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Addressing concerns about future food supply and climate change
requires management practices that maximize productivity per unit
of arable land while reducing negative environmental impact. On-
farm data were evaluated to assess energy balance and greenhouse
gas (GHG) emissions of irrigated maize in Nebraska that received
large nitrogen (N) fertilizer (183 kg of N·ha−1) and irrigation water
inputs (272 mm or 2,720 m3 ha−1). Although energy inputs (30
GJ·ha−1) were larger than those reported for US maize systems in
previous studies, irrigatedmaize in central Nebraska achievedhigher
grain and net energy yields (13.2 Mg·ha−1 and 159 GJ·ha−1, respec-
tively) and lower GHG-emission intensity (231 kg of CO2e·Mg−1 of
grain). Greater input-use efficiencies, especially for N fertilizer, were
responsible for better performance of these irrigated systems, com-
pared with much lower-yielding, mostly rainfed maize systems in
previous studies. Large variation in energy inputs and GHG emis-
sions across irrigated fields in the present study resulted from differ-
ences in applied irrigation water amount and imbalances between
applied N inputs and crop N demand, indicating potential to further
improve environmental performance through better management
of these inputs. Observed variation in N-use efficiency, at any level
of applied N inputs, suggests that an N-balance approach may be
more appropriate for estimating soil N2O emissions than the Inter-
governmental Panel on Climate Change approach based on a fixed
proportion of applied N. Negative correlation between GHG-emis-
sion intensity and net energy yield supports the proposition that
achieving high yields, large positive energy balance, and low GHG
emissions in intensive cropping systems are not conflicting goals.
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High-yield cropping systems require fossil-fuel inputs to sub-
stitute human and animal labor and to maximize capture and

conversion of solar radiation into crop biomass (1, 2). Inputs to
agricultural systems that require fossil fuel in their manufacturing
process include fertilizer, seed, pesticides, and machinery. Fossil
fuel also is required for application of inputs and for field oper-
ations, irrigation pumping, and grain drying. Fossil-fuel inputs can
be expressed in terms of their embodied energy, that is, the energy
required for their synthesis, packaging, transport, and use in
a crop production field (1, 3). Because fossil fuel combustion
results in greenhouse gas (GHG) emissions, energy inputs also can
be expressed in terms of global warming potential (GWP) (4, 5).
AlthoughGWP can be expressed per unit of crop production area,
it also can be expressed per unit of grain yield (GWP intensity;
GWPi), which recognizes the potential for indirect land use
change and associated GWP from clearing of carbon-rich natural
ecosystems for crop production (6–8).
Although it has been speculated that the efficiency with which

applied inputs result in increased yield can be greater in in-
tensively managed high-yield cropping systems than in their low-
input low-yield counterparts because of optimization of growing
conditions in the former (9), this hypothesis has not been eval-
uated in actual cropping systems where farmer’s yields approach
yield potential.* The US Corn Belt, including parts of the Great
Plains in South Dakota, North Dakota, Nebraska, and Kansas,
accounts for 33% of global maize production. Of total US maize,

≈13% is produced with irrigation on ≈3.2 Mha with the majority
grown in Nebraska (11). Energy-use efficiency of maize in the US
Corn Belt has increased steadily in recent decades as a result of
rising grain yield without increases in amounts of applied
N fertilizer and applied irrigation, widespread adoption of con-
servation tillage practices and center-pivot systems to replace
less efficient gravity irrigation, and increasing efficiency in
manufacturing of agricultural inputs (12, 13).
Field experiments on irrigated maize have shown that achiev-

ing high yields and high efficiencies, together, with relatively low
GWP, is possible when applied inputs are precisely managed in
time and space (14, 15), but the extent to which farmers can
achieve such precise management is not known. Likewise, there
is a general notion that input-use efficiency of high-yield crop-
ping systems is low, resulting in negative energy balances, high
GWP, and degradation of soil and water quality (16, 17). In part,
such perceptions are based on previous studies that had several
deficiencies, including: (i) obsolete embodied energy and GHG
emissions factors for agricultural inputs, (ii) obsolete values for
grain yield and actual crop management practices with regard to
N fertilizer rates, irrigation, and tillage, (iii) use of metrics that
do not weight energy inputs or GWP in relation to yield level,
and (iv) lack of clarity on methods used to estimate energy inputs
or GHG emissions and system boundaries (18, 19). Hence, ac-
curate and transparent estimates of on-farm energy balance and
GWP for irrigated maize in the US Corn Belt are not available.
Management practices influence energy balance and GWP by

