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The development of diffuse optical tomography as a functional imaging modality
has relied largely on the use of model-based image reconstruction. The recovery of
optical parameters from boundary measurements of light propagation within tissue is
inherently a difficult one, because the problem is nonlinear, ill-posed and ill-conditioned.
Additionally, although the measured near-infrared signals of light transmission
through tissue provide high imaging contrast, the reconstructed images suffer
from poor spatial resolution due to the diffuse propagation of light in biological tissue.
The application of model-based image reconstruction is reviewed in this paper,
together with a numerical modelling approach to light propagation in tissue as well as
generalized image reconstruction using boundary data. A comprehensive review and
details of the basis for using spatial and structural prior information are also discussed,
whereby the use of spectral and dual-modality systems can improve contrast and
spatial resolution.
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1. Introduction

Diffuse optical tomography (DOT) is a non-invasive imaging technique that
has been under development since the early 1990s for the detection and
characterization of functional changes within biological tissue (Boas et al. 2001;
Gibson et al. 2005). Owing to the relatively low absorption of haemoglobin, water
and lipid at wavelengths of 650–1000 nm, near-infrared (NIR) light can transmit
through several centimetres of tissue with adequate signal-to-noise ratio to allow
tomographic detection of light transmission. Using the measured NIR signal,
together with the known spectral absorption and scattering coefficients of tissue,
it is possible to extract functional information about the tissue being imaged.
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The development of the technique, from spectroscopic point measurements to
full tomographic imaging systems, has already been outlined in the review by
Gibson & Dehghani (2009).

Several imaging modalities have arisen with specific application to the
pathophysiological imaging of biological tissue, including applications in breast
cancer detection and characterization (Tromberg et al. 1997; Fantini et al. 1998;
Liu et al. 2000; Zhu et al. 2000; Chance 2001; Jiang et al. 2001; Hebden et al.
2001; Ntziachristos & Chance 2001; Pogue et al. 2001; Shah et al. 2001; Dehghani
et al. 2003c; Srinivasan et al. 2003b, 2005a; Choe et al. 2005; Yates et al. 2005;
Boverman et al. 2007; Enfield et al. 2007), brain functional imaging (Chance et al.
1988a,b; Cooper et al. 1996; Siegel et al. 1999; Bluestone et al. 2001; Zaramella
et al. 2001; Hebden et al. 2002; Franceschini et al. 2003; Obrig & Villringer 2003;
Boas et al. 2004; Selb et al. 2005; Austin et al. 2006; Zeff et al. 2007), imaging of
the finger joint for detection and quantification of arthritis (Hielscher et al. 2004)
as well as muscle function imaging (Chance et al. 1988a,b; Wilson et al. 1989;
Mancini et al. 1994; Breit et al. 1997; Hillman et al. 2001). Typically in DOT,
a number of optical connectors are placed on the periphery of the domain being
imaged and NIR light at specific wavelengths is injected into the domain using
one source connector at a time, while all other remaining connectors are used to
detect the transmitted light. The collected data, called ‘boundary data’, are then
used for image reconstruction. Typically, images of optical absorption and
reduced scatter are reconstructed, one wavelength at a time, from which maps of
internal chromophore concentrations and scattering properties can be calculated
using Beer’s law and approximations to Mie scattering (Dehghani et al. 2003a).
However, more recently, the use of spectral image reconstruction has become
widespread, whereby the incorporation of multi-wavelength data can allow
for the direct reconstruction of tissue chromophore and scattering properties
simultaneously (Li et al. 2004; Corlu et al. 2005; Srinivasan et al. 2005b; Wang
et al. 2006).

In most DOT imaging studies, the majority of the work has relied on the use of
model-based image reconstruction. A large number of different models can be
used to predict light propagation within tissue, including stochastic, analytical
and numerical. The definition and description of all such modelling techniques is
beyond the scope of this review, and readers should refer to previously published
work (Arridge & Hebden 1997; Arridge & Schweiger 1997; Arridge 1999).
Stochastic models involve predicting individual photon interactions using either
explicit or implicit methods. Two of the most common methods include Monte
Carlo methods (Wilson & Adam 1983; Wang et al. 1995) and random walk
theory (Gandjbakhche & Weiss 1995). Analytical models have the advantage of
being computationally fast but suffer from the disadvantage of being limited to
simple geometries with nearly homogeneous interior values. Analytical solutions
for various geometries using Green’s function have been derived and discussed by
Arridge et al. (1992).

