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Protein structure and function are closely related, especially in
functional surfaces, which are local spatial regions that perform
the biological functions. Also, protein structures tend to evolvemore
slowly than amino acid sequences. We have therefore developed
a method to classify proteins using the structures of functional
surfaces;we call it protein surface classification (PSC). PSCmay reflect
functional relationships among proteins and may detect evolution-
ary relationships among highly divergent sequences. We focused on
the surfaces of ligand-bound regions because they represent well-
defined structures. Specifically, we used structural attributes to
measure similarities between binding surfaces and constructed
a PSC library of∼2,000 binding surface types from the bound forms.
Using flavin mononucleotide-binding proteins and glycosidases as
examples, we show how the evolutionary position of an uncharac-
terized protein can be defined and its function inferred from the
characterized members of the same surface subtype. We found that
proteins with the same enzyme nomenclature may be divided into
subtypes and that two proteins in the same CATH (Class, Architec-
ture, Topology, Homologous superfamily) fold may belong to two
different surface types. In conclusion, our approach complements the
sequence-based and fold–domain classifications and has the advan-
tage of associating the shapeof a proteinwith its biological function.
As an expandable library, PSC provides a resource of spatial patterns
for studying the evolution of protein structure and function.

geometric matching | split pocket | structural footprinting |
physicochemical property | functional similarity

Amajor goal of protein classification is to understand the
structural, functional, and evolutionary relationships among

proteins. Among the best-known protein classifications are Pfam
(1) by a sequence-based method and CATH (class, architecture,
topology, homologous superfamily) (2) and SCOP (Structural
Classification of Proteins) (3), both of which are based on the
fold–domain approach. From a sequence-based classification (1,
4), one gains knowledge of the expansion of protein families and
their evolutionary relationships. From a fold–domain classifica-
tion (2, 3), one obtains a global view of protein fold space (5).
An advantage of the sequence-based approach is that it

requires only protein sequence data, but no structural data.
However, it is difficult to relate amino acid changes to structural
or functional changes (6, 7). Moreover, a sequence-based
method may not be able to detect distant relationships among
proteins because protein sequences may not be well-conserved in
evolution (8, 9). In comparison, the fold–domain approach may
be able to detect distant relationships, because most protein
folds are well-conserved. However, protein folds may be too
conservative to do a fine classification of proteins or to reveal
functional divergence between two proteins. Indeed, examples
exist where domain folds cannot guarantee the identification of
biological functions (9). In addition, a classification may have
other important missions such as the identification of functional
sites involved in biochemical reactions and the evolutionary
forces that affect functional divergence during protein evolution.
Our approach uses functional surfaces. Typically, the bio-

chemical reactions of a protein occur on the surface region that
mediates molecular interactions with either substrates or other

proteins. Moreover, the structural information and biological
function of a characterized protein can usually be transferred to
another protein when the two proteins share a high similarity of
surface structures (10, 11). In this study, we considered the local
surface that interacts with cognate ligands and focused on ligand-
binding surfaces for several reasons. First, a ligand-bound surface
is well-defined because the conformation is fixed by its binding to
the ligand and it contains abundant biological information. Sec-
ond, ligand binding typically occurs in a protein pocket and usually
can be identified from the 3D structure of the protein in the
Protein Data Bank (PDB) (12). Third, including protein regions
that interact with other proteins complicates the analysis because
they are more difficult to predict than protein pockets. Fourth,
including unbound forms will greatly increase the number of sur-
face pairs to be compared, thus greatly increasing the computa-
tional cost. Our strategy is first to establish the classification of
bound forms, which, as will be seen later, can serve as a library of
surface types and subtypes for classifying unbound structures. Note
that comparing binding surfaces has indeed proven powerful for
identifying the binding site of an uncharacterized protein (10, 11,
13). In our definition, a binding surface includes all of the residues
involved in ligand binding (i.e., the entire pocket where the binding
occurs). In most cases, the binding surface includes binding sites
and active sites (e.g., catalytic residues), although in some cases it
does not include the active sites.
In this study, we develop an effective means of geometric

matching to classify protein functional surfaces. The functional
surfaces of proteins have attributes such as hydrophobic strength
and charge concentration that can potentially reveal the rela-
tionships among proteins with different folds. This is because se-
lective constraints on function restrict the spatial arrangement of
functionally important residues of binding surfaces and may retain
similar biochemical activities even when protein folds become
distinct. Therefore, we use this technique to identify those residues
involved in biochemical reactions and group proteins by their
structural attributes. Its major advantage is to provide site-specific
information pertaining to the binding sites, so that an association
between the binding surface and molecular function(s) may be
established.

