
Modelling and disentangling physiological
mechanisms: linear and nonlinear

identification techniques for analysis of
cardiovascular regulation

BY JERRY BATZEL
1,*, GIUSEPPE BASELLI

2, RAMAKRISHNA MUKKAMALA
3

AND KI H. CHON
4

1Institute for Mathematics and Scientific Computing, University of Graz,
8010 Graz, Austria

2Department of Bioengineering, Politecnico di Milano, 20133 Milano, Italy
3Department of Electrical and Computer Engineering,

Michigan State University, East Lansing, MI 48824, USA
4Department of Biomedical Engineering, State University of New York at Stony

Brook, Stony Brook, NY 11794, USA

Cardiovascular (CV) regulation is the result of a number of very complex control
interactions. As computational power increases and new methods for collecting
experimental data emerge, the potential for exploring these interactions through
modelling increases as does the potential for clinical application of such models.
Understanding these interactions requires the application of a diverse set of modelling
techniques. Several recent mathematical modelling techniques will be described in this
review paper. Starting from Granger’s causality, the problem of closed-loop identification
is recalled. The main aspects of linear identification and of grey-box modelling tailored to
CV regulation analysis are summarized as well as basic concepts and trends for nonlinear
extensions. Sensitivity analysis is presented and discussed as a potent tool for model
validation and refinement. The integration of methods and models is fostered for a
further physiological comprehension and for the development of more potent and robust
diagnostic tools.
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1. Introduction

Cardiovascular (CV) control depends on a number of complex interacting
feedback mechanisms that depend on information from several sensor sites. The
information on the state of the system is processed in the central autonomic
control centre in the brain. This control centre generates autonomic nervous
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system outflow that is conveyed to the CV system by parasympathetic and
sympathetic pathways which, in most instances, elicit opposite actions to
maintain homeostasis. Transport via the blood stream is subject to both localized
control through heart rate and contractility as well as highly distributed resistive
and capacitive modulation in arterial and venous compartments. The latter, in
turn, are governed by both the local mechanisms and the neural outflow.
Furthermore, the several afferent signals converge to the autonomic centres
(signals from the cardiopulmonary, baroreceptive, chemoreceptive, muscular,
etc.) and convey interferences from other processes (breathing, vasomotion,
muscular activity and many others), while central and humoral processes exert
continuous modulation (Hyndman et al. 1971; Akselrod et al. 1981; Koepchen
1984). These signal interactions are reflected in short-term cardiovascular
variability (CVV).

The large number of dynamic responses and interactions involved in CV
control renders it difficult to disentangle different regulation processes and
creates the risk of not identifying significant parameters. The objective of this
review paper is to summarize several recent mathematical modelling techniques
in order to foster their application and future integration, and therefore advance
the understanding and monitoring of CV control. More specifically, two basic
approaches and trend lines are described in this work. The first one centring on
CVV analysis (see §§2 and 3) attacks the problem by means of grey-box
modelling fusing black-box identification with the internal modelling of
subsystems (e.g. the arterial Windkessel) which can be better described a priori
with few free parameters. The second approach (see §5) describes the role played
by sensitivity analysis (SA) in model identification. Parametric SA offers several
descriptors in order to restrict the parameter set, improve the model and the
experimental design, and focus the most informative data subsets.

A third focus of this paper and core issue in CVV analysis is the well-
recognized presence of nonlinear effects discussed in §4. Owing to these effects,
besides linear parametric and non-parametric approaches, a wealth of studies
applied nonlinear dynamic descriptors (entropies, correlation and fractal
dimensions, Lyapunov coefficients, etc.) to CVV. As such, however, the
contribution appeared rather phenomenological and poorly integrated with a
parametric causal interaction analysis, which was conversely restricted to linear
features of small variabilities. Recent nonlinear identification methods can
provide further tools dealing with broader aspects of the addressed interactions
and are summarized in the following (see §4). In this perspective, SA (see §5)
gains further importance, since it moves the constraint of ‘small changes’
required for linearization from the data to errors.
2. Causality and closed-loop approaches

Short-term CVV represents both an invaluable scope on main vital processes and
a challenge to modelling and analysis methods, owing to the many regulation
processes that interact and interfere in a complex fashion. Given the
introductory physiological portrait, the importance of feedback acting in a
closed loop was soon recognized (Guyton & Harris 1951) together with the need
of disentangling the contribution of the feedforward and feedback branches
Phil. Trans. R. Soc. A (2009)
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lumped inside the CVV data by means of suitable identification methods (Baselli
et al. 1994; Xiao et al. 2005). In the following, a brief summary of the basic
concepts of parametric closed-loop identification and causal analysis of multi-
channel data will be provided.