Conversely, numerical models have the potential of being able to model
complex geometries as well as complex heterogeneous media, but have
historically required longer computation times. But, perhaps the most promising
reason for adoption of numerical approaches is to facilitate the combination of
NIR tomography with standard clinical imaging systems, using predefined tissue
geometries as the input domain. A number of different numerical models have
Phil. Trans. R. Soc. A (2009)
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been developed and used with specific application in DOT, including finite
elements (Arridge et al. 1993; Jiang & Paulsen 1995; Schweiger et al. 1995; Gao
et al. 1998; Jiang 1998; Dehghani et al. 2003b), finite difference (Hielscher et al.
1998; Klose & Hielscher 1999), finite volume (Ren et al. 2004) and boundary
elements (Zacharopoulos et al. 2006; Srinivasan et al. 2007).
2. The forward model

Several models have been developed to predict the propagation of NIR light
within biological tissue. For a good description of various models, readers are
referred to the review paper by Arridge (1999). Largely, these models have relied
on the use of either the radiative transport equation (RTE), or the simpler
diffusion approximation. In this section we give a general account of these two
main models being adapted to specific application of DOT.
(a ) Radiative transport model

By treating light as photons, and thus ignoring any wave effects, the
propagation of light in tissue can be well described by the RTE

iu

c
I ðr;u;ŝÞCŝ$VI ðr;u;ŝÞCðmaCmsÞI ðr;u;ŝÞ

Zms

ð
4p
f ðŝ;ŝ 0ÞI ðr;u;ŝ0Þ d2ŝ0 Cqðr;u;ŝÞ; ð2:1Þ

where I ðr;u; ŝÞ is the radiance at point r, modulation frequency u and in the
direction ŝ ; ma and ms are the absorption and scattering coefficients, respectively;
and c is the speed of light in the medium. The f ðŝ; ŝ0Þ term is the scattering phase
function, which characterizes the intensity of a beam that is scattered from
direction ŝ0 into direction ŝ (Arridge 1999). The scattering phase function most
typically employed is the commonly used Henyey–Greenstein scattering function
(Welch & van Gemert 1995; Klose et al. 2002; Tarvainen et al. 2005)

f ðcos qÞZ 1Kg2

2ð1Cg2K2g cos qÞ3=2
; ð2:2Þ

where q is the angle between the two directions ŝ and ŝ0; and g is the anisotropy
factor, which is used to characterize the angular distribution of tissue scattering.

Several groups have developed and used a number of forward models based on
the RTE for DOT (Hielscher et al. 1998, 2004; Klose & Hielscher 1999; Klose
et al. 2002; Tarvainen et al. 2005), with most clinical applications relying on the
accuracy of the RTE for problems where the propagation of photons may not be
assumed as diffuse, for example small animal imaging and problems where low
scattering due to clear layers may be present.

A major drawback of the use of RTE is the complex implementation within a
numerical setting.One specific challenge is the use of an appropriatemethod for the
incorporation of the angular dependence of the problem. The discrete-ordinates
method is widely used with several different finite-difference approximations
(Lathrop 1972), such as the diamond difference scheme, the weighted diamond
Phil. Trans. R. Soc. A (2009)
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difference scheme, the centred difference scheme (Reed 1971) or the upwind-
difference scheme (Klose et al. 2002). Another common approach is the use of a
spherical harmonics expansion, whereby the angular dependence can be
described by a set of spherical harmonics (Boas et al. 1995; Aydin et al. 2002),
and more recently by the use of simplified spherical harmonics (Jiang 1999; Klose &
Larsen 2006).
(b ) Diffusion approximation

It is generally accepted that, if the magnitude of the isotropic fluence within
tissue is significantly larger than the directional flux magnitude, the light field is
‘diffuse’, which occurs when the scattering interactions dominate over absorption
and the region of interest is far from sources and boundaries, provided the light
fluence is not rapidly changing with time (i.e. such as in the sub-picosecond time
frame). This assumption allows a transition from the RTE, which is used to
describe an anisotropic light field, to the diffusion equation approximation, which
is used for isotropic fluence fields (Arridge 1999). The diffusion approximation in
the frequency domain is given by

KV$kðrÞVFðr;uÞC maðrÞC
iu

cðrÞ

� �
Fðr;uÞZ q0ðr ;uÞ; ð2:3Þ

where ma and m0
s are absorption and reduced scattering (or transport scattering)

coefficients, respectively; q0(r,u) is an isotropic source; F(r,u) is the photon
fluence rate at position r and modulation frequency u; kZ1=ð3ðmaCm0

s ÞÞ is the
diffusion coefficient; and c(r) is the speed of light in the medium at any point,
defined by c0/n(r), where n(r) is the index of refraction at the same point and c0
is the speed of light in vacuum.

