investigate the mechanism
involved in arginase activation.

KEY RESULTS
Exposure to SIN-1 (25 mM, 24 h) or H2O2 (25 mM, 8 h) increased arginase I expression and arginase activity (35% and 50%,
respectively), which was prevented by ROCK inhibitor, Y-27632, PKC inhibitor, Gö6976 or siRNA to p115-Rho GEF. There was
an early activation of p115-Rho GEF (SIN-1, 2 h; H2O2, 1 h) and Rho A (SIN-1, 4 h; H2O2, 1 h) that was prevented by using
the PKC inhibitor. Exposure to SIN-1 and H2O2 also reduced NOS activity, which was blocked by pretreatment with
p115-RhoGEF siRNA.

CONCLUSIONS AND IMPLICATIONS
Our data indicate that the oxidative species ONOO- and H2O2 increase arginase activity/expression through PKC-mediated
activation of RhoA/Rho kinase pathway.

Abbreviations
a-ISPF, a-isonitrosopropiophenone; BAEC, bovine aortic endothelial cells; ROCK, Rho kinase; RhoGEF, Rho guanosine
nucleotide exchange factor

Introduction
NO is necessary for normal vascular function and integrity.
NO produced from endothelial cells activates guanylate

cyclase in smooth muscle cells to cause hyperpolarization
and vasodilatation. Several studies have shown that reduced
levels of NO contribute to vascular endothelial dysfunction
in diabetes (Romero et al., 2008; Caldwell et al., 2009; Zhang
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et al., 2009) and aging (Santhanam et al., 2008; Kim et al.,
2009). Vascular availability of NO may be affected either due
to reduced synthesis or increased scavenging of NO by super-
oxide (Sankaralingam et al., 2010). NO is produced from
L-arginine by the enzyme NOS; however, arginase competes
for this same substrate to produce urea and L-ornithine.
Increased arginase activity can thus reduce availability of
L-arginine for NOS, causing a decrease in NO production and
a rise in superoxide generation due to uncoupling of NOS
(Kim et al., 2009). Several vascular complications including
pulmonary hypertension, diabetic erectile dysfunction,
ischaemia/reperfusion, atherosclerosis and aging-associated
endothelial dysfunction have been linked to increased argi-
nase activity (Bivalacqua et al., 2001; Hein et al., 2003; Zhang
et al., 2004; Morris et al., 2005; White et al., 2006; Santhanam
et al., 2008).

Arginase exists in two isoforms that are encoded by dif-
ferent genes. Arginase I is cytosolic, located primarily in the
liver and is a component of the urea cycle. Arginase II is
mostly mitochondrial, regulates cellular ornithine/arginine
concentrations and is expressed mainly in the kidney, brain,
prostate and small intestine. Both arginase I and arginase II
have been shown to be expressed in vascular endothelial cells
(Zhang et al., 2001; Romero et al., 2008) and vascular smooth
muscle cells (Zhang et al., 2001; Ming et al., 2004).

The upstream mediators involved in activation of argin-
ase have not been extensively investigated. Oxidative stress is
a hallmark of diabetes, aging and atherosclerosis and contrib-
utes to endothelial dysfunction. Thus, oxidative radicals may
be a key mediator for elevated arginase levels in such condi-
tions. Indeed, it has been shown that exposure to hydrogen
peroxide (H2O2) increases arginase activity in porcine arteries
(Thengchaisri et al., 2006), and peroxynitrite (ONOO-) has
been reported to increase arginase activity in endothelial cells
(Sankaralingam et al., 2010). Alhough these reports suggest a
role for oxidative stress in modulating arginase activity, the
mechanism(s) involved has not been elucidated.

We previously showed that diabetes/high glucose
increases the activity of arginase through enhanced RhoA/
Rho kinase (ROCK) function (Romero et al., 2008). The
RhoA/ROCK pathway is also linked to arginase elevation in
inflammatory bowel disease (Horowitz et al., 2007) as well as
in endothelial cells exposed to thrombin (Ming et al., 2004).
RhoA-GDP is activated by Rho guanosine nucleotide
exchange factor (Rho GEF), which promotes exchange of
GDP for GTP. The active RhoA-GTP stimulates ROCK to
trigger downstream signalling (Loirand et al., 2008). Several
Rho GEFs have been characterized; however, activation by
the protein–protein interaction appears to involve only
three types – PDZ-Rho GEF (Arhgef11), LARG (Arhgef12) and
p115-Rho GEF (Arhgef1, lsc) (Loirand et al., 2008). All these
Rho GEFs are expressed in aorta and mesenteric arteries of
rats and mice (Loirand et al., 2008). Phosphorylation and
activation of p115-Rho GEF through PKCa is reported to
increase endothelial permeability in response to thrombin
(Holinstat et al., 2003). RhoA plays a significant role in
endothelial permeability, endothelial cell migration and
angiogenesis (Gavard and Gutkind, 2008; Loirand et al.,
2008). Thus, stimulation of Rho GEF and subsequently the
RhoA/Rho kinase pathway could provide a link in the acti-
vation of arginase.