The problem of disentangling feedforward and feedback pathways in a closed-
loop setting can be solved with the direct approach considering the temporal
relationships between the dynamics recorded at two opposite loop corners:
typically a control and a controlled variable. A more fortunate condition, which
is rare in physiological systems, implies the availability of external drives and
permits an indirect approach. Overlooking the problem of re-entrant information
owing to feedback exposes the analysis to severe biases; nonetheless, a correct
hypothesis definition and testing process permits one to solve the problem by
exploiting common open-loop identification algorithms. In addition, consistency,
accuracy and lack of bias properties can be quantified. Briefly, estimates are
consistent and unbiased if the model is correctly parametrized both in its
deterministic (blocks within the loop connecting measured signals) and
stochastic (blocks conveying unmeasured residuals) parts. The estimate of a
pathway is accurate if the loop is randomly disturbed at the pathway input, and
if disturbances are not stiffly compensated by the control action (Ljung 1999).

An analysis of the temporal relationships relies on Granger’s causality and
generally on a parametric description of dynamics. Parametric and non-
parametric methods are largely equivalent if a joint process description of the
signals in the loop is aimed at or if causal analysis is limited to detection (Geweke
1982). Conversely, causal relationships are more easily described by parametric
methods, where parameters represent the gains of delayed effects.

Granger’s (1963) definition of causality (G-causality) represents the main
reference point in assessing temporal relationships between data series with
broad generality from open- to closed-loop conditions and from linear to
nonlinear relationships. If the prediction of a series {y} given the past of y itself
(and of other explanatory variables, if any) is improved by considering the past
of a further series {x}, then x G-causes y: x/y. First, generality stems from the
consideration that x/y does not deny the possibility of y/x, in a closed loop.
Second, only the information brought from the causing signal to the caused one is
focused, with no a priori constraints on the predictor form or on the prediction
evaluation. Linear and nonlinear predictors can be considered, and either a
reduction of prediction error variance or information content can be assessed.

Interestingly, most linear and nonlinear parametric identification methods are
based on prediction error optimization, hence strictly attain G-causality (Porta
et al. 2009).
3. Linear closed-loop identification combined with
physiological modelling

The transfer functions derived from linear closed-loop identification often reflect
the aggregate behaviour of a number of distinct physiological mechanisms. The
archetypical example is the transfer function relating beat-to-beat fluctuations in
arterial blood pressure (ABP) to heart rate (HR), which characterizes
the arterial HR baroreflex and encompasses the linear dynamic properties of
Phil. Trans. R. Soc. A (2009)



J. Batzel et al.1380
the arterial baroreceptors, afferent nerve fibres, brainstem, efferent nerve fibres
and sinoatrial node. By representing the (black box) transfer functions with
(white box) physiological models, separate mechanisms may be disentangled and
quantified. Two recent examples of this ‘grey-box’ modelling approach are
reviewed at a high level below.

(a ) Selective quantification of the cardiac sympathetic and
parasympathetic nervous systems

Traditional HR power spectral indices are limited as measures of the autonomic
nervous system. In particular, these indices neither offer an effective marker of
the sympathetic nervous system (SNS), owing to its joint mediation with the
parasympathetic nervous system (PNS) in the low frequency (0.04–0.15 Hz) regime,
nor afford truly specific measures of the autonomic nervous system, owing to the
input contributions to HR such as respiration and ABP.

In two previous studies (Xiao et al. 2004; Chen & Mukkamala 2008), a new
technique has been proposed to selectively quantify the SNS and PNS by multi-
signal analysis of non-invasive cardiorespiratory measurements. The basic idea is
to identify the transfer functions relating beat-to-beat fluctuations in ABP and
instantaneous lung volume (ILV) to HR so as to remove the influence of the
inputs on HR and then to model the identified transfer functions in the time
domain rather than the frequency domain in order to disentangle the SNS from
the PNS. More specifically, first, the impulse responses (time domain version of
transfer functions) relating beat-to-beat fluctuations in ABP to HR (ABP/HR)
and ILV to HR (ILV/HR) are estimated using linear closed-loop identification
with two inputs. Then, the identified ABP/HR and ILV/HR impulse
responses are each separated into an early and fast PNS component and a
delayed and sluggish SNS component, and the two norms of these components
are calculated so as to arrive at scalar indices of the PNS and SNS. This latter
step is supported by the experimental data in figure 1, which suggest that the
two identified impulse responses may each be modelled as a linear combination of
experimentally derived impulse responses relating pure external vagal and
sympathetic nervous stimulation to HR.

This technique was evaluated using selective pharmacological autonomic
nervous blockade in 14 humans (Chen & Mukkamala 2008). The results showed
that the indices obtained particularly from the ABP/HR impulse response were
superior to traditional HR power spectral indices in terms of correctly predicting
the known effects of atropine and/or propranolol on the SNS and PNS.

