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Abstract
Although the human amygdala and striatum have both been implicated in associative learning,
only the striatum’s contribution has been consistently computationally characterized. Using a
reversal learning task, we demonstrate that amygdala BOLD activity tracks associability as
estimated by a computational model, and dissociates it from the striatal representation of
reinforcement prediction error. These results extend the computational learning approach from
striatum to amygdala, demonstrating their complementary roles in aversive learning.

Both the amygdala and striatum are known to be critical for associative learning. For the
striatum, celebrated work in humans and other animals suggests its involvement in learning
from prediction errors for reinforcement1, 2. Such errors occur when there is more or less
reward (or punishment) than expected. Supporting this idea, the prediction error – as
quantified in theories of conditioning such as the Rescorla-Wagner and temporal difference
models – has helped to explain neural signaling in this system across species, including
blood oxygenation level-dependent (BOLD) signals in the human striatum2, 3.

However, BOLD activity in the amygdala has not consistently correlated with error signals,
even in aversive conditioning tasks3. This raises the question, how might we
computationally characterize learning signals in the amygdala? Such a specific
characterization could shed further light on ideas about the structure’s distinct contributions
to associative learning. Current theories of amygdala function in humans have highlighted
its role in vigilance4 and the detection of relevant stimuli5. Theories of associative learning
in animals – notably, the Pearce-Hall model6 describe a more specific and potentially related
function for the amygdala7, 8: the attentional gating of learning. These theories envision that,
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in order to learn cue-reinforcer associations, animals track a quantity – called associability –
which reflects the extent to which each cue has previously been accompanied by surprise
(positive or negative prediction errors). A cue’s associability gates the amount of future
learning about the cue based on whether it has been a reliable or poor predictor of
reinforcement in the past. In other words, associability controls learning rates dynamically,
accelerating learning to cues whose predictions are poor and decelerating it when
predictions become reliable.

In non-human animals, lesion studies, and more recently, unit recordings suggest that a key
neural substrate for associability is the amygdala7–9. To date, there is little direct evidence
that the human amygdala might play an analogous role. Here, we hypothesize that the
human amygdala codes for associability, which is distinct and complementary to the
striatum’s coding of prediction error during associative learning. Specifically, we used a
computational model to examine an aversive reversal-learning task to ask whether an
associability signal similar to that seen in unit recordings in non-human animals might be
present in the pattern of BOLD signaling in the human amygdala during aversive learning8.

Seventeen participants completed a Pavlovian reversal-learning task (Fig. 1a and
Supplementary Methods) during which their BOLD signals and skin conductance responses
(SCRs) were recorded simultaneously10. The experiment began with an acquisition phase, in
which participants were presented with two visual stimuli (mildly angry or fearful faces;
conditioned stimuli). One stimulus co-terminated with an aversive outcome (electric shock;
unconditioned stimuli) on one-third of the trials (partially reinforced, CS+). The other
stimulus was not paired with unconditioned stimuli (CS−). The acquisition phase was
followed by an unsignaled reversal phase, in which the identities of original conditional
stimuli (CS+ and CS−) switched10. Such a task provides a characteristic test for theories of
associability, which predict that the associability of each conditioned stimulus should
decline during acquisition, as the outcomes become more expected, and then increase
rapidly during the reversal phase, when the outcomes are again surprising.

We first fit and validated our associability model behaviorally using a physiological
measure, SCRs. Although previous work has demonstrated that SCRs correlate with cue-
specific value (V) as predicted by a Rescorla-Wagner learning model10, we hypothesized
that these responses might reveal additional effects of associability. To test this, we
compared the fit of alternative learning models to all participants’ SCRs, correcting for the
models’ different numbers of free parameters using likelihood ratio tests (see Supplementary
Methods and Supplementary Tables S1 and S2 for details). Indeed, compared to the basic
Rescorla-Wagner model with a constant learning rate, value-related SCR effects were better
explained by values predicted by an augmented “hybrid” Rescorla-Wagner model, which
gated its learning rate dynamically according to the Pearce-Hall associability rule
(χ2

34=104.42; p < 0.00001). Furthermore, since an arousal or attentional signal such as SCR
might directly reflect associability (a measure of cue-specific attention) as well as value
expectation, we tested whether SCR was modulated by the cue-specific associabilities
learned by the model, over and above any value-related effects. This additional effect was
significant (χ2

17=63.63; p < 0.0001). Both results support the hypothesis that the brain learns
cue-specific associabilities and uses them to modulate predictive learning about potential
aversive shocks.