The aim of our study was to determine the mechanism
involved in oxidant-induced enhancement in endothelial
arginase activity and if it is mediated through activation of
the RhoA/Rho kinase signalling pathway. These signalling
processes could contribute to vascular dysfunction. Thus, this
work has therapeutic implications for limiting arginase activ-
ity by targeting this pathway.

Methods

Reagents and chemicals
Oxidative radical inducers, SIN-1 (ONOO- generator) and
hydrogen peroxide; inhibitors for PKCa and b (Gö6976) and
an antioxidant/NADPH oxidase inhibitor (apocynin);
enzymes: catalase and superoxide dismutase; and chemicals
for arginase activity including urea, manganese chloride
(MnCl2), a-isonitrosopropiophenone (a-ISPF) and peroxyni-
trite were purchased from Sigma Aldrich (St. Louis, MO).
L-012 for superoxide assay was from Wako Chemicals (Rich-
mond, VA). Also purchased were antibodies for Western blot
analysis as follows: arginase I (BD Biosciences, San Diego,
CA), arginase II (Santa Cruz Biotechnology Inc., Santa Cruz,
CA), a-actin (Sigma Aldrich, St. Louis, MO), RhoA (Abcam,
Cambridge, MA) and p115-Rho GEF (Cell Signaling, Boston,
MA). Peroxynitrite decomposition catalyst, 5,10,15,20-
tetrakis (4-sulphonatophenyl) porphyrinato iron (III)
(FeTPPS) and Rho kinase inhibitor (R)-(+)-trans-N-(4-pyridyl)-
4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632) were
obtained from Calbiochem (San Diego, CA).

Cell culture and treatment
Bovine aortic endothelial cells (BAEC) and endothelial growth
media were purchased from Cell Applications (San Diego, CA).
Cells were used between passages 4 and 7 and grown at 37°C in
a humidified atmosphere with 5% CO2. Upon 70% confluency,
cells were deprived of serum (2 h) and then treated in M-199
media (Invitrogen, Carlsbad, CA) supplemented with 0.2%
FBS, 50 mM L-arginine, 100 U·mL-1 penicillin, 100 mg mL-1

streptomycin and L-glutamine. This media was used to adjust
for L-arginine and serum concentration before treatment.
L-Arginine concentration (50 mM) in treatment media corre-
sponds to normal plasma arginine levels (40–100 mM)
(Romero et al., 2006). Stock concentrations of chemicals were
prepared in dimethyl sulphoxide (DMSO) (apocynin) or water
(Gö6976, SIN-1, FeTPPS, and SOD). Final concentration of
DMSO while treating cells was less than 0.001%. Concentra-
tions of Gö6976 (2 mM) (Holinstat et al., 2003), apocynin
(30 mM) (Romero et al., 2008), FeTPPS (10 mM) (Tawfik et al.,
2008) and Y-27632 (10 mM) (Romero et al., 2008) were based
on previously published studies in addition to confirming no
cellular toxicity in our system. Inhibitors were added one hour
before the addition of SIN-1 or H2O2 and remained throughout
the incubation period. Activated neutrophils generate around
0.08–0.48 mM H2O2; however, it is rapidly consumed (Witting
et al., 2007). Most of the cell culture studies used 20–200 mM
H2O2; the concentration was varied based on incubation time
and cell type.

SIN-1 generates both superoxide and NO within the cells,
which combine to form peroxynitrite. The production of
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ONOO- by SIN-1 is more stable than treating cells directly
with peroxynitrite, which decomposes rapidly; thus, we used
SIN-1 to induce peroxynitrite stress in most experiments. We
confirmed the SIN-1 experiments by determining the effect of
authentic ONOO- on arginase activity. The concentration and
time points for SIN-1 or H2O2 were selected based on prelimi-
nary experiments for cell toxicity and ascertaining their oxi-
dative property in terms of nitrotyrosine protein formation
(SIN-1) or oxidative species production (H2O2). FeTPPS was
used for decomposing ONOO- as it isomerizes ONOO- to
nitrates, does not complex with NO and exhibits minimal
effect on SOD activity.