(b ) Non-invasive quantification of the total peripheral resistance baroreflex

While HR variability is easy to measure, beat-to-beat fluctuations in total
peripheral resistance (TPR) are not measurable and difficult to reliably estimate
(Mukkamala et al. 2003). As a result, closed-loop identification has mainly been
applied in the past to elucidate the feedback control of HR rather than TPR.

In a series of previous studies (Mukkamala et al. 2003, 2006; Chen et al. 2008),
a novel technique has been progressively built to quantify the TPR baroreflex by
analysis of only beat-to-beat measurements of ABP, cardiac output (CO) and
stroke volume (SV). Significantly, these measurements may be obtained non-
invasively in humans with, for example, finger-cuff photoplethysmography and
Phil. Trans. R. Soc. A (2009)
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Figure 1. Modelling the ILV/HR and ABP/HR impulse responses derived from linear closed-
loop identification so as to disentangle the cardiac sympathetic nervous system (SNS) from the
parasympathetic nervous system (PNS). ILV, instantaneous lung volume; HR, heart rate; ABP,
arterial blood pressure. Adapted from Chen & Mukkamala (2008).
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Doppler ultrasound (Mukkamala et al. 2003). Rather than attempting to
estimate the unobserved TPR fluctuations, the general idea is to account for
these variations through the couplings between the measured fluctuations. For
example, consider the ABP response to a step change in CO as shown in figure 2.
If the TPR baroreflex were inactive, then, by Ohm’s law, the steady-state
fractional change in ABP would equal the fractional change in CO. However, if
the TPR baroreflex were active, then the steady-state fractional change in ABP
would be less than that of CO owing to the accompanying drop in TPR, with a
smaller steady-state fractional ABP change indicating greater TPR baroreflex
functioning. Following this intuitive example, first, the impulse responses
(derivative of step responses) relating beat-to-beat fluctuations in CO to ABP
(CO/ABP) and SV to ABP are estimated using linear closed-loop identification
with two inputs. Then, the two identified impulse responses are each represented
with physiological models so as to calculate the impulse response of the arterial
TPR baroreflex, which relates beat-to-beat fluctuations in ABP to TPR, and the
static gain value (area of the impulse response) of the cardiopulmonary TPR
baroreflex, which relates beat-to-beat fluctuations in central venous transmural
pressure to TPR. (Note that the residual variability in ABP not correlated with
the fluctuations in CO and SV is assumed to be precisely due to non-baroreflex
mechanisms such as local vascular control and central autonomic outflow.)

This technique was evaluated using chronic arterial baroreceptor denervation
in seven conscious dogs instrumented with an aortic catheter and ultrasonic
aortic flow probe (Mukkamala et al. 2006; Chen et al. 2008). Consistent with
Phil. Trans. R. Soc. A (2009)
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known physiology, the results showed that the arterial TPR baroreflex impulse
response was virtually abolished following the chronic intervention, while the
magnitude of the cardiopulmonary TPR baroreflex static gain value more than
doubled perhaps due to a central compensatory mechanism.
4. Nonlinear closed-loop methods

Most, if not all, dynamics of physiological systems involve nonlinear control. For
example, nonlinear feedback control mechanisms are important for maintaining
homeostasis in the CV (Levy 1971; Saul et al. 1989; Chon et al. 1996) system.
Closed-loop system identification analyses have mostly involved linear
techniques, on the assumption that the contributions of the nonlinear
components are small. This assumption has not been thoroughly tested primarily
because nonlinear closed-loop methods that are computationally manageable and
reasonably accurate have been lacking.

Recently, in recognition of the lack of nonlinear closed-loop parametric
identification methods, Wang et al. (2007) introduced a nonlinear vector optimal
parameter search (VOPS) algorithm, which is more accurate than the vector
least squares (VLS). The VOPS owes its accuracy to the fact that it is able to
extract only the significant parameters even in the condition of noise corruption
and incorrect model selection (Lu et al. 2001; Zou et al. 2003; Wang et al. 2007).
Phil. Trans. R. Soc. A (2009)
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Furthermore, in this study, it was found that the total least squares (TLS)
outperformed the least-squares-based methods especially when the system
was corrupted with observation noise. Moreover, this study examined the
effect of using an open-loop algorithm on a closed-loop system to quantify
the error stemming from a wrong model assumption. In §4a, we briefly describe
the four methods for closed-loop parametric identification: VLS; VOPS; COPS;
and TLS.
(a ) Methodologies

(i) Vector least squares applied to closed-loop nonlinear system identification

A two-channel closed-loop time-invariant nonlinear system with observation
(hx and hy) and dynamic (3x and 3y) noise can be described in the following
matrix form:

xðnÞ
yðnÞ

 !
Z

Constx

Consty

 !
C
XM
iZ1

Ai

xðnKiÞ
yðnKiÞ

 !