In order to quantitatively identify the neural correlates of (aversive) prediction error (δ) and
associability (α), we next used the fitted hybrid model to generate, for each subject, trial-by-
trial time series of the estimates for δ and α. We regressed these variables on subjects’
BOLD data at the time of conditioned stimuli termination (the time when, in the model,
prediction error is realized and modulated by associability to gate learning; see
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Supplementary Methods for details). These two time series are relatively easy to distinguish
from one another, because the associability is determined not by the current prediction error,
but instead by prediction errors received on previous trials with the same cue
(Supplementary Figs. 1 and 2).

Based on lesion studies and electrophysiological recordings in non-human animals, we
focused our search for associability-related activity on the amygdala7–9. We compared this
activity to that of the striatum, which is associated with error-driven learning in both humans
and other species1, 2, including prediction errors for appetitive as well as aversive
reinforcers3. As expected, BOLD activity in the bilateral ventral striatum, but not amygdala,
was positively correlated with the aversive prediction error (Fig. 2a, p < 0.05, small volume
corrected (SVC) for multiple comparisons within anatomically defined masks of the two
structures). However, the opposite activation pattern emerged for associability, which was
positively correlated with the bilateral amygdala, but not the ventral striatum (Fig. 2b, p <
0.05 SVC; see Supplementary Methods for additional discussion).

To further confirm that the striatum and amygdala were differentially engaged in
representing prediction error and associability, we directly compared the mean activity
within these areas (in regions defined functionally by the main effect of conditioned stimuli
presentation vs. baseline during early acquisition10, a contrast chosen so as not to bias the
subsequent test for differential signaling between the regions, see Supplementary Methods).
Specifically, we compared the effects of different components (α and δ) of learning signal
across regions (striatum and amygdala) using a two-factor, repeated-measures ANOVA on
the regression coefficients from individual subjects. We observed a significant interaction of
region and model component (F1, 64 = 5.75, p < 0.02; Fig. 2c, note that this test does not
require correction for multiple comparisons), indicating differential sensitivity to the two
components (α and δ) across the two areas. In addition, a post hoc t test showed a larger
correlation with α in the BOLD signals in bilateral amygdala than ventral striatum (paired t-
test, t16 = 3.03, p < 0.01; Fig. 2c).

Though it has been associated with affective learning, trial-by-trial BOLD activity in the
human amygdala has not consistently enjoyed a quantitative, computational interpretation
comparable to prediction error in the striatum. The present results, taken together with more
invasive techniques in non-human animals7–9, are consistent with a specific functional role
for the human amygdala in controlling associability during learning. This role would be
complementary to prediction error signaling in mesolimbic dopamine targets, such as
striatum, allowing increased processing of cues – and enhanced learning.

Our results also link work on the amygdala’s role in associative learning in non-human
animals with research in humans on cortical representations of uncertainty and their control
over learning rates. Bayesian theories predict that several sorts of uncertainty should, jointly,
determine learning rates, according to computations only approximated by the Pearce-Hall
rule11. Correlates of such quantities have been reported in cingulate and insular
cortices12, 13, near areas where BOLD also correlated with associability in our analysis
(Supplementary Table 4). We hypothesize that cortical uncertainty signals may reflect
predecessor variables contributing to the computation of net associability in amygdala, since
lesion studies support the amygdala’s causal role as a key hub in learning rate control 7.
However, no single study has yet manipulated all of the different factors necessary to
distinguish the many types of uncertainty that might contribute to associative learning.

In the current study, we extend the computational characterization of learning signals in the
human brain from the striatum (prediction error) to the amygdala, which we found correlates
with associability. Our results leave open the question whether associability coding in

Li et al. Page 3

Nat Neurosci. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



human amygdala is specific to aversive tasks, or to other features of our experiment such as
the use of mildly aversive (angry) faces as conditioned stimuli. However, our findings
complement previous research using reward learning tasks in non-human animals showing
similar roles for the amygdala and the striatum in the computation of associability and
prediction error, respectively8. In the context of this animal literature, the present results
suggest that what distinguishes these two value-learning regions may not be nature of the
reinforcer, but rather the computational contribution to the learning signal3, 14, 15.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Experimental design and behavioral model fit. (a) Experiment timeline illustration.
Acquisition phase consisted of presentations of the CS+ which was partially associated with
electric shock and CS− not associated with shock. In the reversal phase, the reinforcement
contingencies for the original CS+ and CS− were switched. (b) Average SCRs across
subjects (red) and the best-fit associability trace (blue).
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Figure 2.
Neural correlates of associability and prediction error term. (a) BOLD activities in the
ventral striatum but not amygdala correlate with prediction error. (b) BOLD activities in the
bilateral amygdala but not ventral striatum correlate with associability regressor (p < 0.05,
SVC; results are shown at uncorrected thresholds to display the full extent of the activation.
(c) Differential representations of associability (α) and prediction error (δ) in striatum and
amygdala BOLD activities (± s.e.m.) identified by an two-way ANOVA.
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