Oxidative species assay
Cells were plated in 96-well white wall plates (Corning Life
Sciences, Lowell, MA) at a density of 20 000 cells per well.
After treatment, cells were washed using Hanks buffer
(5.4 mM KCl, 0.3 mM Na2HPO4, 0.4 mM KH2PO4, 4.2 mM
NaHCO3, 1.3 mM CaCl2, 0.6 mM MgCl2, 0.6 mM MgSO4,
137 mM NaCl and 5.6 mM glucose) and further incubated
with the same buffer containing 400 mM L-012 dye and 1 mM
o-vanadate. Readings were taken immediately using a lumi-
nometer (POLARstar OPTIMA, Durham, NC). Blank wells
contained buffer without cells, and these readings were sub-
tracted from other wells.

Arginase activity assay
After exposure to treatments, cells were washed with ice-cold
PBS and lysed using a lysis buffer (50 mmol·L-1 Tris–HCl,
0.1 mmol·L-1 EDTA and EGTA, pH 7.5 containing protease
inhibitors), centrifuged at 14 000¥ g (10 min, 4°C) and the
supernatant collected for assay. Arginase activity assay in
terms of urea formation was performed as previously
described (Romero et al., 2008). MnCl2 (25 mL, 10 mM in
50 mM Tris–HCl) was added to cell lysate (25 mL) and incu-
bated at 56°C for 10 min for activation of enzyme. L-Arginine
(50 mL, 0.5 M in 50 mM Tris–HCl, pH 9.7) was added to these
tubes, incubated at 37°C for 1 h for enzyme activity and the
reaction stopped using an acid mixture (400 mL,
H2SO4 : H3PO4 : H2O in a ratio of 1:3:7). For colorimetric
determination, a-ISPF (25 mL, 9% in ethanol) was added to
each tube, and the mixture was heated (100°C, 45 min) and
kept in dark for 10 min. Readings were taken spectrophoto-
metrically at an absorbance of 540 nm. Sample blank con-
tained lysate without addition of MnCl2 or L-arginine to
measure basal arginase activity, and these readings were sub-
tracted from all samples. These values were divided by
protein content to determine specific activity of enzyme.

Membrane protein isolation
Cells were grown in 100 cm2 plates for membrane protein
isolation. Upon treatment, cells were washed with cold PBS,
lysed in extraction buffer (100 mM Tris–HCl, 1 mM EDTA and
1 mM EGTA containing protease inhibitor and phosphatase
inhibitors), and centrifuged at 100 000¥ g for 20 min at 4°C.
Supernatant was collected as cytosolic fraction, and pellet was
solubilized in extraction buffer containing 1% Triton X-100
to obtain the membrane fraction. Protein was estimated
using a commercially available kit from Bio-Rad (Hercules,

CA), and equal amounts of protein were loaded for Western
blot.

Western immunodetection
Cells were lysed using lysis buffer (1¥ RIPA buffer with pro-
tease inhibitors and phosphatase inhibitors), centrifuged at
14 000¥ g at 4°C for 10 min and protein estimation was
carried out from the supernatant. Equal amounts of protein
were loaded, separated by electrophoresis using 10% SDS-
PAGE gels and transferred to nitrocellulose membranes.
Membranes were then blocked using 5% bovine serum
albumin in Tris-buffered saline with 0.05% Tween-20, probed
with primary and secondary antibodies and developed by
chemiluminescence using ECL reagent (GE Healthcare, Pis-
cataway, NJ). Bands were observed using a Kodak image ana-
lyzer or Gene Snap (Syngene, Frederick, MD).

Slot-blot assay
This assay was used to measure total amount of
3-nitrotyrosine (3-NT) containing protein residues. After
protein estimation from cell lysates, equal amounts of protein
were directly loaded on nitrocellulose membrane assembled
in a slot-blot apparatus. Protein was allowed to pass through
the membrane by gravity. Membrane was then blocked,
probed with primary (nitrotyrosine) and secondary antibod-
ies and developed by chemiluminescence using ECL reagent
(GE Healthcare). Bands were visualized using a Kodak image
analyzer or Gene Snap (Syngene).

siRNA transfection
Cells were transfected using siPORT Amine transfection agent
(Ambion, Austin, TX), according to the manufacturer’s
instructions. BAECs were transfected with 50 nM of p115-
Rho GEF siRNA or scrambled siRNA (Smartpool, Dharmacon,
Lafayette, CO) for 24 h. Cells were then deprived of serum
and treated with SIN-1 and assayed for arginase activity.