amounts and efficiencies of applied inputs and yield level (1).
Given concerns about the cost of energy and climate change,
agriculture is challenged by the need to identify management
systems that maximize productivity with high energy-use efficiency
and low GWP (2, 20). Addressing this challenge using a struc-
tured experimental approach, however, requires factorial experi-
ments performed over many years at multiple locations (6, 21).
Because this approach is very costly and there are few opportu-
nities for long-term funding to support such efforts, most research
on energy balance and GWP of agricultural systems has relied on
data from aggregate agricultural statistics or data gathered from
a relatively small number of selected farms (3, 22). An alternative
is to use farmer-reported databases, collected over a large pop-
ulation of field-years, to perform direct analysis of on-farm energy
balance and GWP, and to use the variation in management
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practices within these data to identify those that give high yields,
high input use efficiencies, and low GWPi.
The central hypothesis of this work is that it is possible for

farmers to achieve a large positive energy balance with relatively
low GWPi in high-input, high-yield maize systems. To test this
hypothesis, farmer-reported data collected from the Tri-Basin
Natural Resources District (NRD) in central Nebraska (SI Text,
S1) were used to (i) quantify energy balance and GWP of irri-
gated maize, (ii) compare these parameters against previous
published values for maize systems, and (iii) identify and quan-
tify the impact of energy-saving and GWP-reducing management
tactics that could achieve these reductions without yield loss.
Additional details about sources of data and methods are pro-
vided in supplemental materials.

Results and Discussion
Soil N2O Emissions from Irrigated Maize. Separate estimates of soil
N2O emissions were calculated by following two methods: the “N-
input-driven approach” developed by the Intergovernmental Panel
on Climate Change (IPCC; ref. 23), and an “N-surplus-driven ap-
proach,” recently proposed by van Groenigen et al. (24) (SI Text,
S2). The N-input approach assumes that N2O emissions represent
a constant proportion of applied N inputs plus N in crop residues,
which does not account for tremendous variability in the efficiency
with which applied N is used by the crop across fields, crops, and
regions (12). In contrast, van Groenigen et al. provide strong evi-
dence that N2O emissions can be more accurately estimated from
the magnitude of N surplus, which is defined as the difference
betweenN inputs and cropN uptake. In this study, applied N inputs
were calculated as the sum of applied N fertilizer, N-NO3

− in ap-
plied irrigation water, and N in applied manure, which account for
81%, 15%, and 4%, respectively, of total N input (SI Text, S2).
With few exceptions, estimated N2O emissions were consis-

tently larger using the N-input approach across the range of N
fertilizer rates applied to irrigated maize fields in the Tri-Basin
NRD (Fig. 1A). In a small number of fields that received >225 kg

of N·ha−1, however, greater emissions were estimated by the
N surplus approach. However, despite a high average rate of N
fertilization, 76% of the fields had an N surplus <50 kg·ha−1 so
that N2O emissions by the N-surplus method were smaller than
emissions estimated with the N-input approach (Fig. 1B). Large
N surplus (>50 kg of N·ha−1) resulted from a combination of
large N inputs and relatively low grain yields. Although there was
a positive correlation between N surplus and the level of N input,
large variation in N surplus was observed at any level of applied
N input due to variation across fields and years in N-use effi-
ciency (NUE, kg of grain per kg of applied N, also called partial
factor productivity for N fertilizer; ref. 12) (Fig. 1B, Inset). Me-
dian values for direct N2O emissions from irrigated maize in this
study was 1.6 and 3.3 kg N2O-N·ha−1 when using N-surplus and
N-input approach, respectively (see SI Text, S2 for distinction
between direct and indirect N2O emissions). The N-surplus ap-
proach median value is similar to annual direct N2O emissions of
1.9 kg N2O-N·ha−1 measured in a well-managed irrigated con-
tinuous maize system in Nebraska that achieved grain yields
similar to those in the Tri-Basin NRD (15).
The proposition that N losses from applied fertilizer tend to be

small when the N supply is balanced by crop uptake is scientifi-
cally robust and supported by published data (12, 15, 24, 25).
Hence, reported GWP in the following sections were calculated
based on N2O emissions estimated by the N surplus approach
unless stated otherwise.