The air–tissue boundary is represented by an index-mismatched type III
condition (also known as Robin or mixed boundary condition), in which the
fluence at the edge of the tissue exits but does not return (Schweiger et al. 1995;
Dehghani et al. 2003b). The flux leaving the external boundary is equal to the
fluence rate at the boundary weighted by a factor that accounts for the internal
reflection of light back into the tissue. This relationship is described as

Fðx;uÞC2An̂$kðxÞVFðx;uÞZ 0; ð2:4Þ

where x is a point on the external boundary, and A depends upon the relative
refractive index (RI) mismatch between the tissue domain U and air. Here,
A can be derived from Fresnel’s law

AZ
2=ð1KR 0ÞK1C cos qcj j3

1K cos qcj j2
; ð2:5Þ

where qcZarcsin(nair/n1), the angle at which total internal reflection occurs
for photons moving from region U with RI n1 to air with RI nair, and
R 0Zðn1=nairK1Þ2=ðn1=nairC1Þ2. At the external boundaries, RI is generally
assumed to be equal to that of free space, so that nairZ1.
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(c ) Data types

From either equation (2.1) or (2.3), two sets of boundary data can be extracted
from models. These boundary data correspond to the fluence measured at the
external boundary at points where the detector fibres are present. In the case of a
frequency-domain problem, the measured boundary data include the intensity
(or amplitude) of the measured signal and the corresponding phase. By setting the
modulation frequency uZ0 MHz, this will lead to the continuous wave (CW)
system, whereby only the amplitude of the measured signal is available.

Although the models defined in equations (2.1) and (2.3) are frequency-
domain models, they can easily be adapted for time-resolved cases. The
development of time-resolved models has been discussed extensively elsewhere
(Patterson et al. 1989; Arridge et al. 1993), whereby the propagation of photons
throughout the imaging model can be simulated as a function of pulsed (delta
function at timeZ0) sources. Using such an approach, it is possible to calculate
the temporal point spread function (TPSF) of the measured signal at each
detector position. Using the TPSF, it is possible to extract a number of data
types from the measurement, including total intensity (analogous to intensity
using CW or frequency-domain models), mean time of flight (analogous to phase
measurement using frequency-domain models), variance, skew and other
higher-order moments (Arridge & Schweiger 1995a,b).

Although some work has been done to use the full time-resolved data for image
reconstruction (Gao et al. 2002), it is generally accepted that the use of at least
the two data types of intensity and mean time of flight from the measured TPSF
is sufficient to provide the full amount of information required for the imaging of
both absorption and scattering coefficients in DOT (Grünbaum 2001).
A common misconception is, however, that, in order to model and calculate
the higher moments (and hence data types other than intensity), it is necessary
to calculate the full TPSF for a given model, which can be computationally
intensive and time consuming. However, Arridge & Schweiger (1995a,b)
demonstrated that ‘direct’ calculation of the moments of the distribution of
photon time of flight in tissue can be achieved without the requirement for the
calculation of the full TPSF.
3. The inverse model

The goal of the inverse problem is the recovery of the unknown optical properties
(either absorption and scattering at each wavelength, or chromophore
concentration and scattering properties from multi-wavelength data) using the
measured boundary data. There are generally two approaches taken when
attempting to reconstruct the unknown distribution of optical properties:
(a) linear single-step and (b) nonlinear iterative reconstruction schemes.

(a ) Linear single-step reconstruction

The goal of linear image reconstruction is to obtain images of temporal
(time-dependent) changes of optical properties. Without exception, this method
requires, either explicitly or implicitly, a difference experiment that measures
the boundary data as the difference between two states, dfZfanomKfref, where
Phil. Trans. R. Soc. A (2009)
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fanom and fref correspond to data acquired with and without a change in optical
properties, respectively. This approach provides a means of imaging that is
sensitive to changes in optical properties, which may be particularly useful for
functional imaging of the brain, for example (Zeff et al. 2007). However, given
that the problem is inherently nonlinear, care must be taken such that the
imaged changes are relatively small. Nonetheless, this method is only suitable for
providing qualitative images of measured changes, rather than absolute
quantitative changes.
(b ) Nonlinear iterative reconstruction