NOS activity
NOS activity was measured by assaying the conversion of
[3H]-L-arginine to [3H]-L-citrulline in intact BAEC, as described
previously (Abou-Mohamed et al., 2000; Jin et al., 2007). After
the cells were confluent, they were incubated for 12 h in
L-arginine-free medium and washed with HEPES buffer with
the following composition (mM): NaCl, 125; KCl, 5; NaHCO3,
25; MgSO4, 1.2; KH2PO4·H2O, 1.19; CaCl2·2H2O, 2.54; glucose,
11; and HEPES, 10 (pH 7.4). To start the assay, L-[2,3-3H]-
arginine (2 mCi) and 10 mM cold L-arginine prepared in HEPES
buffer were added to each well. The reaction was stopped after
40 min, by washing with cold buffer containing 20 mM
HEPES, 5 ¥ 10-6 M L-arginine and 4 ¥ 10-3 M EDTA. The cells
were then lysed, and half of the lysate was added on to
1.5 mL exchange resin columns (Dowex 50W-8 – Na form;
Dow Chemical Co., Midland, MI) and eluted with 2 mL of
washing buffer. The other half of the lysate was used for
measuring cellular uptake of L-arginine by directly mixing the
lysate with scintillation fluid. The amount of [3H]-L-citrulline
eluted, as well as the cellular uptake of [3H]-L-arginine were
determined by liquid scintillation spectroscopy (LS75;
Beckman Instruments, Fullerton, CA). NOS activity was cal-
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culated as [3H]-L-citrulline formed divided by total [3H]-L-
arginine transported into cells and expressed as pmol
citrulline mg-1 protein min-1.

Statistical analysis
All statistical analyses were performed with GraphPad Prism
version 4.03 (San Diego, CA). Experiments were performed at
least four to five times and values obtained from two to four
replicate samples were averaged in each experiment. Results
were expressed as the mean � SEM. The significance of
changes from control values were determined by using a
two-tailed Student’s t-test, and comparison between three or
more groups were carried by one-way or two-way ANOVA with
Bonferroni’s post hoc test. P-values of <0.05 were considered
to be significant.

Results

Effect of peroxynitrite (ONOO- via SIN-1) on
arginase activity/expression in BAEC
We determined the effect of 24 h treatment of BAEC with
varying concentrations of SIN-1 (0–50 mM) on arginase activ-
ity and expression. There was a concentration-dependent
increase in arginase activity with a peak increase at 25 mM
concentration (30.3 � 2% over control), but this effect was
not observed at 50 mM (Figure 1A). Exposure of cells to
authentic ONOO- (25 mM) also elevated arginase activity
(39.4 � 4.3%). There was a concomitant increase in arginase
I protein expression (1.31 � 0.03-fold) in BAEC exposed to
SIN-1 (25 mM) (Figure 1B). Arginase II levels were not affected
(data not shown). This non-toxic concentration also showed
a maximum increase (1.29 � 0.02-fold) in 3-NT formation
(marker of ONOO- generation) upon exposure to SIN-1 for
24 h (Figure 1C). Pretreatment with FeTPPS (ONOO- decom-
position catalyst) (10 mM, 1 h) prevented this elevation in
arginase activity observed with SIN-1 (Figure 1D).

Role of Rho kinase in ONOO- (SIN-1)
mediated increase in arginase activity
Previously, we have shown that diabetes/ high glucose-
induced increase in arginase activity is linked to the RhoA/
ROCK pathway (Romero et al., 2008). In the present study, we
observed that pretreatment with the ROCK inhibitor,
Y-27632 (10 mM, 1 h), prevented SIN-1-induced elevation in
arginase activity (Figure 2A). ROCK inhibition also prevented
the elevation in arginase I protein expression with SIN-1
(Figure 2B).

Effect of ONOO- (SIN-1) on p115-Rho GEF
and RhoA protein expression
RhoA-GDP (inactive) is converted to RhoA-GTP (active) by
Rho guanosine nucleotide exchange factor (Rho GEF). RhoA
activation in endothelial cells is reported to involve an inter-
action with membrane-bound p115-Rho GEF (Holinstat et al.,
2003; Birukova et al., 2004). Thus, we determined whether
p115-Rho GEF is activated by exposure to ONOO- and pro-
duces active RhoA/ROCK. Levels of p115-Rho GEF and RhoA
proteins in respective fractions were normalized to actin, and

the ratio of membrane to cytosolic fraction was calculated to
determine change in activation with treatment. Exposure of
BAEC to SIN-1 (25 mM) increased membrane translocation/
activation of p115-Rho GEF protein within 2 h (1.81 � 0.34-
fold) (Figure 3A) and subsequently increased membrane
levels of RhoA after 4 h (3.83 � 1.17-fold) (Figure 3B). There
was a concomitant decrease in the cytosolic fraction upon
activation of these molecules.