Fig. 1. Soil N2O emissions of irrigated maize plotted against applied ni-
trogen (N) inputs (A) and N surplus (B). N2O emissions were estimated by
following IPCC N-input [□ (23)] or van Groenigen et al. N-surplus approach
(VG; •; ref. 24). Average (±SE) N2O emissions, N inputs, and N surplus
(medians in parenthesis) are shown. B Inset shows the relationship between
N surplus and applied N inputs.

Table 1. Average 3-y (2005–2007) applied inputs (and
percentage of total energy input), total fossil-fuel energy input,
grain yield and interannual coefficient of variation, fertilizer
nitrogen-use efficiency, water productivity, and conversion
efficiency from solar radiation into grain or total biomass based
on data collected from 123 irrigated maize fields in Tri-Basin NRD

Inputs Rate (per ha)

N fertilizer, kg of N 183 (32%)
P fertilizer, kg of P2O5 43 (1%)
K fertilizer, kg of K2O 11 (<1%)
Herbicides, kg of a.i. 2.4 (3%)
Insecticides, kg of a.i. 0.3 (<1%)
Seed, kg 25 (1%)
Machinery, MJ 464 (2%)
Fuel use for on-farm operations,* L

Field operations 63 (9%)
Irrigation pumping† 324 (42%)
Grain drying 61 (9%)

Energy inputs, GJ·ha−1 30.0

Grain yield, Mg·ha−1 13.2 (CV = 3%)

NUE,‡ kg of grain kg−1 of N fertilizer 73
WP,§ kg of grain·mm−1 of water supply 14.0
PAR conversion efficiency,¶ %

Grain 1.4
Total dry matter 3.3

a.i., active ingredient; CV, coefficient of variation; NUE, fertilizer nitro-
gen-use efficiency; WP, water productivity.
*Expressed as diesel equivalents (S3).
†Average 3-y (2005–2007) annual applied irrigation amount was 272 mm.
‡Ratio of grain yield to applied N fertilizer.
§Ratio of grain yield to total water supply. Total water supply includes plant
available soil water at planting and in-season rainfall plus applied irrigation
water.
¶Ratio of embodied energy in grain or total dry matter to total incident
photosynthetically active solar radiation (PAR) from sowing-to-maturity.
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Energy Balance and Greenhouse Gas Emissions. Large energy inputs
to irrigated maize in the study area are associated with high and
stable grain yields (Table 1). Irrigated maize yield was 2.2-fold
greater and much less variable across years than lower-yielding,
less intensively managed rainfed maize in the same region [mean
rainfed yield ± SE = 5.9 ± 0.8 Mg·ha−1; interannual coefficient of
variation (CV) = 23%]. Moreover, irrigated maize in the Tri-
Basin NRD achieved, on average, 89% of its estimated yield
potential as documented in a previous study (26). Although N
fertilizer inputs were well above N rates reported in previous
studies of energy balance and GWP in US maize systems, NUE
achieved by irrigated maize producers in the current study was
much higher than previous published values (Table S1). Likewise,
although total water supply was 41% greater with irrigation
compared with rainfed maize in the Tri-Basin NRD, water pro-
ductivity of irrigated maize was 60% higher (14.0 vs. 8.8 kg·ha-
mm−1, respectively) (27). Remarkably, conversion efficiency from
solar radiation to total dry matter of 3.3% estimated for irrigated
maize in the Tri-Basin NRD compares well with highest observed
conversion efficiencies (range: 3.9–5.2%) for field-grown irrigated
maize grown with optimal management practices (28, 29).
Irrigated maize received relatively large fossil-fuel energy inputs