The aim of nonlinear image reconstruction is to calculate optical properties
mZ(ma,k) at each point within the model using measurements of light fluence
from the tissue surface. There are two distinct approaches that can be used for
such ‘optimization’ technique, namely those that use gradient-based reconstruc-
tion techniques (Arridge & Schwieger 1998; Hielscher et al. 1999; Hielscher &
Bartel 2001), or those that require the direct calculation and inversion of
the Jacobian (also known as the sensitivity matrix), which can be classed as
Newton-like methods (Jiang et al. 1996; Dehghani et al. in press). Using the
gradient-based optimization technique is accepted as being less computationally
intensive, since rather than calculating the objective function directly, only the
gradient need be calculated, therefore reducing the total amount of compu-
tational resources needed. However, one drawback of such a scheme is that the
total number of ‘iterations’ required is substantially more than the alternative,
whereby the Jacobian must be calculated and inverted. In the following section,
we limit our discussion to the Newton-like optimization techniques, but the
interested reader can refer to the works by Arridge & Schwieger (1998) and
Hielscher et al. (1999) and Hielscher & Bartel (2001) for more information on
gradient-based techniques.

If the measured fluence at the surface of the domain being imaged is
represented by FM and the calculated model-based data using the forward solver
by FC, then the standard Tikhonov minimization function is

UZmin
m

XNM
iZ1

FM
i KFC

i

� �2
Cl

XNN
jZ1

ðmjKm0Þ2
( )

: ð3:1Þ

Here NM is the total number of boundary measurements obtained from the
imaging device; NN is the number of unknown parameters; l is the Tikhonov
regularization parameter, which is defined as the ratio of the variances of the
measurement data and optical properties ðlZs2

FM=s
2
mÞ (Yalavarthy et al. 2007);

and m0 is either the initial estimate of the optical properties, which is generally
obtained by a data-calibration procedure (McBride et al. 2003), or an a priori
optical property distribution, which may be available from either other imaging
modalities or published literature values. It has been found that, if the initial
estimate, m0, is not too far from the actual parameter distribution, this term can
be ignored (Dehghani et al. 2003c; Brooksby 2005).

The minimization with respect to m in equation (3.1) involves setting the
first-order derivative equal to zero, ðvU=vmÞZ0, and ignoring higher-order
terms. The first-order condition is therefore given by
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vFC

vm

� �T

ðFMKFCÞKlðmKm0ÞZ 0: ð3:2Þ

The derivative matrix ðvFC=vmÞ is known as the Jacobian matrix, J, and is also
referred to as the weight or sensitivity matrix. Using this linear approximation of
the problem, and solving it as an iterative scheme, we get

ðJTJ ClI ÞdmZ JTdFKlðmiKm0Þ; ð3:3Þ
where dm is the update for the optical properties; dF is the data–model misfit at
the current iteration; and I is the identity matrix.
(c ) The Jacobian

The Jacobian defines the relationship between changes in boundary data FC,
resulting from small changes in optical properties mZ(ma,k). Since both
amplitude and phase data types are available from a frequency-domain system,
and since the problem considers the effects of absorption and diffusion, the
structure of the Jacobian is given, for example, by the following equation:
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ð3:4Þ

where d ln Ii=dkj and d ln Ii=dmaj are sub-matrices that define the change in the
log of the amplitude of the ith measurement arising from a small change in k and
ma at the jth reconstructed node, respectively; and dqi=dkj and dqi=dmaj are sub-
matrices that give the change in phase of the ith measurement arising from a
change in k and ma at the jth node, respectively.

The calculation of the Jacobian matrix can take one of three possible forms:
(i) the perturbation method, (ii) the direct method, and (iii) using the adjoint
theorem. The perturbation method requires the calculation of the boundary data,
before and after each point within the model has been perturbed by a small
Phil. Trans. R. Soc. A (2009)
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amount in either of the unknown parameters, and will therefore require a
complete set of (NN!2)C2 forward calculations; that is, two sets of boundary
data for the unperturbed model and NN sets of boundary data for absorption and
diffusion coefficients. The use of the direct method involves the differentiation of
equation (2.3) with respect to either the absorption or diffusion coefficient and
then solution to obtain the individual values of the Jacobian matrix, therefore
requiring (NN!2) forward calculations. The adjoint theorem, however, makes
use of the reciprocity theorem, which simply states that the measurement of flux
at detector j that is due to a source at node i is equal to the measurement of the
photon density at node i that is attributed to a source at detector j. Using this
method, it can be easily shown that, in order to calculate the Jacobian, only
NSCND forward calculations are needed, where NS is the total number of
sources and ND is the total number of detectors (Arridge & Schweiger 1995a,b).

As indicated in equation (3.4), the Jacobian involves both diffusion coefficient
(k) and absorption coefficient (ma) derivatives, so the Jacobian in the update
equation (equation (3.3)) is normalized by a diagonal matrix (G) consisting of
the initial estimate of the optical properties (m0), such that

~J Z JG; ð3:5Þ

where GZdiag([k; ma]); moreover, l is implemented in a modified Levenberg–
Marquardt algorithm (Levenberg 1944), where it is initialized as the variances
ratio and is systematically reduced at each iteration.