C
XM
iZ1

XM
jZ1

Bij

xðnKiÞxðnKjÞ
yðnKiÞyðnKjÞ

 !

C
XM
iZ1

XM
jZ1

Cij

xðnKiÞyðnKjÞ
yðnKiÞxðnKjÞ

 !
C/C

3xðnÞ
3yðnÞ

 !
ð4:1Þ

and

x 0ðnÞ
y 0ðnÞ

 !
Z

xðnÞ
yðnÞ

 !
C

hxðnÞ
hyðnÞ

 !
; ð4:2Þ

where M is the order of the model, and 3x and 3y are the dynamic noise sources
and hx and hy are the observation noise sources of the two channels. Both x0 and
y0 denote the output signals owing to contamination by observation noise.

The VNAR model requires the use of vector Akaike’s information criterion
(AIC) or vector minimum description length (MDL) criterion to select the
system’s model order M (MZmin(AIC(m)) in equation (4.1), prior to estimating
the coefficient matrix via the use of least squares (LS). The vector form of the
AIC is given by (Wang et al. 2007)

AICðmÞZ log jSðmÞ j C 8

N
ðmC1Þ2; ð4:3Þ

where m denotes the model order of the VNAR process fitted to the data; N is
the sample size; S(m) is the prediction error covariance matrix; and j$j
denotes the matrix determinant. Once the proper model order has been
determined, the standard least-squares method is used to estimate both linear
and nonlinear parameters.
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(ii) Vector OPS algorithm for closed-loop nonlinear system identification

The VOPS has been introduced for closed-loop linear system identification and
it has been shown to provide accurate parameter estimation owing to its ability to
select only the significant model terms (Lu et al. 2001). The procedures for
determining significant nonlinear terms are similar to the linear case and are
briefly summarized. The first step of the VOPS is to select the linearly
independent vectors from the candidate matrix (Zou et al. 2003; Wang et al. 2007).

The second step of the VOPS is to determine only the significant model terms
among the pool of candidate model terms. Only the candidate terms that reduce
the estimated residual significantly are retained and the remaining terms are
discarded. A multivariate AIC criterion as described in equation (4.3) can be first
used to limit the number of candidate model terms, and then the optimal
parameter search criterion as described above is subsequently used to select only
the true model terms.

(iii) Constrained OPS for closed-loop nonlinear system identification

The constrained optimal parameter search (COPS) seeks the initial
approximate model terms of the closed-loop nonlinear system via VOPS.
Based on the obtained system model terms, the univariate OPS is then used to
determine only the significant coefficient terms from the pool of candidates
corresponding to the model terms for each channel (Lu et al. 2001; Zou et al.
2003). The COPS is an open-loop technique since it uses univariate OPS to
determine the model terms of closed-loop nonlinear systems. By contrast, the
VOPS calculates all of the coefficients in equations (4.1) and (4.2) at the same
time, thus simulating a closed-loop system.

(iv) Total least squares for closed-loop nonlinear system identification

The LS can be used to solve the vector linear and nonlinear parameters. A
major inherent weakness of the LS is that it assumes that only the output vector
and not the candidate model term matrix are perturbed by the noise source. If
noise is significant in the candidate model terms as well as those in the output
vector, then the estimation results will deviate from the true value and will be
biased. This is called the error-in-variables problem (Moon & Stirling 2000). The
TLS partly solves this error-in-variables problem and one can obtain better
results than with LS (Moon & Stirling 2000).

The standard procedure to solve the TLS is to use the singular value
decomposition (SVD). The smallest singular values obtained from the SVD of the
matrix are subtracted with the notion that it represents the noise components. In
the case of observation noise, the TLS is a more unbiased estimator than the LS
for either linear or nonlinear models.

(b ) Simulation examples

Monte Carlo simulations (100 realizations) were performed to investigate the
differences in the performance of the various methods. The accuracy of the
parameter estimates was determined by the relative error (RE):
REZðkq̂Kqk=kqkÞ, where q is a true parameter, q̂ is an estimated parameter
and kk is the Frobenius norm. An initial VNAR model of order 10 was selected
Phil. Trans. R. Soc. A (2009)
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from which the multivariate AIC criterion as described in equation (4.3) is used
as an initial guide to determine the most appropriate model order. From the
chosen model order via the AIC, then the OPS algorithm is used to prune out
insignificant terms. For the methods VOPS, COPS and TLS, the model order
selection is based on the use of AIC followed by the OPS whereas the VLS is
solely based on the AIC criterion. In all simulation examples, the data length was
set to 1024 data points.
(i) Example 1