(mean: 30.0 GJ·ha−1) and also achieved a large positive energy
balance [average net energy yield (NEY) and net energy ratio
(NER) of 159 GJ·ha−1 and 6.6, respectively], with substantial
variation across site-years (Fig. 2 A–C and Fig. 3 A and C). The
largest fossil fuel inputs came from embodied energy in N fertilizer
and from fuel use for irrigation pumping, which represented 32%
and 42% of total energy inputs, respectively (Table 1). Average
energy inputs for irrigatedmaize production in the Tri-Basin NRD
was much higher than previous reported energy inputs for US
maize systems that were based mostly on rainfed production (Fig.
3A and Table S1). Hence, previous studies included little or no
energy inputs associated with irrigation pumping and much less
energy associated with N fertilizer because of lower fertilizer rates
in rainfed systems. Average NEY of irrigated maize in Tri-Basin

NRD was the highest among published studies, whereas NER was
equal or higher than published values except for 2 of 11 cases.
Despite relatively large fossil-fuel energy inputs, irrigated

maize exhibited low GWPi (Fig. 2D). On average, CO2, N2O,
and CH4 emissions, expressed as CO2 equivalents (CO2e),
accounted for 63%, 36%, and 1% of GWP in these irrigated
maize fields (mean ± SE = 3,001 ± 67 kg of CO2e·ha

−1). The
largest impact on GWP came from soil N2O emissions associated
with applied N fertilizer (34%), fuel use for irrigation (29%),
manufacture and transportation of N fertilizer (17%), and fuel
use for grain drying and field operations (13%). Frequency dis-
tribution of GWPi deviated significantly from normality as a re-
sult of exponential increase in soil N2O emissions at N surplus
values >50 kg of N·ha−1 (Fig. 1B). Although GWP per unit area
of irrigated maize in the Tri-Basin NRD was within the upper
range of published values for maize systems, average GWPi of
231 kg of CO2e·Mg−1 of grain and GWP per unit energy input
of 103 kg of CO2e·GJ−1 were the lowest among published values
for US maize systems (Fig. 3B and Table S1). Using the IPCC N-
input approach to calculate N2O emissions gave GWP and
GWPi 28% higher than values based on N2O emissions with the
N-surplus method (Fig. S1 and Table S1).

Impact of Management Practices on Energy Balance and Greenhouse
Gas Emissions. Energy balance and GWP were calculated for irri-
gatedmaize with different combinations of irrigation system, tillage
method, and crop rotation based on actual reported values in the
Tri-Basin NRD dataset (Fig. 4). Energy inputs in fields under pivot
irrigation and some form of reduced tillage (no-till, ridge-till, or
strip-still, which are also called conservation tillage methods) were
lower than in fields under surface irrigation and conventional disk
tillage, respectively, mostly because of energy savings from irriga-
tion. Applied irrigation was 41% and 20% less in fields under pivot
irrigation and reduced tillage, respectively, compared with their
counterparts under surface irrigation and conventional tillage (27).
Apparent advantage of fewer tillage operations was partially

Fig. 2. Frequency distribution of fossil-fuel energy input (A), net energy yield (B), net energy ratio (C), and global warming potential intensity (GWPi) (D)
based on data from 123 irrigated maize fields.

Fig. 3. Maize grain yield plotted against fossil-fuel energy inputs (A) and GWP (B). Lines indicate average 3-y median (solid line) and fifth and 95th per-
centiles (dashed lines) for NER and GWPi calculated for irrigated maize in Tri-Basin NRD. Published data for other US maize systems are shown for comparison
(open symbols; Table S1). (C) Relationship between GWPi and net energy yield for irrigated maize in Tri-Basin NRD.
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counterbalanced by extra fuel use for other field operations such as
herbicide application (Table S4). Although applied N fertilizer was
21 kg of N·ha−1 less in maize-soybean rotations than under con-
tinuous maize, the associated rotation benefit on energy savings
was not significant (P= 0.90) and small compared with the energy
savings achieved with pivot irrigation or reduced tillage.
Of interest was the observation that management systems with