Results and Discussion
Building a Basic Library of Functional Surface Types. From a total of
∼68,000 PDB structures, we identified 28,986 bound forms for
a functional surface classification. To assess the pairwise simi-
larity between binding surfaces, we computed their local root-
mean-square deviation (rmsd) by fPOP (14); if their P value
was ≤10−4, they were classified into the same surface type. We
computed the rmsd values of all binding surface pairs. Applying
clustering analysis (Materials and Methods), we established
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a library of 1,974 surface types, which are used to build a basic set
of binding surface shapes.
We use Ns to denote the number of members in a protein sur-

face type. Among the 1,974 surface types only 502 have Ns ≥10, 95
surface types have Ns ≥50, and 31 surface types have Ns ≥100 (Fig.
S1). This uneven distribution is partly due to biased selection of
proteins in structural studies; most of the classified surface types
are enzymes or soluble proteins.

Classifying Surface Subtypes. The above coarse classification was
based on the rmsd value of each surface pair. The discrimination
power of rmsd starts decreasing when closely related surfaces are
compared. For a finer classification, we selected a list of surface
attributes (Table 1). Using shape analysis, we studied the se-
lected surface attributes of each of the 28,986 identified binding
surfaces (Fig. S2; SI Text, Selecting the Surface Attributes of a
Protein). A detailed kernel-density plot of an attribute can re-
veal its high density area (Fig. S3). As an example of using the
selected structural attributes to conduct a fine classification, let
us consider oxidoreductases. Fig. S4 shows that the 41 structures
of the oxidoreductase surface type lie scattered on the hyper-
plane when only three surface attributes [length (len), sphericity
(sph), and anisotropic distance (d)] are used, but are clustered
into three distinct subtypes when the 11 attributes in Table 1 are
used (see more details below). This example shows the impor-
tance of using a sufficiently large number of attributes in clas-
sifying protein surfaces.
We now present more details about the classification of oxi-

doreductases. The oxidoreductase surface type consists of 41
members that have Enzyme Commission (EC)-annotated func-
tions (Table S1). Their folds belong to the sameCATH IDnumber
of 3.20.20.70 (Aldolase class I). For each member, we computed
their surface attributes (Table S1). For any two members, we
calculated their functional similarity scoreΦ and then converted it
into a dissimilarity score by a transformation (Materials and Meth-
ods). We then computed the dissimilarity matrix for the 41 mem-
bers and represented all pairwise relationships in a heatmap (Fig.
S5). The relationships of structural attributes suggested the par-
titions of a surface type (SI Text, Determining the Number of Sub-
types in a Surface Type). Using a hierarchical clustering analysis
(Fig. S6), we placed them into three distinct subtypes, A, B, and C,
that exactly match their EC annotations. The binding surfaces of
PDB1gvr.A, PDB2hs6.A, and PDB1z41.A are representatives of
subtypes A, B, and C, respectively. Although the three subtypes
belong to the same Aldolase class I fold (CATH 3.20.20.70), they
have the following functions: PETN (pentaerythritol tetranitrate),
EC 1.6.99.1, and EC 1.3.1.42 (Fig. S7). The residue compositions
of their binding surfaces along with the geometrical measurements
are available at http://pocket.uchicago.edu (15).
The residues on a binding surface, although noncontiguous in

the primary sequence, provide surface characteristics of a protein:

which type of residue occupies a specific position, how the residue
is geometrically placed in space, and how its hydrophobic area and
charge concentration are distributed. This is important because
the spatial distribution of a set of binding residues usually deter-
mines the location and function of a binding region along the
protein surface (Table S1). Our finding is that the residue com-
position of a binding surface gave rise to the surface attributes
computed in Table S1. Thus, we directly applied these attributes to
characterize subtypes (Table 2). For instance, the members within
this surface type have similar binding pockets because the sph and
surface density (SD) were highly similar. However, the d in subtype
C was at least 1.5 Å longer than those in the other two subtypes.
The hydrophobic occupation on a binding surface of subtype A
was 6% lower than those of subtypes B and C. In terms of geo-
metrical measurements, subtype C had the largest binding pocket
involved in fatty acid biosynthesis [Gene Ontology (GO)
0008610 and 0000663].
The global shape of a protein is depicted by (WG1,WG2), where