For the first simulation example, a third-order VNAR process was
investigated:

xðnÞ
yðnÞ

 !
Z

0:4 0:8

K0:8 K0:8

 !
xðnK1Þ
yðnK1Þ

 !
C

K0:6 K0:4

0:6 0:5

 !
xðnK7Þ
yðnK7Þ
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C
1:2 0

0 K1:0

 !
x2ðnK1ÞxðnK2Þ

y2ðnK1ÞyðnK2Þ

 !
C

3xðnÞ
3yðnÞ

 !
: ð4:4Þ

The above process was examined under three different noise scenarios:
(i) dynamic white noise, (ii) dynamic coloured noise and (iii) dynamic coloured
and observation white noise. For the dynamic white noise case, 3x and 3y are
independent Gaussian white noise with zero mean and varianceZ0.16. Dynamic
coloured noise is generated by the following: 3ðnÞZK0:6eðnÞK0:8eðnK1ÞC
0:3eðnK2Þ, where e(n)Z[ex(n) ey(n)]

T, and ex and ey are independent Gaussian
white noise with zero mean and varianceZ0.16. The results are provided in
figure 3. Under all noise cases, the results show that the averages and variances of
RE computed from the VOPS and COPS are statistically smaller than the
results computed from the TLS and VLS.
(ii) Example 2

For the second simulation example, we consider another two-channel VNAR
process provided by the following:

xðnÞ
yðnÞ

 !
Z

0

1:4

 !
C

0 1

0:3 0

 !
xðnK1Þ
yðnK1Þ

 !
C

0 0

0 K1

 !
x2ðnK1Þ

y2ðnK1Þ

 !
: ð4:5Þ

The above equation describes the well-known Henon map (Henon 1976). To the
Henon map, 10 dB observation white noise was added. REs of the four methods
are shown in figure 4. The TLS approach provides the best parameter estimates
followed by the COPS, VOPS and VLS.

In summary, the comparative results show that both the VOPS or COPS
algorithms are, in general, far superior to the VLS for all types of noise and they
are superior to the TLS for dynamic noise. The TLS provides better results
followed by the VOPS, COPS and VLS when the system is corrupted by
observation noise provided that it uses the accurate model order selection
criterion (e.g. optimal parameter search; Lu et al. 2001).
Phil. Trans. R. Soc. A (2009)



700

600

500

400

300R
E

 (
%

)

200

100

0
dynamic white

noise
dynamic coloured

noise
dynamic coloured
noise+observation

noise

VLS
VOPS

COPS
TLS

Figure 3. Comparison of RE values for all algorithms compared in example 1. ANOVA
was performed (aZ0.05). There are significant differences in every case ( p!0.0001).
Student–Newman–Keuls test was performed (aZ0.05). Under all noise cases, the RE values are
in the order COPSZVOPS!TLS!VLS.

10dB observation white noise
0

10

20

30

40

50

60 VLS
VOPS

COPS
TLS

R
E

 (
%

)

Figure 4. Comparison of RE values for all algorithms considered in example 2. ANOVA was
performed (aZ0.05). There are significant differences ( p!0.0001). Student–Newman–Keuls
test was performed (aZ0.05). Under the 10 dB observation white noise case, the RE values are in
the order TLS!COPS!VOPS!VLS.

J. Batzel et al.1386
5. Sensitivity analysis

Models based on physiological knowledge and first principles attempt to identify
functional details about the system under study. This approach represents a
second general avenue for investigating the complex functional interactions of
the complex control loops of the cardiovascular system (CVS). A prime example
is the human baroreflex system, which relies on both arterial and cardiopul-
monary sensors for information on the state of the system to stabilize blood
pressure via various combinations of changes in heart rate, heart contractility,
Phil. Trans. R. Soc. A (2009)
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systemic resistance and venous capacitance (see Batzel et al. 2006). In this
approach, model equations represent the interaction of states, and parameters
reflect the individual response characteristics of the system in a particular
subject. Hence, parameter estimation can be critical for model validation, subject
classification and patient diagnosis. In this section, the contribution of SA in
parameter identification is described, as well as its relevance for addressing the
problem of restrictions on the data such as (i) the collection by non-invasive
measurements and (ii) cost constraints such as are typically seen in the clinical
setting where accurate model adaptation to the individual is vital. The
importance of SA is especially evident for nonlinear system identification since
the model terms grow exponentially with increasing order of nonlinearity. SA
seeks to strategically reduce the number of model parameters to be estimated
without sacrificing model usefulness.