the highest grain yield, NER, and NEY also had the lowest GWPi
(i.e., pivot irrigation under soybean-maize rotation and reduced till).
Differences in NEY due to crop rotation × tillage interactions were
explained by variations in grain yield (Fig. 4).Whereas crop rotation
had no detectable impact on NEY in conventional-tilled fields,
NEY of maize after soybean was 7% higher than maize after maize
in fields in which reduced tillage was practiced. On average, NER
was 23% and 5% higher in fields under pivot and reduced tillage
than under surface irrigation and conventional tillage, respectively.
GWPi was 7% and 14% smaller in fields in a maize-soybean rota-
tion and under pivot irrigation, respectively, compared with their
counterparts under continuous maize and surface irrigation.

Potential to Reduce GHG Emissions from Maize Production Systems.A
large decrease in GHG emissions per hectare of crop production
would result from converting current irrigated cropland into

dryland agriculture. However, this option has an unavoidable
tradeoff of a 55% reduction in grain yield and much greater year-
to-year yield variability as shown by comparison of yields and yield
variability of rainfed and irrigated maize in Tri-Basin NRD. As-
suming elimination of irrigated maize production, the amount of
additional maize area (in addition to all existing maize land area in
Tri-Basin NRD) to replace this lost production would depend on
yield level in the new production area. For example, based on
current average rainfed yields, replacement would require 124,170
ha in Nebraska, 90,517 ha in Iowa, or 276,722 ha in Brazil. Addi-
tional land requirements, GHG emissions from land use change,
and GHG emissions from crop production on this newly converted
land would offset apparent benefits of expanding low-input/low-
yield rainfed maize at the expense of irrigated maize in the Tri-
Basin NRD.
Given concerns about land use, the most promising avenue to

reduce GHG emissions, without significant impact on productivity,
appears to be through improvements in input use efficiency of
current irrigated maize systems. Among irrigated maize fields in the
Tri-Basin NRD, lack of correlation between irrigated yields and
energy input or GWP in all years, and three- and fourfold greater
variation in energy inputs and GWP, respectively, than observed
variation in grain yield (Fig. 3 A and B) suggest substantial scope to
improve energy balance and to reduce GWP of irrigated maize
without affecting productivity. Differences in both applied irriga-
tion and magnitude of N surplus explained 57% of the variation in
GWP. Therefore, achieving greater NUE and water productivity
through better management of applied N and irrigation water
would be most effective for increasing energy yield and reducing
GHG emissions. Analysis of farmer’s data indicated that values
of NER and GWPi higher and lower than 6.5 and 218 kg of
CO2e·Mg−1 of grain, respectively, can be set as reasonable energetic
and environmental targets for irrigated maize (Fig. 3 A and B).
In fact, achieving high yield with large energy inputs and high

input use efficiency resulted in a strong negative correlation
between GWPi and NEY (Fig. 3C). This finding is consistent
with results from a previous life cycle assessment for maize-
ethanol systems (5). There is, however, an important distinction
between analyses based on Tri-Basin NRD irrigated maize data
and previous published data. In the present study, NEY and
GWPi were calculated based on: (i) maize yield and input data
collected during a recent 3-y time interval (2005–2007) across
a large number of farmer’s fields, (ii) the most recent embodied-
energy values for inputs to estimate energy balance and GHG
emissions, and (iii) the N-surplus approach to estimate soil N2O
emissions. In contrast, previous studies relied on national- or
statewide aggregated yield and applied input statistics, and the
IPCC-N input approach to estimate soil N2O emissions. Also,
the embodied-energy and GHG-emission values for specific
inputs were not consistent across these previous studies and,
in some cases, the values used are now obsolete and/or unrep-
resentative compared with current crop management practices
and manufacturing efficiencies (18, 19).
The impact from adoption of best management practices,

compared with current average management, on energy use and
GWP was evaluated for irrigated maize in the Tri-Basin NRD
(Table 2). Best management practices included use of low-pres-
sure pivot irrigation, improved irrigation pump performance rating
(PPPR), use of electrical power for irrigation water pumping
rather than diesel or natural gas, fine-tuning of irrigation timing,
and better N fertilizer management (seeMaterials andMethods for
details on calculations and underpinning assumptions). Taken
together, adoption of these management practices would result in
a 25% and 21% reduction in energy use and GWP, respectively,
with very little reduction in crop yield (4% reduction under limited
irrigation; ref. 27). It is noteworthy that the greatest opportunity to
reduce GHG emissions appears to be from fine-tuning N man-
agement practices aiming to reduce N surplus rather than reducing