To link our findings and determine whether p115-Rho
GEF is involved in the elevated arginase activity and expres-
sion produced by SIN-1 treatment, we treated BAECs with
siRNA to p115-Rho GEF before the exposure to SIN-1. Acti-
vation of arginase activity (Figure 4A) and elevated protein
expression of arginase I (Figure 4B) caused by SIN-1 were
prevented by prior treatment with p115-Rho GEF siRNA.
However, the enhanced activity and expression were not
affected by control scrambled siRNA (Figure 4A and B).
Western blot analysis showed suppression of p115-Rho GEF
protein with specific siRNA and no change with scrambled
siRNA (figure inset).

Effect of inhibiting PKC on ONOO-

(SIN-1)-induced activation of RhoA
and arginase
PKCa has been shown to phosphorylate/activate p115-Rho
GEF, which subsequently activates RhoA (Holinstat et al.,
2003). Our results show that pretreatment with an inhibitor
of PKCa and b isoforms, Gö6976 (100 nM, 1 h), prevents
ONOO- (SIN-1)-induced membrane translocation/activation
of RhoA (Figure 5A). PKC inhibition also suppressed the
elevation in arginase activity in response to SIN-1 (Figure 5B).
Thus, PKC (a/b) is involved in the activation of arginase by
SIN-1 and is upstream of RhoA activation.

Effect of hydrogen peroxide on arginase
activity/expression in BAEC
Similar to our observation with SIN-1 treatment, we noted
that H2O2 treatment (25 mM, 8 h) increased arginase activity
(56 � 7.76%), but this effect waned with longer periods of
incubation (10, 12 and 24 h) (Figure 6A). There was also a
parallel increase in arginase I protein expression (1.25 �

0.06-fold) upon exposure to H2O2 (25 mM) (Figure 6B). Argi-
nase II levels were not affected (data not shown).

Role of oxidative stress in the actions of
hydrogen peroxide on arginase activity
Acute treatment of endothelial cells and aortic tissues with
high concentrations of hydrogen peroxide (H2O2) has been
reported to increase superoxide production in several studies
(Coyle et al., 2006; Witting et al., 2007). Our results show that
treatment of BAEC with H2O2 (25 mM, 8 h) increased oxidant
levels (164.4 � 13.1%) over untreated cells (Figure 7A). This
effect was prevented by pretreatment with catalase
(100 U·mL-1) and reduced by the antioxidant apocynin
(30 mM) (Figure 7A). Importantly, pretreatment with SOD
(200 U·mL-1) also prevented the H2O2-induced rise in oxidant
levels, indicating that H2O2 treatment elevates superoxide
anion formation (Figure 7A).

H2O2-induced elevation in arginase activity was also
attenuated by pretreatment with the antioxidant apocynin

BJPArginase activation by reactive oxygen species

British Journal of Pharmacology (2012) 165 506–519 509



(Figure 7B). Moreover, an inhibitor of ROCK (Y-27632,
10 mM) also prevented H2O2-induced elevation in arginase
activity (Figure 7B).

Effect of hydrogen peroxide on p115-Rho GEF
and RhoA protein expression
Since p115 Rho GEF appears to be involved in the activation
of arginase in response to SIN-1, we determined whether
p115-Rho GEF is also activated on exposure of BAEC to H2O2.
Treatment with H2O2 (25 mM) increased membrane transloca-

tion (activation) of p115-Rho GEF protein (1.3 � 0.1-fold)
(Figure 8A) and RhoA (4.5 � 1.7-fold) (Figure 8B) within
60 min.

To determine whether p115-Rho GEF is involved in the
elevated arginase activity response to H2O2, as seen with
SIN-1, we treated BAECs with the siRNA to p115-Rho GEF
before the exposure to H2O2. Elevation of arginase activity
(Figure 8C) caused by H2O2 was prevented by prior treatment
with specific p115-Rho GEF siRNA. However, the enhanced
activity was not affected by scrambled siRNA. Protein expres-
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sion of p115-Rho GEF was reduced by treatment with specific
p115 siRNA but was not changed by control scrambled siRNA
(figure inset).

Role of PKC pathways in arginase activity in
the presence of hydrogen peroxide
Similar to our findings with SIN-1 treatment, we observed
that pretreatment with the PKC inhibitor (Gö6976) pre-
vented the increase in membrane translocation of RhoA upon
exposure to H2O2 (Figure 9A). Also, this PKC inhibitor pre-
vented H2O2-induced elevation in arginase activity

(Figure 9B). In fact, it reduced arginase activity to below
control levels.