WG1 andWG2 are the skewness and kurtosis, respectively. When
a value of WG1 is close to 0, it implies that the distribution of
atoms of the protein is symmetrical. A large value ofWG2 implies
that the protein is segmented. The means ofWG1 andWG2 were,
respectively, −0.40 and −0.11 for subtype A, but (−0.10, 0.17) and
(−0.36, −0.01) for subtypes B and C. The (negative, negative)
values of (WG1, WG2) provided a signature for subtype A,
whereas (negative, positive) and (negative, zero) provided a sig-
nature for subtypes B and C, respectively. Although the ratios of
hydrophobic to hydrophilic areas on subtypes B and C are highly
similar, the sizes of their pocket surfaces differed by amean of nine
residues. In terms of biological function, it had been experimen-
tally shown that subtype C acts on the CH—CH group of a sub-
strate with NADP+ (16), whereas subtype B acts on NADPH as
a dehydrogenase (17).

Inferring the Molecular Function of an Uncharacterized Protein.
Clustering analysis of binding surfaces provides useful tem-
plates (11, 13) and also homogeneous subgroups, which can be
analyzed separately for understanding molecular function (11,
18, 19). Indeed, the templates in our protein surface classifica-
tion (PSC) database provide information for identifying the
binding surface of an uncharacterized protein, from which one
may formulate hypothetical molecular functions for enzymatic
assays or for site-directed mutagenesis of binding residues (20).
We now give an example of inferring molecular function by

analyzing the uncharacterized members of the oxidoreductase
family. Of the 50 oxidoreductase ligand-bound forms, 25 have
known EC annotations and 16 have PETN structures, whereas 9
have no EC annotation. PSC is applied to identify the surface
subtypes of these 9 uncharacterized proteins. We first use the
surface attributes to reconstruct a tree. Then, using the three
surface subtypes as references, we classify the 9 structures into

Table 1. Structural attributes in a shape profile used to characterize protein surfaces

Selected attributes Notation Mean Standard deviation

Number of residues in a pocket (aa) len 30.74 25.93
Global polar solvent-accessible area (Å2) Pams 5816.20 2981.12
Global apolar solvent-accessible area (Å2) aPams 8731.59 4356.02
Local polar solvent-accessible area (Å2) Polar 586.00 560.88
Local apolar solvent-accessible area (Å2) aPolar 960.51 895.44
Global sphericity Wsph 0.51 0.06
Local sphericity sph 0.57 0.09
Anisotropic (Å) d 10.28 5.15
Local surface density (g/mol Å2) SD 0.76 5.63
Global skewness WG1 −0.01 0.32
Global kurtosis WG2 −0.18 0.56
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their corresponding subtypes (Fig. 1). For example, PDB3gka
(with no EC label) is connected to PDB2q3o under the same
branch of the surface subtype of EC 1.3.1.42, whereas PDB1gwj,
2r14, 3kru, and 3kr7 share the common ancestor with PDB1z41
(EC 1.6.99.1). From the 41 classified binding surfaces, we can
identify the subtype of the binding surface of a related oxidore-
ductase and infer its function.
The same strategy may be applied to identify the surface type of

an unbound structure, using the surface classification of bound
forms. One benefit is: When the functional surface of a protein
structure is identified, its related functional surfaces are auto-
matically provided by PSC. For example, the common ancestor of
subtypes EC 1.3.1.42 and EC 1.6.99.1 was duplicated and the two
resultant genes evolved different enzymatic functions. The subset
of binding surfaces of EC 1.3.1.42 and that of EC 1.6.99.1 can be
potentially used to infer their ancestral binding surfaces. The
comparison of the binding surfaces of the common ancestor and
the subtypes may allow one to conduct experimental validation
of a hypothetical evolutionary pathway and functional inter-
changeability (21, 22).

Classifying Highly Divergent Proteins. Of the 1,974 surface types in
PSC, 31 families, including kinases and glycosidases, have more
than 100 members. In many cases, within the same surface type,
members show no significant sequence similarity (≤30%). Glyco-
sidase, for example, has members with a low sequence identity, but
their binding surfaces are highly conserved. To cluster surface
subtypes with divergent members into a fine classification scheme,
it is important to use effective attributes to compute the distance
matrix. Fig. S8 shows scatter plots of structural attributes. The
distinct subtypes of EC numbers are shown in different colors. In
an attempt to conduct a fine classification, we are interested in

determining the boundary between two subtypes associated with
molecular functions. Let us consider a subclassification for the
surface type of glycosidase.
PSC includes 143 functional surfaces from the surface type of