Fig. 4. Average (±SE) energy input rate, net energy yield, net energy ratio,
and GWPi of irrigated maize under different combinations of: irrigation
system (pivot; surface), crop rotation [maize after maize (M-M) or maize after
soybean (S-M)], and tillage method [conventional (CT); reduced till (RT)].
Maize grain yields (Mg·ha−1) are shown above bars in Middle Upper. All
values are 3-y (2005–2007) means. Differences (Δ) and t test significance for
selected comparisons between factor levels are shown (n.s., not significant).
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average N fertilizer rate. This proposition follows from the fact
that, although many fields required higher or lower N fertilizer
rates to achieve a zero N surplus (Fig. 1), the estimated average N
rate for optimal N management is similar to the current average
fertilizer N rate (178 vs. 183 kg of N·ha−1, respectively).

General Discussion. Increasing demand for food and fuel with
limited reserves of arable land will require further intensification
of existing cropping systems. At issue is whether it is possible to
achieve an ecological intensification that gives both high yields
and reduced environmental burden (20). Results from our study
clearly document that high yield and high input-use efficiencies,
together with low GWPi, are not conflicting goals in well-man-
aged commercial-scale production fields. Although energy inputs
and GWP per unit of land area were much greater in irrigated
production compared with published values based mostly on
rainfed maize production, associated NEY and GWPi of irrigated
systems were substantially greater and lower, respectively. Hence,
advantages of lower-input lower-yielding maize systems vanish
when metrics are scaled by grain yield or net energy output. For
this reason, assessments of energy efficiency and GWP metrics
are most relevant when corrected for yield rather than on a land-
area basis. For example, although energy inputs of irrigated maize
in Tri-Basin NRD in Nebraska receive twice as much energy input
as rainfed maize in Iowa (22), the extra energy inputs for irriga-
tion and N fertilizer contribute to grain yields that are 23%
greater (13.2 and 10.7 Mg·ha−1) and a 14% increase in NEY (159
and 139 MJ ha−1) than for rainfed maize in Iowa (Table S1).
Our results also showed large discrepancies between two

methods for estimating N2O emissions from applied N inputs.
Because current standard IPCC N-input method does not account
for large variation in NUE observed across farmer’s fields due to
differences in yield level and competence in fertilizer manage-
ment, estimated N2O emissions in high-yield, high-NUE irrigated
maize fields in Tri-Basin NRD were much higher by using IPCC
N-input method than estimated by N-surplus approach. Hence,
the IPCC method to estimate N2O emissions based on a fixed
proportion of applied N inputs (and assumptions regarding to
amount of leached N and volatilized N described in SI Text, S2) is
likely to overestimate N loses from well-managed, high-yield,
high-input systems, such as irrigated maize in Nebraska. More-
over, the N-input approach cannot support incentives for in-
vestment in technologies to reduce N losses and, thereby, achieve
better N balance without sacrificing yield. And although improved
N management would result in only small energy savings because
current average N rates are close to a zero net surplus, it would
have a larger impact on reducing GHG emissions because of large

variation among fields in N surplus or deficit. This differential
impact of improved N management on energy use versus GHG
emissions would not be observed if the IPCC N-input approach is
used to estimate N2O emissions.
In a broad context, irrigated maize production in Nebraska can

be taken as a benchmark for other current and future irrigated
cropping systems because it achieves remarkably high and stable
grain yields, high efficiencies in use of solar radiation, N, and water,
and has a large positive energy balance and low GWPi. These
findings are relevant for irrigated cropping systems worldwide that
have good infrastructure and access to agricultural inputs, tech-
nologies and equipment, and information on how to use them.
Other irrigated maize systems that fit these characteristics include
those in France, Italy, Argentina, and Brazil. Over time, we would
expect these supporting conditions to occur in other irrigated
maize producing countries such as China, India, and elsewhere.