Effects of ONOO- (SIN-1) and H2O2

treatments on NOS activity in BAEC
Since arginase and NOS share the same substrate, we deter-
mined the effects of SIN-1 and H2O2 on NOS activity and the
production of L-citrulline. In conjunction with increases in
arginase activity, treatment with SIN-1 for 24 h or H2O2 for
8 h caused marked decreases in NOS function (39 � 4.5 and
42 � 3.3%, respectively) compared with control, as measured
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by L-citrulline production (Figure 10). This suppressive effect
of both oxidative agents was substantially blocked by pre-
treatment with siRNA to p115-Rho GEF, but not by scrambled
siRNA. These data indicate that p115-Rho GEF is involved in
the oxidant-induced reduction of NOS function. Cellular
uptake of L-arginine was not altered significantly by treat-
ment with SIN-1 or H2O2 (data not shown).

Discussion and conclusions

Elevated arginase activity has been linked to several vascular
problems including hypertension, atherosclerosis, and
thrombosis (Zhang et al., 2001; 2004; Ming et al., 2004;
Morris et al., 2005). Previously, we showed activation of argi-
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nase as a key mediator of vascular endothelial dysfunction
under diabetes or high glucose exposure, which was corre-
lated with an increase in the levels of oxidative stress (Romero
et al., 2008). Superoxide (O2

.-) can rapidly combine with nitric
oxide to form a potent oxidant species, peroxynitrite
(ONOO-), and this reaction occurs more rapidly than SOD
converting O2

- to hydrogen peroxide (H2O2) (Pacher et al.,
2007). Our results show that direct exposure of BAEC to
oxidative species such as ONOO- (SIN-1) and H2O2 elevated
arginase activity and arginase I expression, but arginase II
expression was not affected. Pre-incubation with FeTPPS
(ONOO- decomposition catalyst) or the antioxidant apocy-
nin suppressed the rise in arginase activity, supporting the
role of ONOO- and other oxidants in the process. Our obser-

vation that H2O2-induced oxidant formation was prevented
by SOD pretreatment strongly indicates that superoxide for-
mation is integrally involved in the actions of this agent.

Our study of BAECs showed that only arginase I protein
expression rose with exposure to the reactive oxygen species
(ROS). Dominance of tissue expression of arginase I or II may
depend on organ, disease state and species involved (Morris,
2009). Some studies of human tissue have reported that argi-
nase II is the dominant isoform involved in vascular dysfunc-
tion (Ryoo et al., 2006; Krotova et al., 2010), while others
indicate arginase I is the isoform responsible for human coro-
nary vascular endothelial dysfunction in diabetes (Beleznai
et al., 2011) and risk of myocardial infarction (Dumont et al.,
2007).
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There was a concentration-dependent increase in arginase
activity in BAEC exposed to SIN-1 for 24 h. Exposure to
higher concentrations of SIN-1 did not elicit further increases
in arginase activity, which returns to control levels with
50 mM SIN-1 treatment, suggesting a toxic or inhibitory effect
of ONOO- on arginase. Elevation in arginase activity can
decrease arginine availability for NOS due to substrate com-
petition. In our study, L-citrulline/NO production by NOS
significantly decreased with SIN-1 and H2O2 treatment. This
occurred with no change in cellular uptake of L-arginine,
suggesting that decreased L-citrulline production is due to

reduced substrate availability, resulting from increased argin-
ase activity. Although the intracellular concentration range of
L-arginine (0.1–2 mM) exceeds the Km for eNOS (3–6 mM)
(Pollock et al., 1991), supplemental L-arginine has been
shown to improve vascular dysfunction; this is termed the
‘L-arginine paradox’. In this regard, competition between
NOS and arginase for L-arginine within the cell to produce
either NO or ornithine/urea is quite feasible given their indi-
vidual enzymatic properties. Although the affinity of
L-arginine is much higher for NOS (Km ~ 4 mM) than for
arginase (Km ~ 5 mM), the maximum activity (Vmax) for argi-

Figure 9
Role of PKC pathway in H2O2-mediated activation of RhoA and arginase activity. (A) Membrane translocation of RhoA was determined in BAECs
exposed to H2O2 (25 mM, 1 h) after a pre-exposure to PKC inhibitor, Gö6976 (100 nM, 1 h). Protein levels were normalized to actin and the ratio
of RhoA expression in membrane to cystosolic fractions was calculated and expressed as fold change over control. (B) Arginase activity in BAEC
exposed to H2O2 (25 mM, 1 h) and pretreated with Gö6976 (100 nM, 1 h). Arginase activity values in control untreated cells were 216.8 �

7.9 mmol of urea mg-1 protein h-1. Data represent mean � SEM from four independent experiments carried out in triplicates. *P < 0.05 represents
H2O2 versus control, and #P < 0.05 represents H2O2 versus H2O2+Gö6976.