Once the optical properties are obtained at each wavelength, the chromophore
concentrations are calculated using a constrained least-squares fit to the Beer’s
law relationship

ma Z ½3�c; ð3:6Þ

where 3 is the molar absorption spectra of the tissue’s absorbing chromophores
and c is the concentration of these chromophores. Oxyhaemoglobin (HbO2),
deoxyhaemoglobin (Hb) and water are assumed to be the main absorbers
and their molar absorption spectra have been obtained experimentally
(Srinivasan et al. 2003a). By fitting for the concentrations, total haemoglobin
is calculated as HbTZHbO2CHb (in mM), and oxygen saturation as StO2Z
HbO2/HbT !100 (in %).

Similarly, the m0
s spectrum of tissue has been shown to fit well to an empirical

approximation to Mie scattering theory (van Staveren et al. 1991; Mourant et al.
1997) given by

m0
s Z alKb: ð3:7Þ

Equation (3.7) is used to estimate the model parameters scattering amplitude (a) and
scattering power (b) with wavelength in mm (van Staveren et al. 1991). The coefficient
m0
s has units of mmK1. Both the scattering power and amplitude depend on the

scattering centre size and number density and may reflect variations in tissue
composition due to different cellular, organelle and structural sizes/densities
(Wang et al. 2006). Typically, large scatterers have lower b and a values, whereas
small scatterers have higher b and a values.
Phil. Trans. R. Soc. A (2009)
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Figure 1. Example of a mesh used for the reconstruction of images from measured clinical data.
Information about data collection geometry was used for mesh generation. (a) Conical-shaped mesh
used for the calculation of the Jacobian. (b) Conical-shaped mesh used for the reconstruction basis.
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As an example of the application of this method in a clinical setting, NIR
imaging of a volunteer subject is presented. The patient presented for standard
screening mammography, which revealed a subtle nodular density and associated
architectural distortion in the lateral aspect of the right breast. Pathology
showed an invasive carcinoma of 20 mm size. The patient was presented for NIR
measurement soon after biopsy.

Three-dimensional images of internal absorption and reduced scattering were
reconstructed simultaneously from NIR data collected at each wavelength. The
mesh used for the calculation of the Jacobian contained 8334 nodes corresponding
to 41 623 linear tetrahedral elements (figure 1a). For the reconstruction basis,
a second mesh of the same geometry was used, but with 2521 nodes, corresponding
to 11 575 linear tetrahedral elements (figure 1b). Images were reconstructed at four
wavelengths of 761, 785, 808 and 826 nm, and they are shown in figure 2. For image
reconstruction, the regularization parameter (l) used was initially set to 10, and
was allowed to decrease by a factor of 101/4 if the projection error (equation (3.1))
had decreased with respect to the previous iteration. The images shown are those
at the 10th iteration. Here the images are true three-dimensional reconstructions,
and coronal slices at zZK60,K45,K30,K15 and 0 mm only are shown. From the
reconstructed images, it can be seen that an anomaly is found within the mid-plane
at approximately the 9 o’clock position. The anomaly shows an absorption
variation with wavelength, whereas the reduced scattering is almost constant over
all the reconstructed wavelengths. The absorption images were used together with
published values of extinction coefficients for oxy- and deoxyhaemoglobin
(HbO2 and Hb, respectively) for the calculation of Hb, HbO2, total haemoglobin
(HbT) and oxygen saturation (StO2). The calculated three-dimensional maps of
Hb, HbO2, total HbT and StO2 are also shown in figure 2.

From the calculated values ofHb, it is seen that the anomaly shows a peak value of
47.7 mmol, compared with a background of 32.87 mmol, whereas the HbO2 image
shows a peak value of 24.73 mmol at a location on the periphery of the skin. The
total haemoglobinvalue also showsapeakat the locationof theanomaly,with avalue
of 65.28 mmol. StO2 value, calculated by taking the ratio of oxygenated blood
and total bloodcontent, shows amarkeddecrease at the locationof the anomaly,with
a value of 25.9 per cent, as compared with a background value of 38.11 per cent.
Phil. Trans. R. Soc. A (2009)
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Figure 2. Reconstructed images of (a) absorption and (b) reduced scattering at each wavelength
from measured volunteer data: (i) 761 nm, (ii) 785 nm, (iii) 808 nm, (iv) 826 nm. (c) Calculated
maps of blood content: (i) Hb, (ii) HbO2, (iii) HbT, (iv) StO2. Each slice represents a plane through
the mesh, from the bottom near the nipple to the top near the chest. The images are coronal views
of the cross section through the breast at the 10th iteration at the wavelengths indicated.
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(d ) Spectral constraint