Materials and Methods
Tri-Basin Natural Resources Database. For the present study, we used a 3-y
(2005–2007) database collected from irrigated maize fields in Tri-Basin NRD
(southcentral Nebraska) containing farmer-provided data on grain yield,
applied inputs (N rate, applied irrigation water, seeding rate), and man-
agement practices (tillage method, irrigation system, energy source for ir-
rigation pumping) (26, 27). The database included a total of 123 field-years,
representative of a much larger database that includes a total of 777 field-
year observations collected in Tri-Basin NRD for the same time interval (SI
Text, S1). Conversion efficiency from solar radiation to crop biomass, NUE,
and crop water productivity were calculated for each site-year (SI Text, S1).
These parameters, except NUE due to the lack of actual data, were also
calculated for rainfed maize in Tri-Basin NRD (SI Text, S1).

Inventory of Energy Inputs. To estimate energy inputs for each of the 123
irrigated maize fields, energy values for manufacturing, packaging, and
transportation of agricultural inputs were combined with farmer-reported
input levels (fertilizer N rate, seeding rate, type of irrigation system, applied
irrigation, and tillage method) and Nebraska state averages (30) for inputs
not reported by farmers (P and K fertilizer rates, herbicides, and insecticides)
(SI Text, S3). The energy embodied in manufacturing, transportation, and
repair of farm machinery was calculated for each tillage method (hereafter
called “machinery”). Energy use for on-farm operations was calculated
based on fuel use for field operations (including chopping stalks, fertilizing,
tillage, cultivation, spraying, and harvesting), irrigation pumping, and grain
drying (SI Text, S3). Energy use for field operations was calculated based on
farmer-reported tillage method, type and number of field operations typi-
cally required under each tillage method, and associated fuel requirement.
Energy use for irrigation pumping was calculated based on farmer-reported
applied irrigation amount, energy source, and pumping depth. Labor re-
quired for on-farm operations and fuel use for transportation of grain from
farm to an off-farm storage facility were not included in the energy in-
ventory because they represented <2% of total energy inputs (SI Text, S3).

For each field-year, energy input rate (GJ·ha−1) was calculated as the sum
of annual fossil-fuel energy inputs. Several metrics to quantify energetic
performance of cropping systems have been used in the published litera-
ture. To avoid redundancies, only NER (grain energy output-to-total energy
input) and NEY (embodied energy in harvested grain minus total energy
input; GJ ha−1) are reported in the present study.

Calculation of Greenhouse Gas Emissions and Global Warming Potential. By
following previous calculation of energy inventory, GHG emissions, including
CO2, CH4, and N2O derived from fossil-fuel use for on-farm operations and
production, transportation, and packaging of agricultural inputs and ma-
chinery, were calculated for each field (SI Text, S3). Additional N2O emissions
from soil were estimated by following IPCC N-input-driven approach (23) or
van Groenigen et al. N-surplus-driven approach (24) (SI Text, S2). Tillage
method was assumed to have no effect on soil GHG emissions because there
is no clear evidence for mitigation of soil GHG emissions using conservation
tillage practices compared with conventional tillage (31, 32). Annual net
change in soil carbon and soil CH4 emissions were assumed to be zero as
found in a number of recent field studies on maize-based cropping systems
in the US Corn Belt (14, 33, 34).