Parameter sensitivity will be described in terms of the following typical
model system:

dx

dt
Z gðxðt; pÞ; t; pÞ yðt; pÞZ f ðxðt; pÞ; pÞ JðpÞZ

Xs
iZ1

ðyðti; pÞK xiÞ2; ð5:1Þ

where x 2Rn represents the states of the system; y2Rm represents the
observations; and p2Rr represents the parameter vector. Parameter estimation
is normally carried out with respect to a cost functional J(p) and the data xi
collected at times ti , 1%i%s.
(a ) Definitions of identifiability and sensitivity analysis

Various definitions of model identifiability can be found in Cobelli & DiStefano
(1980) such as structural identifiability (or least-squares identifiability) defined in
terms of the local minimum of the cost functional used in estimation and output
distinguishability related to the ability to distinguish outputs when parameters
are perturbed. This section focuses on sensitivity identifiability of system (5.1)
using the following relations:

ðiÞ Sðt; pÞZ

vy1ðt; pÞ
vp1

/
vy1ðt; pÞ

vpr

« 1 «

vymðt; pÞ
vp1

/
vymðt; pÞ

vpr

0
BBBBBBBB@

1
CCCCCCCCA

ðiiÞ Dy ZSDp: ð5:2Þ

The matrix S (time dependent) is called the sensitivity matrix. Note that the
three definitions of identifiability can be shown to be equivalent (see Cobelli &
DiStefano 1980). SA refers broadly to methods for assessing the relationships
between model output, parameter values (and estimation) and data sources.
System (5.1) is said to be sensitivity identifiable if relation (5.2(ii)) can be solved
uniquely for a given Dp, which is true if and only if rank (S )Zr or equivalently
det ðSTSÞs0. The matrix S will be a building block in the methods discussed
below, and under suitable conditions the noise in the measured data can be
Phil. Trans. R. Soc. A (2009)
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related to the Fisher information matrix. Applications of SA include (i) model
reduction, (ii) improvement in computational efficiency, and (iii) experimental
design. Three important techniques for SA, classical sensitivity, subset selection
and generalized sensitivity, will be presented. Using information derived from
these techniques, the set of parameters to be estimated may be reasonably
reduced and experimental design improved. For examples of such analysis, see
Heldt et al. (2006) and Fink et al. (2008).

What can be referred to as classical SA examines how parameter changes
influence model output. Each element in the sensitivity matrix S describes how a
single output varies with a single parameter. For simplicity, consider the
relationship between a single real-valued output y and single real-valued
parameter p, so that yZy(p) and p is in some open interval I, where we
assume that y is differentiable on I. Consider a fixed p0 2 I and assume
that p0s0 and y0Zyðp0Þs0. Corresponding to Dp with p0CDp2 I , we
define DyZyðp0CDpÞKyðp0Þ and consider the relative variations (Dp/p0) and
(Dy/y0). The sensitivity s of y with respect to p at p0 is defined as sðy;pÞ
ðp0ÞZ limDp/0 ðDy=y0Þ=ðDp=p0Þð ÞZðp0=y0Þy 0ðp0Þ.

Relative variations weight the responses and render s y;pð Þ invariant under change
of units in p or y. Sensitivities are defined at each time point and the resulting
sensitivity functions in S trace output sensitivities with respect to particular
parameters over time. These sensitivity functions can be found by appending model
(5.1) with additional differential equations for the individual sensitivities in S as
variables and then solving the extended system (see Fink et al. (2008) including
discussion of initial conditions). The resultant sensitivities can detect those
parameters whose variation have least impact on model output and perhaps can be
reasonably estimated from the literature and not through some estimation procedure.
(b ) Subset selection

Subset selection is a second SA method that can be applied, for example, in the
least-squares estimation problem with the cost of the form given in equation (5.1)
(see Vélez-Reyes & Verghese 1995; Burth et al. 1999). Using a gradient-based
method to update a current guess pc of the parameter vector, we define the new guess
pn by pnZpcCDp, where Dp is the correction term satisfying the update relation

vYT

vp
ðpcÞ

vY

vp
ðpcÞ

� �
DpZK

vYT

vp
ðpcÞY ðpcÞ where Y ðpÞZ

yðt1; pÞK x1

«

yðts; pÞK xs

0
B@

1
CA;

and as before xi is a measurement at time ti. Now, ðvY=vpÞðpcÞ is essentially the
sensitivity matrix S given in equation (5.2(i)) but where model predictions
at various times yðti; pÞ are incorporated. Such an update algorithm fails when

Ŝ ZðvYT=vpÞðpcÞðvY=vpÞðpcÞ is singular. Note that Ŝ is evaluated at fixed

nominal parameter values (normalized) and thus provides only a local analysis of the
feasibility of parameter identification.

Subset selection described in Burth et al. (1999) uses QR factorization with
column pivoting to carry out a partition of the matrix Ŝ so that the first j
columns of Ŝ are (‘most’) linearly independent and the remaining columns are
dependent or nearly so as measured by the magnitude of the associated
Phil. Trans. R. Soc. A (2009)
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eigenvalues. This procedure also naturally associates parameters with
eigenvalues. A new update on estimation is only applied to the j parameters
associated with the first j linearly independent columns, while the remaining
parameters are fixed at the current estimate. Numerical considerations can be
used to sort parameters by the magnitude of associated eigenvalues allowing
for a further refinement in the analysis of which parameters are likely to be
reasonably estimated. Only those parameters associated with larger eigen-
values would be deemed estimatable. Zero eigenvalues indicate a set of
interdependent parameters not uniquely identifiable. For techniques to
analyse this problem and extract from the parameter set a subset that will
in principle be identifiable see Catchpole et al. (1998), Gimenez et al. (2004)
and Fink et al. (2008).