Instead of reconstructing for optical properties at each wavelength and then
applying equations (3.6) and (3.7) in a post-processing step, these constraints can
be incorporated into the reconstruction directly to estimate the chromophore and
scattering properties, thus reducing the parameter space (Srinivasan et al. 2003a,
2005b; Corlu et al. 2005). In this approach, the measurements at all measured
wavelengths are coupled together and the relationships in equations (3.6) and
(3.7) are combined to create a new set of equations. The Jacobian in equation
(3.3), instead of relating the changes in optical properties to measured amplitude
and phase, now relates the changes in chromophore concentrations and scattering
parameters directly to changes in the log of the amplitude and phase data. The new
Jacobian becomes

Jc;l Z
vF

vc l

Z
vF

vma

vma

vc

����
l

:

���� ð3:8Þ

From equation (3.6), vmaZ3 vc is used, so that substituting for vma=vc yields

Jc;l Z
vF

vc l

Z
vF

vma

3

����
l

Z
vF

vma

����
l

� �
5 3

c1;c2;c3
l

� �
Z Jma;l5 3

c1;c2;c3
l

� �
;

���� ð3:9Þ
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where 5 refers to the Kronecker tensor product. Similarly,

Ja;l Z
vF

va

�����
l

Z
vF

vk

vk

va

�����
l

: ð3:10Þ

Rewriting vk=vaZðvk=vm0
sÞðvm0

s=vaÞ results in
vk

vm0
s

� �
Z

1

3

K1

ma Cm0
sð Þ2

� �
Z

1

3
ðK9k2ÞZK3k2

and vm0
s=vaZlKb. Substituting these expressions in equation (3.10) leads to

Ja;l Z
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Similarly, expressions can be derived relating Jb;l and Jk;l for scattering power b
(Srinivasan et al. 2005a). The overall system of equations is then given by
these relationships:
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The Jacobian in equation (3.12) has dimensional size equal to the number of
wavelengths times the number of measurements per wavelength times the number
of nodes times the number of wavelength-independent parameters. The same
Levenberg–Marquardt regularization scheme can be applied as in the conventional
approach. However, since the size of the Jacobian is now dominated by the larger
number of unknowns, the Moore–Penrose generalized inverse is used, which is
more suitable for underdetermined problems (Penrose 1955). This gives rise to an
update equation

JTðJJTClI ÞK1vFZ vm; ð3:13Þ
where m is now the update vector consisting of the chromophore concentration
and the scattering parameter. As in the single-wavelength case, since the
Jacobian involves derivatives of different chromophores as well as scattering
parameters, the Jacobian in the update equation (equation (3.13)) is
normalized by a diagonal matrix (G) consisting of the initial estimates of the
unknown parameters.

As an example to demonstrate the capability of the spectrally constrained
image reconstruction approach, a phantom using gelatin with whole blood added
for absorption and titanium dioxide for scattering was made with a 25 mm hole
drilled 10 mm from the boundary. This hole was filled with a saline solution
containing 4 per cent pig blood (the haematocrit level of the blood was measured
by a clinical co-oximeter so that 4 per cent bloodZ43.2 mM total haemoglobin)
Phil. Trans. R. Soc. A (2009)
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Figure 3. Comparison of images obtained by applying the spectrally constrained direct
chromophore reconstruction and the conventional technique of separate wavelength optical
properties recovery on measurements from a gelatin phantom with a 25 mm inclusion. The gelatin
phantom contained whole blood and TiO2 for scattering and the inclusion was filled with 4% pig
blood and 0.75% Intralipid in buffered saline. (a) The expected images are shown for (i) [HbT] (mM),
(ii) oxygen saturation StO2(%), (iii) water H2O(%), (iv) scattering amplitude a and (v) scattering
power b, along with (b) conventional technique images and (c) spectral method images.
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with 0.75 per cent Intralipid for scattering. The background chromophore
concentrations and scattering for the gel were determined by imaging the
phantom in its homogeneous state and using the mean from the reconstructed
NIR images, ignoring contributions close to the boundary. The inclusion had a
contrast of nearly 2 : 1 in total haemoglobin, with respect to the background, and
was expected to have 100 per cent oxygen saturation and water. The scattering
images were expected to be almost homogeneous since 0.75 per cent Intralipid
was measured to be similar in scattering quantitatively to the background gelatin
in the phantom. Amplitude and phase data were collected from this
heterogeneous phantom and image reconstruction was carried out using both
the conventional technique of separate wavelength reconstruction as well as the
spectrally constrained procedure. Figure 3a shows expected images for the five
NIR parameter images, followed by the images recovered from the conventional
technique (figure 3b) and the spectrally constrained reconstruction (figure 3c).