5

SIN-1 H2O2

H2O2

*
*

4

3

2

1

0

5

4

3

2

1

0

siRNA

Control ControlSIN-1

SC p115 SC p115 SC p115 SC p115

L
-C

it
ru

lli
n
e

(p
m

o
l 
4
0
 m

in
–
1
)

Figure 10
NOS activity in BAEC in response to ONOO- (SIN-1) and H2O2. NOS activity was determined in cells after exposure to SIN-1 (SIN, 25 mM, 24 h)
or H2O2 (HP, 25 mM, 8 h) as production of [3H]-L-citrulline from [3H]-L-arginine (pmol mg-1 protein 40 min-1). NOS function also was determined
in BAEC transfected with siRNA to p115-RhoGEF (p115) or control scrambled (SC) siRNA before treatment with oxidants. Values are represented
as % of control. Data represent mean � SEM from four independent experiments carried out in triplicates. Significant change from control
treatment is represented as *P < 0.05.

BJPArginase activation by reactive oxygen species

British Journal of Pharmacology (2012) 165 506–519 515



nase is greater than 1000 times that for NOS, indicating
similar rates of substrate utilization at physiological
L-arginine levels (Wu and Morris, 1998; Morris, 2009)

Peroxynitrite is known to oxidize and reduce levels of a
co-factor necessary for NO production by NOS, tetrahydro-
biopterin (BH4). This could cause uncoupling of NOS, which
increases superoxide production and further increases perox-
ynitrite levels. However, similar concentrations of SIN-1
(ONOO-) have been reported not to reduce BH4 levels in
endothelial cells (Sankaralingam et al., 2010)

H2O2 is known to act as a physiological cellular signalling
molecule at low concentrations; however, under pathophysi-
ological conditions, local H2O2 production can substantially
increase and contribute to endothelial dysfunction (Davies,
1999). We observed that treatment with H2O2 markedly
increases arginase activity (8 h), but the effect wanes with
longer incubation. This is probably because H2O2 is quickly
taken up and decomposed by the cells. Moreover, cells adapt
to H2O2 with continued exposure by up-regulating antioxi-
dant enzymes (Davies, 1999). Catalase and glutathione per-
oxidase, two major intracellular H2O2 detoxification enzymes,
are enhanced within 6–8 h of H2O2 exposure (Lee and Um,
1999; Chen et al., 2005). A recent study has shown that short-
term (30 min) exposure to H2O2 causes NOS activation in
BAEC, but longer periods of treatment (4–8 h) prevent NOS
phosphorylation/activation (Hu et al., 2008). Our results sub-
stantiate this finding, as 8 h treatment with H2O2 enhanced
arginase activity/expression, which could affect eNOS func-
tion and thus decrease NO production as observed in chronic
vascular diseases (Papaharalambus and Griendling, 2007).

Superoxide anion (O2
-) is generated by several sources

including the mitochondrial electron transport chain (ETC),
xanthine oxidase, NADPH oxidase, uncoupled NOS and
COXs. Genetic knockdown of p47-phox subunit of NADPH
oxidase or apocynin treatment have been reported to prevent
superoxide production and improve NO levels in endothelial
cells exposed to H2O2 (Boulden et al., 2006; Coyle et al.,
2006). Since NADPH oxidase is associated with hypertension
and atherosclerosis, it could be a key enzyme linked to
uncompensated oxidative stress in this pathogenic cascade.
Other reports have also suggested the mitochondrial ETC,
xanthine oxidase and uncoupled NOS as possible mediators
of superoxide generation in response to H2O2 (Coyle et al.,
2006; Witting et al., 2007). However, these mechanisms have
not been investigated for arginase activation by H2O2.

Although some studies have demonstrated arginase acti-
vation with peroxynitrite (Sankaralingam et al., 2010) and
hydrogen peroxide (Thengchaisri et al., 2006), none so far
have determined the mechanism involved. Few reports
have investigated the upstream activators of arginase.
S-nitrosylation of arginase I through iNOS was reported to
increase its activity (Santhanam et al., 2008). Expression of
arginase I is increased in rat smooth muscle in response to ILs,
apparently mediated through cAMP/PKA and JAK/STAT6
pathways (Wei et al., 2000). We and others have shown that
RhoA/Rho kinase is involved in the up-regulation of arginase
activity/expression (Ming et al., 2004; Horowitz et al., 2007;
Romero et al., 2008), and oxidative radicals have been shown
to increase Rho kinase activity in rat aorta (Jin et al., 2004). In
our study, both ONOO- (SIN-1) and H2O2 were observed to
enhance arginase activity/expression through a RhoA/Rho

kinase mechanism, since an inhibitor of Rho kinase (Y-27632)
prevented this elevation of arginase activity and arginase I
expression.