glycosidase. We compared their structural attributes and obtained
a dendrogram by hierarchical clustering analysis (Fig. 2). The 143
members were divided into four subtypes, A, B, C, and D, con-
taining, respectively, 48, 36, 15, and 44 members. Subtypes A, B,
and C correspond to the following enzyme classes: EC 3.2.1.1, EC
2.4.1.19, and EC 3.2.1.135. Subtype D has multiple EC numbers:
EC 3.2.1.98, EC 3.2.1.60, EC 3.2.1.54, EC 3.2.1.41, EC 3.2.1.135,
EC 3.2.1.133, and partial EC 3.2.1.1. However, these EC numbers
differ only by the last EC digit. Fig. 3 shows the representative
subtypes of these binding surfaces.
To better understand the functional divergence, we detected

site-specific structural variation by comparing their residue
compositions and geometrical measurements. Using shape pro-
files, we characterized each binding surface and found that these
binding surfaces are physicochemically similar and evolutionarily
conserved, so that they are clustered within the same surface type.
That is, similar binding surfaces carry out related biological
functions. However, their variation in residue composition on the
binding surface causes dissimilarity in function. Notable differ-
ences are the size of a binding surface and the shape of a protein.
For example, the binding surfaces of subtypes A, C, and D have
18, 22, and 18 residues, respectively, whereas subtype B has the
largest binding surface with 24 residues. The shape of subtype B
has mean (WG1, WG2) values of (−0.17, −0.40). The negative
value of WG1 of subtype B (−0.17) is distinct from those of the
other subtypes (0.01, 0.01, and 0.12). With respect to function,
subtype B is associated with EC 2.4.1.19, whereas subtypes A, C,
and D belong to EC 3.2.1.-. This shape analysis relies on the

Table 2. Mean values of surface attributes of oxidoreductase subtypes

Subtype len Pams aPams Polar aPolar Wsph sph d SD WG1 WG2 EC

A 34.00 0.43 0.57 0.47 0.53 0.56 0.54 8.24 0.69 −0.40 −0.11 NA
B 30.64 0.41 0.59 0.41 0.59 0.54 0.57 7.53 0.63 −0.10 0.17 1.6.99.1
C 39.64 0.42 0.58 0.41 0.59 0.57 0.50 9.76 0.65 −0.36 −0.01 1.3.1.42

NA, not assigned.

A B C

Fig. 1. Oxidoreductase classification and functional inference of the oxidoreductases with no Enzyme Commission annotation. The evolutionary position of
an uncharacterized protein is potentially identified when its functional surface matches a known surface subtype.
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accuracy of geometrical computations. Their integrated surface
attributes reveal subtle variations in residues and shapes, which
explains the diversification of surface subtypes and their associ-
ated functions.

Identification of the Binding Surface of an Unbound Protein. Our
method may be used to identify the binding surface of an unbound
protein. We first compute the putative surfaces of the unbound
protein (23, 24) and then use each putative surface to search the
PSC database by geometric matching (11). This footprinting ap-
proach is effective in identifying the bound or unbound binding
surface of a structure (13–15). For example, we considered the
unbound hydrolase of Klebsiella aerogenes (PDB2fgz chain A, 926
residues, unassigned CATH fold). We first partitioned the surface
of this enzyme into 74 putative local surfaces. Each surface was
then geometrically compared with those of the binding surfaces in
the PSC database. In this example, the largest surface was found to
have the most significant rmsd P value of 3.96 × 10−7 and matched
PDB2e8z of Bacillus subtilis (Fig. 4 A–C). We found that the
predicted binding surface of PDB2fgz (30 residues) likely has
a function highly similar to the template (PDB2e8z) and is in-
volved in the carbohydrate metabolic process of Pullulanase (EC
3.2.1.41). Thus, the binding surface of the unbound form of
PDB2fgz was identified and classified with the same surface type
as PDB2e8z.
In some cases, the binding surface of a query may be predicted

by a distantly related template. Fig. 4D–F shows the identification
of the binding surface of PDB3qnm of Bacteroides thetaiotaomi-
cron of unknown function.With a significant rmsd P value of 3.38×
10−7, the predicted binding surface of PDB3qnm matches that of
PDB3i76, a Bacillus subtilis protein. We constructed an auto-
mated pipeline to carry out the site-specific computations of
uncovering the binding surfaces of distant homologs. Note that
the binding surface of a remote homolog may not be clustered
with any existing surface type, so that a new surface type is created
to expand the PSC database.