(c ) Generalized sensitivities

Generalized sensitivity functions (GSFs) introduced by Thomaseth & Cobelli
(1999) provide information on the relevance of measurements of output variables
of a system for the identification of specific parameters (sensitivity of parameter
estimates with respect to measurements). Consider system (5.1) as a single output
systemand the data given at time points tk in a time interval 0%t%Twith parameter
vector p, and f sufficiently smooth. At time tk we assume the measurement
xkZZ(tk)Cek for kZ1,.,M, where Z(tk) is the ‘true’ output of the system and ek is
the measurement noise. Noise functions are assumed to have zero mean and to be
identically distributed with variances sk independent of p. A generalized sensitivity
function giðtk0Þ with respect to the parameter component pi of p at the time instant
tk 0 for p in a neighbourhood of p0 (an assumed true parameter for the data) is given by
(compare (5.2))

giðtk 0ÞZ
Xk 0
kZ1

1

s2k

XM
jZ1

1

s2j
ðVpf ðtj ; pÞÞTVpf ðtj ; pÞ

 !K1

!ðVpf ðtk ; pÞÞT
 !

i

ðVpf ðtk ; pÞÞi:

Note that the gradients in the above equation incorporate information of the
sensitivitymatrix (see Batzel et al. 2006). Given the parameter vector p, eachGSF gi
provides information on the correlation between the given parameter pi and other
parameters with respect to the output measurements.

Non-monotonic behaviour of gi indicates that the information in the
measurements is correlated with other parameters while monotonic behaviour
indicates freedom from correlation. GSF also indicate the data intervals
most relevant for the parameter estimation process: the intervals where the
rise from 0 to 1 (beginning and ending values of the GSF) occurs are
the intervals most relevant. Clearly, GSFs can provide valuable information
on experimental design for data collected in the clinical setting restricted by
clinical constraints.

(d ) Applications of sensitivity analysis

The above three methods can be applied jointly to devise an effective
parameter estimation protocol by using the methods to (i) detect which
parameters are numerically reliably identifiable (subset selection), (ii) detect
Phil. Trans. R. Soc. A (2009)
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parameters whose variation does not greatly impact model output and hence can
be reasonably estimated from literature, group or allometric estimation (classical SA),
and (iii) design efficient data collection (generalized SA).
6. Conclusion

In this work, several methodologies have been shown each approaching the
complexity of CVV and CV function from different points of view. Also, the
application examples concern various data subsets, conditions and addressed
parts of a multifaceted system. Despite the vast physiological knowledge of the
CV and neural systems involved, tailoring of methods and models to specific
applications is still needed. In this perspective, three main trends have been
presented and discussed in the present review, which aim at providing efficient
tools in reducing the CV regulation complexity: (i) introducing a priori
haemodynamic knowledge with suitable grey-box modelling, (ii) describing
nonlinear elements in order to improve the goodness of fit and reduce the
required parameters, and (iii) assessing the relative importance of modelling
features by SA. Consistent progress can be foreseen by the application and
further integration of these methods in suitable models and computational tools.

This research was partially funded by Austrian Research Funds Project 18778-N13, NIBIB grant
EB-004444, ASI project DCMC and EU project Heart Cycle.
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Burth, M., Verghese, G. C. & Vélez-Reyes, M. 1999 Subset selection for improved parameter
estimation in on-line identification of a synchronous generator. IEEE Trans. Power Syst. 14,
218–225. (doi:10.1109/59.744536)

Catchpole, E. A., Morgan, B. J. T. & Freeman, S. N. 1998 Estimation in parameter redundant
models. Biometrika 85, 462–468. (doi:10.1093/biomet/85.2.462)

Chen, X. & Mukkamala, R. 2008 Selective quantification of the cardiac sympathetic and
parasympathetic nervous systems by multi-signal analysis of cardio-respiratory variability. Am.
J. Physiol. 294, H362–H371.

Chen, X., Kim, J., Sala-Mercado, J. A., Hammond, R. L., Elahi, R. I., Scislo, T., Swamy, G.,
O’Leary, D. S. & Mukkamala, R. 2008 Estimation of the total peripheral resistance baroreflex
impulse response from spontaneous hemodynamic variability. Am. J. Physiol. 294, H293–H301.
(doi:10.1152/ajpheart.00852.2007)

Chon, K. H., Mullen, T. J. & Cohen, R. J. 1996 A dual-input nonlinear system analysis of autonomic
modulation of heart rate. IEEE Trans. Biomed. Eng. 43, 530–544. (doi:10.1109/10.488800)

Cobelli, C. & DiStefano III, J. J. 1980 Parameter and structural identifiability concepts and
ambiguities: a critical review and analysis. Am. J. Physiol. 239, R7–R24.