The images obtained by the spectrally constrained reconstruction are
qualitatively much smoother and more accurate than those from the
conventional technique. The simultaneous usage of six wavelengths
(649–850 nm) of measurements along with the spectral priors makes the inverse
problem better posed, and this, along with the parameter reduction procedure,
provides the smoothness in the spectral images. The conventional technique
images have more spatial artefacts, including higher crosstalk between
oxyhaemoglobin and water, which have similar spectral behaviour, resulting in
underestimation of total haemoglobin in the anomaly and saturation of water.
Phil. Trans. R. Soc. A (2009)
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A set of reasonable physiological constraints can also be added by fixing the
water to be less than 100 per cent and the scattering parameters to be non-
negative and to have an upper limit of 6.2 mmK1. These constraints are applied
only at the boundary of their respective ranges, which occurs only in cases of very
noisy data. In the majority of reconstructions, the constraints do not come into
play, as the updated values at each iteration lie well within the acceptable range.
The approach is easily extendable to additional wavelengths and chromophores,
as has recently been shown (Wang et al. 2006; Davis et al. 2007). The use of a
large number of wavelengths in NIR imaging can help to optimize the inverse
problem and are especially useful for systems where the magnitude of
measurement noise is large. However, use of a large number of wavelengths
also increases the size of the computational problem and thus the memory
requirement, which becomes more important for large, complicated models.
It has been demonstrated that using an optimized set of a small number of
wavelengths based on the residual and conditioning of the problem is
computationally more efficient and can provide unique images using continuous-
wave measurements (Eames et al. 2008).

(e ) Use of prior information

(i) Hard prior

It is possible to segment the forward model (mesh) by appropriately labelling
all the nodes within each region. In general, given structural segmentation into n
regions, we reconstruct for single values of m0 within each region. We apply
a matrix transformation to J, such that

~J Z JK ; ð3:14Þ

where the dimensions of ~J are the number of measurements times the number of
regions (NM!NR, where NR is the total number of regions). We call K the a
priori matrix

K Z

R1 R2 / Rn

k1;1 k1;2 / k1;n

k2;1 k 2;2 / k 2;n

« « 1 «

kj;1 kj;2 / kj;n

2
66664

3
77775
; where k x;h Z
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( )
: ð3:15Þ

In effect, we produce a new Jacobian matrix, ~J , where we have added together
all elements from the columns corresponding to similar regions. We then solve

~a Z ~J
T~J

� �K1
~J
T
b; ð3:16Þ

where the dimensions of the solution update vector, ~a, are 2!NR. In the update
process, we apply

a ZK ~a: ð3:17Þ
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Note that regularization is not typically required in solving matrix equation
(3.16) because NR/NM, and therefore the Hessian is a small well-conditioned
matrix. However, in the presence of noise, it may be desirable to add some form
of regularization into equation (3.16) to achieve a stable solution.

The advantage of using a hard prior in image reconstruction is that the total
number of unknowns is reduced dramatically, making the problem better posed.
However, one drawback of such a scheme is that spatial resolution is now limited
by the size of the defined regions and its stability is highly dependent on the
accuracy of the a priori information. Additionally, using this scheme, only bulk
homogeneous values for each region may be reconstructed, with the loss of
spatial information within each specified region.
(ii) Soft prior

In order to add the spatial constraint, the minimization functional
(equation (3.1)) is modified to include a penalty term for a priori information
of tissue structure, given by

ð m̂a; k̂ÞZ arg minma;kkðy
�KFðma; kÞÞkCbkLðmKm0Þk; ð3:18Þ

where b is the regularizing term for spatial prior and L is a matrix generated
using spatial information, acting on the solution m. Typically L is derived from
anatomical imaging modalities such as magnetic resonance imaging (MRI) and
here it is given by

Li;j Z

K1=n regioni Z regionj

1 i Z j

0
regionisregionj

isj

(
8>>>><
>>>>:

ð3:19Þ

where i and j are points within a region and n is the total number of unknowns in
a given region.