The climate impact of GHG emissions was calculated as CO2e, also called
GWP (35). The 100-y GWP of CH4 and N2O are 25 and 298 times the intensity
of CO2 on per mass basis, respectively. For each of the 123 irrigated maize

Table 2. Potential impact of adoption of best management
practices on energy use and global warming potential in
irrigated maize in Tri-Basin NRD

Scenario Total energy,* GJ Total GWP,* Mg of CO2e

Actual baseline† 28,758 2,745
Potential‡ 22,018 2,180
Difference§ −6,741 (−25%) −566 (−21%)

See Materials and Methods for details on calculation of energy use and
GWP under each scenario.
*Values are per 1,000 ha of irrigated maize in Tri-Basin NRD.
†Based on actual frequency of fields under each type of irrigation system,
tillage method, crop rotation, and source of energy for irrigation pumping.
‡Based on full adoption of improved plant performance rating (90%), use of
electrical power for irrigation water pumping, pivot irrigation, limited-irri-
gation, and optimal N management in current irrigated maize land area that
is not already under these management practices.
§Absolute and relative (in parentheses) difference in energy use and GWP
under the potential scenario compared with actual baseline.
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fields, GWP (kg of CO2e·ha
−1) was calculated as the sum of CO2, CH4, and

N2O emissions expressed as CO2e. GWP intensity (GWPi; kg of CO2e·Mg−1 of
grain) was calculated as the GWP-to-grain yield ratio (6).

Estimating Impact of Management Practices on Energy Balance and GHG
Emissions. The 123 field-year observations were grouped into eight manage-
ment categories that combine different irrigation systems (pivot and surface),
crop rotation (continuous maize and maize-soybean rotation), and tillage
methods [conventional disk till and reduced till (includes strip-, ridge-, and no-
till)]. To avoid biases due to random variation in sources of energy used for
irrigation pumping across field-years, fuel for irrigation pumping under each
categorywasassumedtobenatural gas,diesel, andelectricity ina55:25:20ratio,
as observed in the larger 777field-year database collected in Tri-BasinNRD (26).

The impact of energy-saving and GWP-reducingmanagement practices was
estimated per thousand hectares of irrigated maize. To do so, 100% adoption
was assumed for the targeted practices on the proportion of total production
area in the Tri-Basin NRD that was not already under such practices.† These
practices include changes in PPPR (90% vs. actual 80%), source of energy for
pumping (electricity vs. natural gas or diesel), irrigation system (pivot vs. sur-
face), irrigation scheduling (limited vs. actual irrigation), and N management
(“optimal” vs. actual). Changes in crop rotation or tillage system were not
analyzed because most irrigated maize land area in Tri-Basin NRD is already
under soybean-maize rotation and reduced tillage (61% and 78%, re-
spectively). PPPR is the ratio between required energy to pump a unit of water
by properly designed and maintained pumping plants and actual energy use.
PPPR is typically below 100% because of inadequate pump maintenance or
because operating conditions have changed since the system was installed
(typical PPPR for farmer-owned pumping plants in Nebraska is 80%; SI Text,

S3). Replacement of natural gas or diesel by electrical power for pumping ir-
rigation water was also considered becausemore work is produced per unit of
energy delivered to the pump when electrical power is used, reducing the
energy use per unit of applied water (Table S4). Compared with natural gas or
diesel, the benefit of greater pump efficiency with electrical power more than
offsets the higher GHG emissions from electrical power generation, which
relies heavily on coal-fired power plants. Water savings under pivot irrigation,
compared with surface irrigation, and under limited irrigated scheduling were
retrieved from a previous study (27). Under limited irrigation, the amount of
water applied is equivalent to 75% of full crop water demand throughout the
cropping period except during growth stages especially sensitive to water
stress (−14 to +7 d window around silking), during which the crop is kept fully
irrigated. Results from previous studies based on the same Tri-Basin NRD da-
tabase indicate that limited irrigation can lead to irrigation-water savings of
22% compared with actual applied irrigation amounts currently used by
farmers with pivot irrigation, with a small yield penalty of 4% with limited
irrigation (27). We also explored the impact of adopting N management
practices that would precisely balance the amount of N applied with the
amount of crop N uptake (hereafter called “optimal” N management) under
the assumption that achieving a zero-N surplus minimizes N losses without
a decrease in soil organic carbon and N stocks. Such practices include adjust-
ment of N fertilizer rates according to field-specific yield goal and indigenous
N supply, and several smaller N doses with more timely applications that
congruent with crop N demand (12). N rate under “optimal” N management
was estimated as the amount of N in aboveground biomass at maturity minus
nonfertilizer N inputs from irrigation water and manure (SI Text, S2).
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