Collecting Related Binding Surfaces with Similar Ligands. The PSC
database can also be applied to find binding surfaces with the same
or similar ligands in the PDB. In the PSC database, the binding
surfaces and their cognate ligands were identified by the split
pocket algorithm (13). Each surface with its binding ligand(s) and
the corresponding surface subtype were already calculated be-
forehand. For example, let us consider searching for surfaces po-
tentially bound to the cofactor FMN (flavin mononucleotide). Our
search found a total of 1,114 FMN or FMN-like binding surfaces,
which belong to 37 surface types in PSC. In Table S2, the repre-
sentatives of these 37 surface types and their functions are sum-
marized. It shows that these proteins of distinct surface types

P
D
B
1
J
F
H
.
A

P
D
B
1
P
P
I
.
A

P
D
B
1
W
O
2
.
A

P
D
B
1
H
X
0
.
A

P
D
B
1
U
A
3
.
A

P
D
B
1
O
S
E
.
A

P
D
B
1
P
I
G
.
A

P
D
B
1
D
H
K
.
A

P
D
B
1
V
A
H
.
A

P
D
B
1
M
F
V
.
A

P
D
B
1
Z
3
2
.
X

P
D
B
3
I
J
9
.
A

P
D
B
2
Q
V
4
.
A

P
D
B
3
I
J
8
.
A

P
D
B
3
B
A
J
.
A

P
D
B
3
B
A
Y
.
A

P
D
B
3
D
H
P
.
A

P
D
B
3
I
J
7
.
A

P
D
B
1
U
3
3
.
A

P
D
B
1
X
C
X
.
A

P
D
B
1
X
C
W
.
A

P
D
B
1
X
D
0
.
A

P
D
B
3
C
P
U
.
A

P
D
B
1
U
3
0
.
A

P
D
B
3
B
L
P
.
X

P
D
B
1
C
P
U
.
A

P
D
B
1
B
2
Y
.
A

P
D
B
1
Q
4
N
.
X

P
D
B
1
X
V
8
.
A

P
D
B
1
X
D
1
.
A

P
D
B
1
U
2
Y
.
A

P
D
B
1
X
H
2
.
A

P
D
B
1
N
M
9
.
A

P
D
B
3
B
L
K
.
A

P
D
B
1
K
G
W
.
A

P
D
B
1
X
G
Z
.
A

P
D
B
1
X
H
1
.
A

P
D
B
1
K
B
3
.
A

P
D
B
1
K
G
X
.
A

P
D
B
1
K
B
K
.
A

P
D
B
2
C
P
U
.
A

P
D
B
1
C
8
Q
.
A

P
D
B
1
K
G
U
.
A

P
D
B
1
J
X
K
.
A

P
D
B
1
J
X
J
.
A

P
D
B
1
X
H
0
.
A

P
D
B
1
K
B
B
.
A

P
D
B
1
M
F
U
.
A

P
D
B
1
I
7
5
.
A

P
D
B
1
D
E
D
.
A

P
D
B
1
U
K
Q
.
A

P
D
B
1
U
K
T
.
A

P
D
B
1
V
3
M
.
A

P
D
B
1
U
K
S
.
A

P
D
B
1
V
3
L
.
A

P
D
B
1
E
O
5
.
A

P
D
B
1
C
X
L
.
A

P
D
B
1
C
X
F
.
A

P
D
B
1
C
X
H
.
A

P
D
B
1
K
C
L
.
A

P
D
B
2
C
X
G
.
A

P
D
B
2
D
I
J
.
A

P
D
B
1
E
O
7
.
A

P
D
B
1
C
X
K
.
A

P
D
B
1
D
T
U
.
A

P
D
B
1
P
J
9
.
A

P
D
B
1
C
X
E
.
A

P
D
B
1
K
C
K
.
A

P
D
B
1
C
G
U
.
A

P
D
B
6
C
G
T
.
A

P
D
B
5
C
G
T
.
A

P
D
B
3
C
G
T
.
A

P
D
B
8
C
G
T
.
A

P
D
B
9
C
G
T
.
A

P
D
B
1
O
T
1
.
A

P
D
B
1
O
T
2
.
A

P
D
B
1
P
E
Z
.
A

P
D
B
1
Q
H
O
.
A

P
D
B
1
Q
H
P
.
A

P
D
B
3
B
M
V
.
A

P
D
B
1
A
4
7
.
A

P
D
B
3
B
M
W
.
A

P
D
B
1
C
G
W
.
A

P
D
B
1
C
X
I
.
A

P
D
B
2
D
0
F
.
A

P
D
B
1
U
H
4
.
A

P
D
B
2
D
0
G
.
A

P
D
B
1
U
H
2
.
A

P
D
B
1
U
H
3
.
A

P
D
B
2
D
0
H
.
A

P
D
B
1
G
V
I
.
A

P
D
B
1
J
0
K
.
A

P
D
B
1
J
0
I
.
A

P
D
B
1
J
0
J
.
A

P
D
B
2
D
2
O
.
A

P
D
B
3
A
6
O
.
A

P
D
B
1
G
1
Y
.
A

P
D
B
1
J
I
B
.
A

P
D
B
1
J
L
8
.
A

P
D
B
1
Q
I
4
.
A

P
D
B
1
Q
I
5
.
A

P
D
B
1
J
D
C
.
A

P
D
B
1
Q
P
K
.
A

P
D
B
1
J
D
D
.
A

P
D
B
1
Q
I
3
.
A

P
D
B
1
B
G
9
.
A

P
D
B
1
R
P
9
.
A

P
D
B
3
B
S
H
.
A

P
D
B
1
H
T
6
.
A

P
D
B
1
R
P
8
.
A

P
D
B
1
E
3
Z
.
A

P
D