Fink, M., Batzel, J. J. & Tran, H. T. 2008 A respiratory system model: parameter estimation and
sensitivity analysis. Cardiovasc. Eng. 8, 120–134. (doi:10.1007/s10558-007-9051-7)
Phil. Trans. R. Soc. A (2009)

http://dx.doi.org/doi:10.1126/science.6166045
http://dx.doi.org/doi:10.1007/BF02518911
http://dx.doi.org/doi:10.1007/BF02518911
http://dx.doi.org/doi:10.1109/59.744536
http://dx.doi.org/doi:10.1093/biomet/85.2.462
http://dx.doi.org/doi:10.1152/ajpheart.00852.2007
http://dx.doi.org/doi:10.1109/10.488800
http://dx.doi.org/doi:10.1007/s10558-007-9051-7


1391CV regulation modelling methods
Geweke, J. 1982 Measurement of linear dependence and feedback between multiple time series.
J. Am. Stat. Assoc. 77, 304–313. (doi:10.2307/2287238)

Gimenez, O., Viallefont, A., Catchpole, E. A., Choquet, R. & Morgan, B. J. T. 2004 Methods for
investigating parameter redundancy. Anim. Biodiv. Conserv. 27, 561–572.

Granger, C. W. J. 1963 Economic processes involving feedback information and control. Inform.
Control 6, 28–48. (doi:10.1016/S0019-9958(63)90092-5)

Guyton, A. C. & Harris, J. W. 1951 Pressoreceptor-autonomic oscillation; a probable cause of
vasomotor waves. Am. J. Physiol. 165, 158–166.

Heldt, T., Long, B., Verghese, G. C., Szolovits, P. & Mark, R. G. 2006 Integrating data, models,
and reasoning in critical care. In Engineering in Medicine and Biology Society, 2006 EMBS 28th
Annu. Int. Conf. of the IEEE, vol. 1, pp. 350–353.

Henon, M. 1976 A two-dimensional map with strange attractor. Commun. Math. Phys. 50, 69–77.
(doi:10.1007/BF01608556)

Hyndman, B. W., Kitney, R. I. & Sayers, B. M. 1971 Spontaneous rhythms in physiological control
systems. Nature 233, 339–341. (doi:10.1038/233339a0)

Koepchen, H. P. 1984 History of studies and concepts of blood pressure waves. In Mechanisms of
blood pressure waves (eds K. Miyakawa, H. P. Koepchen & C. Polosa), pp. 3–27. New York,
NY: Springer.

Levy, M. N. 1971 Sympathetic–parasympathetic interactions in the heart. Circ. Res. 29, 437–445.
Ljung, L. 1999 System identification: theory for the user. Englewood Cliffs, NJ: Prentice-Hall.
Lu, S., Ju, K. & Chon, K. H. 2001 A new algorithm for linear and nonlinear ARMA model

parameter estimation using affine geometry. IEEE Trans. Biomed. Eng. 48, 1116–1124. (doi:10.
1109/10.951514)

Moon, T. K. & Stirling, W. C. 2000 Mathematical methods and algorithms for signal processing.
Upper Saddle River, NJ: Prentice Hall.

Mukkamala, R., Toska, K. & Cohen, R. J. 2003 Noninvasive identification of the total peripheral
resistance baroreflex. Am. J. Physiol. 284, H947–H959.

Mukkamala, R., Kim, J., Li, Y., Sala-Mercado, J., Hammond, R. L., Scislo, T. & O’Leary, D. S.
2006 Estimation of arterial and cardiopulmonary total peripheral resistance baroreflex gain
values: validation by chronic arterial baroreceptor denervation. Am. J. Physiol. 290,
H1830–H1836. (doi:10.1152/ajpheart.00898.2005)

Porta, G., Aletti, F., Vallais, F. & Baselli, G. 2009 Multimodal signal processing for the analysis of
cardiovascular variability. Phil. Trans. R. Soc. A 367, 391–409. (doi:10.1098/rsta.2008.0229)

Saul, J. P., Berger, R. D., Chen, M. H. & Cohen, R. J. 1989 Transfer function analysis of
autonomic regulation. II. Respiratory sinus arrhythmia. Am. J. Physiol. 256, H153–H161.

Thomaseth, K. & Cobelli, C. 1999 Generalized sensitivity functions in physiological system
identification. Ann. Biomed. Eng. 27, 607–616. (doi:10.1114/1.207)
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