RhoA is activated by Rho guanosine nucleotide exchange
factors (Rho GEF), which catalyse the transfer of GTP. Several
of these factors, PDZ-Rho GEF, LARG (leukaemia-associated
Rho GEF) and p115-Rho GEF (most commonly associated
with RhoA), are known to interact with GPCRs (Kozasa et al.,
1998; Suzuki et al., 2003). p115-Rho GEF is reportedly
involved in mediating thrombin-induced pulmonary endot-
helial cell dysfunction (Birukova et al., 2004) as well as pro-
moting endothelial cytoskeletal rearrangement (Holinstat
et al., 2003). Here, we determined that p115-Rho GEF and
subsequent RhoA activation (their translocation to mem-
brane) also occur in endothelial cells under oxidant exposure.
We observed an early translocation of p115-Rho GEF (H2O2,
1 h; SIN-1, 2 h) and Rho A (H2O2, 1 h; SIN-1, 4 h) to the cell
membrane of BAECs. RhoA and Rho GEFs are in a constant
cycle of activation (membrane-bound) and deactivation
(movement to cytosol) defined by the availability of sur-
rounding factors. A drop in p115-Rho GEF level in membrane
fraction upon longer incubation with SIN-1 is suggestive of
this phenomenon. Other studies in our lab show that the p38
MAPK pathway is involved downstream of Rho kinase in
activating arginase upon exposure to angiotensin II (Sha-
tanawi et al., 2011). Thus, it is likely that an early activation
of Rho GEF and its downstream targets including RhoA and
Rho kinase initiate other signalling steps resulting in
enhanced arginase activity/expression. We show that p115-
Rho GEF siRNA prevents SIN-1- and H2O2-induced elevation
of arginase activity, further confirming the involvement of
p115-Rho GEF in this pathway. Even though a differential
time course in the activation of p115-Rho GEF and RhoA was
observed between both SIN-1 and H2O2 treatments, we
cannot exclude the possibility that other Rho GEFs might be
associated with arginase activation under oxidant conditions
in endothelial cells. Therefore, contributions of LARG (Jin
et al., 2006) and PDZ-Rho GEF (Ying et al., 2009), which have
been reported to activate RhoA in smooth muscle cells, need
further investigation in endothelial cells.

Rho GEF activity can be increased by protein kinases,
phosphatidylinositol kinases or through dimerization
(Zheng, 2001). Plasma membrane recruitment of p115-Rho
GEF is reported to occur through the Ga13 subunit of GPCRs
in response to thromboxane (Bhattacharyya and Wedegaert-
ner, 2003). However, our results suggest a G-protein-
independent mechanism for translocation of p115-Rho GEF
to the membrane, as ROS are not thought to act through a
cell surface receptor. Phosphorylation of p115-RhoGEF by
PKCa has been shown to increase endothelial permeability
on exposure to thrombin (Holinstat et al., 2003).

Although it is known that PKC can activate NADPH
oxidase to generate superoxide, recent studies also suggest
that oxidative species can stimulate PKC activity. Peroxyni-
trite can increase activation of PKCe via tyrosine nitration
(Balafanova et al., 2002). Similarly, superoxide (Knapp and
Klann, 2000) and H2O2 (Konishi et al., 1997) are reported to
increase PKC activity via thiol modification and possibly
tyrosine phosphorylation. Thus, it is likely that rROS can
activate RhoA through PKC-mediated activation of p115-Rho
GEF protein. We observed that pretreatment of BAECs with
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an inhibitor of PKCa and b isoforms (Gö6976) prevented the
increase in arginase activity observed with ONOO- or H2O2,
strongly suggesting a role of PKC in this pathway. The fact
that the PKC inhibitor suppressed arginase activity and RhoA
activation even below control levels with H2O2 treatment
suggests that the PKC pathway through superoxide produc-
tion probably regulates basal expression of key proteins such
as active RhoA. The PKC inhibitor also prevented RhoA acti-
vation in response to ONOO- stimulation.

In conclusion, our study indicates that the oxidative
species ONOO- and H2O2 increase arginase activity and argi-
nase I expression in endothelial cells through a common
pathway involving PKC activation of p115-Rho GEF and sub-
sequent RhoA/Rho kinase activation (Figure 11). Moreover,
our data suggest that H2O2-induced arginase activity in endot-
helial cells involves superoxide production. Even though
arginase inhibitors might have potential for treating endot-
helial dysfunction, they also have the ability to inhibit
endogenous hepatic arginase required for the urea cycle.
Thus, we have delineated the arginase activation pathway
through oxidative stress, which identifies upstream mediators
that might be targeted in diseases such as diabetes, hyperten-
sion and atherosclerosis to prevent arginase-induced vascular
dysfunction. Future work would involve the use of animal
disease models to determine the therapeutic potential of
inhibitors of these mediators.
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