B
1
E
4
0
.
A

P
D
B
2
D
3
L
.
A

P
D
B
2
G
J
P
.
A

P
D
B
1
W
9
X
.
A

P
D
B
1
W
P
C
.
A

P
D
B
2
D
3
N
.
A

P
D
B
1
A
Q
M
.
A

P
D
B
1
K
X
H
.
A

P
D
B
1
G
9
4
.
A

P
D
B
1
G
9
H
.
A

P
D
B
3
E
D
E
.
A

P
D
B
3
E
D
K
.
A

P
D
B
3
E
D
F
.
A

P
D
B
3
E
D
J
.
A

P
D
B
7
T
A
A
.
A

P
D
B
3
K
W
X
.
A

P
D
B
2
G
U
Y
.
A

P
D
B
2
G
V
Y
.
A

P
D
B
1
P
6
W
.
A

P
D
B
1
R
P
K
.
A

P
D
B
1
B
A
G
.
A

P
D
B
1
U
A
7
.
A

P
D
B
2
E
8
Z
.
A

P
D
B
2
E
9
B
.
A

P
D
B
3
B
C
9
.
A

P
D
B
3
B
C
D
.
A

P
D
B
2
W
A
N
.
A

P
D
B
1
L
W
J
.
A

P
D
B
2
V
R
5
.
A

P
D
B
3
F
A
X
.
A

P
D
B
2
E
8
Y
.
A

P
D
B
2
Z
1
K
.
A

2.4.1.19

3.2.1.54

Unknown
3.2.1.98

2.4.1.25
3.2.1.1

3.2.1.133
3.2.1.135
3.2.1.41

3.2.1.60

A B
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Fig. 2. Topology of the fourmajor surface subtypes of glycosidase, containing 48, 36, 15, and 44members, respectively. The representatives of subtypes A, B, C,
and D are PDB1u33 (EC 3.2.1.1), PDB1ukt (EC 2.4.1.19), PDB2d2o (EC 3.2.1.135), and PDB1kxh (EC 3.2.1.1), respectively. Each member of a subtype is associated
with an EC label, if available. Subtype D has a variety of members with mixed EC labels, whereas subtypes A, B, and C consist of members with EC annotations.

g

B C 3

21

DA

31 2

Fig. 3. Structural conservation and divergence of binding surfaces of gly-
cosidase. Binding surface g is the center of the surface type, which contains
143 members that are clustered by surface attributes into A, B, C, and D
subtypes. Subtype A (18 aa) has a solvent-accessible area of 269.53 Å2 and
a molecular volume of 401.27 Å3; subtypes B (26 aa), C (20 aa), and D (17 aa)
have, respectively, solvent-accessible areas of 476.98, 261.61, and 270.00 Å2

and molecular volumes of 867.84, 475.16, and 410.24 Å3. Among them,
subtype D can be further subclassified.
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belong to different superfamilies. A subset of 494 surfaces is as-
sociated with EC 1 (oxidoreductases), indicating the preference of
an FMN-binding surface for oxidoreductase activity. Some are in
the classes of EC 2 (transferases), EC 4 (lyases), and EC 5 (iso-
merases) (Fig. 5).
In the PSC database there are 31 distinct surface types, each of

which has >100 members. It seems that these surface types have
important roles that led to duplication and divergence of these
surfaces. Examples include glucose-, peptide-, NAD- (nicotin-
amide adenine dinucleotide), FAD- (flavin adenine dinucleotide),
DNA/RNA-, and heme-binding proteins. Moreover, surface types
such as kinases and NAD-binding proteins (10) require diverse
surface types to fulfill complex cellular roles. Although the binding
surfaces collected are only bound forms, their related unbound
structures can be identified by the footprinting approach of fPOP
(14), which is also useful for discovering the binding surfaces of
distant homologs (Fig. 4).