The L matrix links all the nodes in a particular tissue type (glandular or fatty)
so that a second differential operator is approximated within each region. This is
similar to the total variation minimization approach, which allows sharp
boundaries to exist while providing flexibility to encode these boundaries from
MRI information. Each node in the model (mesh) is labelled according to the
region, or tissue type, with which it is associated (in the MR image). For the ith
node in region R, Li,iZ1. When nodes i and j are in the same region, Li,jZK1/n,
where n is the total number of nodes within region R, otherwise Li,jZ0. Applied
with the spectral prior, the final matrix equation is

a Z JTJ CbLTL
� �K1

JTb: ð3:20Þ

Soft prior information has been extensively used in a number of experimental and
clinical settings and has been found to be much more robust in the presence of
uncertainty in prior information (Brooksby et al. 2003, 2005a,b).
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Figure 4. Breast tissue property images for a healthy female volunteer estimated using four
different reconstruction methods. (a) The T1 axial and oblique coronal MRI of this patient defined
the spatial constraints, which relate to (b) the internal distribution of adipose and glandular tissues
(two-dimensional FEM mesh defines imaging geometry and spatial prior). In (c)(i), only the outer
boundary of the imaging domain and the location of the optical fibre measurement sites are
specified (no priors). (ii) A spatially constrained algorithm was used (spatial priors). (iii) Spectral
constraints were applied and chromophore concentrations and scattering parameters were
reconstructed directly (spectral priors). (iv) Both spatial and spectral constraints were combined
(spectral and spatial priors).
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As an example of the use of both spatial and spectral a priori information, a
case study using a combined NIR–MRI imaging system is presented to estimate
the properties of normal breast tissue. An FEM mesh generated from the MRI in
figure 4a was used in the reconstruction. For each mesh point, figure 4b was
associated with a greyscale intensity in the co-registered MRI and was classified
as representing either glandular or adipose tissue. Figure 4c shows the tissue
properties estimated with the four procedures of (i) no prior information except
outer boundary, (ii) spatial soft prior, (iii) spectral constraints and (iv) spatial
and spectral constraints. The images obtained using an unconstrained
reconstruction are noisy and exhibit boundary artefacts. The spatial priors act
on these images, making them smoother, but preserve the trends in chromophore
and scattering quantification. For example, the scattering power shows a
decrease in the glandular tissue (row ii) similar in value to that obtained without
priors (row i). Previous studies suggest that glandular tissue has a higher number
density of scatterers, and may therefore have a greater scattering power than fat.
Hence, the results from the spatially constrained reconstruction, while appearing
smoother, may be misleading. The scattering power image obtained by the
application of the spectrally constrained method (row iii) is more quantitatively
acceptable. Including the spatial priors within this spectral method (row iv)
produces the most intuitively appealing image for this parameter by also showing
Phil. Trans. R. Soc. A (2009)
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the layered structure of the breast. We observed elevated [HbT] (25 : 13 mM),
water (91: 49%) and scattering power (1.0 : 0.5) in glandular relative to adipose
tissue using the combined priors, which matches the higher degree of
vascularization expected.
4. Conclusions

The development of model-based image reconstruction for DOT has been
extensive, and has provided the means for developing and testing the clinical
application of this non-invasive technique. The overall theory of model-based
image reconstruction, as applied to DOT, has been presented with special
attention given to the use of the diffusion approximation. Image reconstruction in
DOT is a nonlinear problem, and although temporal imaging techniques can be
employed to look at changes of optical parameters as a function of time, most
imaging techniques have relied on the use of absolute, ‘static’ nonlinear image
reconstruction algorithms. The theory behind Newton-like image reconstruction,
together with the details of the calculation of the sensitivity functions, has been
given. The concept of spectral image reconstruction, whereby functional
information can be derived ‘directly’, has also been outlined. Using spectral
image reconstruction has been shown to be less prone to noise within
the measured NIR signal as well as having improved quantitative accuracy
in the recovered contrast (Srinivasan et al. 2005b). There is however some debate
on the number of wavelengths required to provide unique solutions to the
chromophore and scattering properties to be recovered (Eames et al. 2008).
Finally, the use of prior information in DOT has been outlined, demonstrating
that it is possible to use such information either to reduce the number of imaging
parameters, or to regularize the optimization problem appropriately to enhance
spatial resolution.

Two modelling and image reconstruction packages are available for the
interested reader to download and use:

TOAST is a software suite for image reconstruction in optical diffusion
tomography. It contains binary command line tools for numerical modelling of
light transport and parameter recovery.

http://web4.cs.ucl.ac.uk/research/vis/toast/
NIRFAST is a Matlab-based toolbox that also includes capabilities for

multimodal NIR imaging, fluorescence and bioluminescence imaging.
http://www.cs.bham.ac.uk/wdehghanh/research/NIRFAST.php
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