Evaluation by EC Annotations and Comparison with CATH. To assess
the performance of our method, we evaluated the PSC database

using the 1,145 EC annotation entries that were explicitly assigned
to 15,783 bound structures (containing 16,560 chains in the PDB).
All unbound forms were ignored. A positive result occurred when
a classified protein matched its EC annotation. In each test entry,
we matched members of PSC against EC to compute the Tani-
moto coefficient, a good measure for the similarity of two classi-
fications (SI Text, Performance Evaluation). As an example, we
tested EC 3.4.22.56 (cysteine 3 endopeptidase), which has 33 an-
notation entries. PSC could find all of the cysteine 3 endopepti-
dases and correctly classified them into the same surface type
(ST178), whereas CATH grouped 19 of the 33 entries into CATH
ID 3.30.70.1470, 13 entries into CATH ID 3.40.50.1460, which
involve 29 mixed members, and 1 entry with no CATH assignment
(Table S3). For this comparison between the EC and PSC data-
bases, we calculated a similarity of 0.589 [=33/(33 + 56 − 33) (i.e.,
33 EC entries, 56 PSC entries in subtype ST178, and EC and PSC
share 33 entries)]. For EC and CATH, we calculated a similarity of
0.576 [=19/(33 + 19 − 19)]. After evaluating the 1,145 test entries,
we obtained a higher overall average similarity of 59.9% between
PSC and EC than that obtained between CATH and EC (31.4%).
Therefore, the PSC classification achieved a much higher corre-
lation between function and structure (shape) than CATH.

Concluding Remarks
We have shown that using the structural attributes of ligand-
binding surfaces is a powerful way to infer structural and functional
relationships among proteins. Moreover, due to the conservative
nature of protein structure, this approach is more powerful in
detecting distant relationships than a sequence-based method. For
the same reason, however, it may not be suitable for classifying
closely related protein sequences, because there may not be
enough structural variation among such proteins. On the other
hand, we have demonstrated that considering structural attributes
of ligand-binding surfaces can give a more refined classification of

W557Y559D560H607A641T642C643C644 R675D677L678Y681 E706G707W708

2e8z  W290Y292N293H340− − T370V372 R404D406L407− E435− W437

2fgz  D709D734R737P745F746Y829K832− H833D834N835R889 D890Y892

2e8z  L439F463R468K472F476Y520E522S523 H524D525N526E579 N580Y582

3qnm  D9 D11 D12 F17 S18 A21 Y45 Y48 Q49 N52 T53 W56 L57 G60 E61 R73

3i76  D10 D12 D13 F18 Q19 E22 − − K46 N49 Q50 W53 R54 − E57 R70

2fgz 

3qnm  F96 F97 S127N128G129F130 L133K137L159K160 P161R162D185S186W187

3i76  R92 L95 T122N123G124V125 T128Q129K155D181 S182L183T184A185W199

D

C

F

B

E

A

Fig. 4. Prediction of the binding surfaces of unbound structures using the
binding surfaces in the PSC database. (A) The surface of PDB2fgz is parti-
tioned into 74 putative local surfaces; only three putative pockets are shown.
(B) The predicted surface (colored pink) is identified by an fPOP match to the
binding surface of PDB2e8z with an rmsd of 1.95 Å. (C) The alignment of two
pocket sequences has a sequence identity of 48.3%, much higher than the
full-length sequence identity of 29.5%. Among the 29 aligned spatial pocket
residues, there are 13 highly conserved residues. In particular, the six active
sites of H340, R404, D406, E435, W437, and D525 on the template of PDB2e8z
perfectly match those of the query of PDB2fgz. (D) Three of the 10 putative
local surfaces are shown for PDB3qnm. As a query, the predicted binding
surface (colored pink) with 36 spatial pocket residues of PDB3qnm is matched
with the binding surface of PDB3i76 (P ≤ 10−7) (E). (F) Eleven of the 31 aligned
pocket residues are highly conserved, with a Tanimoto coefficient of 0.93.

Fig. 5. FMN-binding surfaces across protein superfamilies with different
folds. (A) The binding surface of PDB1al7 (350 aa) of Spinacia oleracea has
key residues (colored violet): Y24, Y129, D157, H254, and R257. These are located
on a typical oxidoreductase (EC 1.1.3.15) fold of Aldolase class I (CATH
3.20.20.70). (B) The identified transferase-binding surface on PDB2vbv (134
aa) of Methanococcus jannaschii is a riboflavin kinase (EC 2.7.1.161) with
a CATH fold of 2.40.30.30. (C) Thermus DNA lyase (EC 4.1.99.3) has a com-
plicated fold pattern: CATH 3.40.50.620, 1.25.40.80, and 1.10.579.10. These
folds contain unique key residues (colored violet) on the local surface of
PDB2j09 of Thermus thermophilus: W257, W328, and W351. (D) The binding
surface on PDB2zru (356 aa) of Sulfolobus shibatae has both isomerase (EC
5.3.3.2) and oxidoreductase activities with the same fold as in A.
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proteins than a classification based on protein folds such as CATH.
Indeed, our classification agrees with the EC annotations much
better than CATH. Thus, our approach has advantages over the
fold-based and sequence-based approaches, especially in pro-
viding structural and functional insights into the molecular evo-
lution of proteins.

Materials and Methods
Identifying the Binding Surface of a Protein. The binding surface of a bound
structure was analytically identified with the split pocket algorithm (13). We
collected a total of 28,986 functional pockets of the 24,170 PDB bound
structures in SplitPocket for surface classification (SI Materials and Methods).
This was based upon a matching technique of pairwise surface alignments.

Clustering Analysis: A Coarse Surface Classification by an Agglomerative
Approach. We used a progressively agglomerative approach (SI Text, Cluster-
ing Algorithm of a Coarse Surface Classification) to cluster local surfaces. We
grouped similar surfaces into a surface type at a threshold of structural sim-
ilarity based on the local rmsd P value of ≤10−4. Each surface type was
uniquely represented by a center as defined below. In principle, any member
of a group can be the center of a surface type. However, there is one member
with the highest degree of connections with the smallest mean rmsd that
possesses the most generic (compatible) spatial pattern for the surface type.
We selected it as the center of the surface type. The local surface classification
is accomplished when each center is found.

Surface Characteristics of a Functional Pocket. To characterize a protein
functional surface, we assessed the global and local surface attributes in terms
of geometrical, physicochemical, and evolutionary features. Collecting these
attributes, we built an integrated framework for protein surface classification.
The attributes collected in terms of geometrical, physicochemical, and evolu-
tionary features are explained in SI Text, Surface Characteristics of a Functio-
nal Pocket.

Structural Similarity Between Two Surfaces. To assess the structural similarity
of two surfaces, we used the cosine transformation (SI Text, Cosine Similarity
and Tanimoto Coefficient) to compare the two sets of the surface attributes
selected in Table 1. Moreover, the cosine transformation was extended to
the Tanimoto coefficient when the attributes were binary. We used the
Tanimoto coefficient to assess the similarity of the residue compositions of
two functional surfaces.

Assessment of the Functional Similarity of Two Proteins. The functional simi-

larity score between two surfaces is defined asΦ≡ 1
Nð

P

i∈G
ui þ

P

j∈C
vjÞ, whereN is

the number of attributes, G is the set of geometrical attributes, and C is the
set of physicochemical attributes, and the values of ui and vi are computed,
respectively, based on the cosine similarity and the p-norm distance δ, which
is converted to a similarity by the transformation of e−δ. The value of Φ is
computed to measure the functional similarity of two proteins based on
shape and texture. Statistically, a cutoff P value of 5 × 10−4 is used to de-
termine the significance of Φ, which is empirically measured in SI Text, As-
sessment of Statistical Significance for a Functional Surface Alignment.

Constructing a Structural Network of Surface Relationships. A structural net-
work of protein functional surfaces can be constructed by choosing a distance
metric. Based on the integrated attributes, we converted the functional
similarity Φ of two proteins to the distance by the transformation
Σ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1−ΦÞp

. After defining the functional similarity of two surfaces, we
compared all surfaces to produce a pairwise distance matrix. Using this
matrix, we performed hierarchical clustering (25) to find the relationships
among the surfaces.
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