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Abstract
After clinical resolution of signs and symptoms of mild traumatic brain injury (MTBI) it is still not
clear if there are residual abnormalities of structural or functional brain networks. We have
previously documented disrupted interhemispheric functional connectivity in “asymptomatic”
concussed individuals during the sub-acute phase of injury. Testing of 15 normal volunteers (NV)
and 15 subacute MTBI subjects was performed within 24 hours of clinical symptoms resolution
and medical clearance for the first stage of aerobic activity. In this MRS study we report (a) both
in the genu and splenium of the corpus callosum NAA/Cho and NAA/Cr ratios were significantly
(p<0.05) lower in MTBI subjects shortly after the injury compared to NVs, and (b) the metabolic
ratio NAA/Cho in the splenium significantly correlated with the magnitude of inter-hippocampal
functional connectivity in normal volunteers, but not in MTBI. This novel finding supports our
hypothesis that the functional disruption of interhemispheric brain networks in MTBI subjects
results from compromised metabolic integrity of the corpus callosum and that this persists despite
apparent clinical return to baseline.

Mild traumatic brain injury (MTBI) accounts for 75–90% of the 1.4 million annual
incidence of traumatic brain injury (TBI) [3] in the United States. Despite being labeled
“mild”, mechanical forces associated with MTBI may produce diffuse axonal injury (DAI)
[17] and lead to a multitude of symptoms and neuropsychological dysfunction [29].
Conventional neuroimaging fails to identify structural changes [29]; likewise
neuropsychological testing is not sensitive beyond 10 days post-injury [18]. Most cases of
MTBI have spontaneous resolution of symptoms within 7–30 days, yet upwards of 38% of
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MTBI patients report physical, cognitive, and emotional symptoms that persist for months-
to-years post-injury [4, 23, 30].

Empirical evidence gathered through postmortem, diffusion tensor imaging (DTI), and
functional connectivity magnetic resonance imaging (fcMRI) studies have shown that the
corpus callosum is a major predilection site in MTBI [26, 27]. The corpus callosum forms
the largest and highest density commissural white matter bundle in the brain and is highly
susceptible to the rotational acceleration and decelerations forces that accompany MTBI [22,
26, 27]. The corpus callosum provides a large percentage of functional connections between
the right and left hemisphere. Structurally, the degree of hemispheric lateralization is
established by the axons of the corpus callosum and functionally it allows for modulatory
influence and the exchange of information between hemispheres [14]. Not surprising,
damage to the corpus callosum has been shown to significantly alter interhemispheric
functional connectivity[16, 19].

Recent work with resting state functional magnetic resonance imaging (rs-fMRI) and DTI
has shown promise in expanding our understanding of human functional networks [9] and
given evidence that structural and functional connectivity are closely related [11]. Although
functional connectivity may reflect structural connectivity, it is not a simple one-to-one
mapping and cannot distinguish direct and indirect pathways [9]. Although few studies to
date have investigated both structural and functional connectivity of large-scale cognitive
networks, it is important to investigate the effects of the initial injury and compensatory
responses after MTBI [24]. Therefore multimodal studies combining functional and
structural information are valuable in understanding how brain injury disrupts brain
networks [24].

In our recent rs-fMRI research, we reported reduced interhemispheric functional
connectivity in “asymptomatic” MTBI subjects [25]. Specifically the interhemispheric
connectivity of the dorsolateral prefrontal cortex (DLPFC) and hippocampus were
significantly (p<0.05) reduced in MTBI. We hypothesized that functional disruption of
interhemispheric brain networks in MTBI subjects shortly after the injury may result from
compromised structural integrity of the corpus callosum. To test this hypothesis, in this
study we examined the metabolic profile of the corpus callosum via magnetic resonance
spectroscopy (1H-MRS) in the sub-acute phase of MTBI. 1H-MRS spectra provide
information about key neurometabolites: N-acetylaspartate (NAA), total choline (Cho), and
total creatine (Cr) and are used as relative measures of neuronal integrity and metabolism,
membrane structure, and glial function, respectively (Matthew et al., 2003). Decreases in
NAA levels as well as increases in Cho levels are the two most common 1H-MRS findings
following traumatic brain injury [21]. NAA levels are markers of neuronal integrity with
low levels associated with DAI [1], while Cho levels are attributed to injury and repair of
myelin in addition to inflammation [31]. In this study 1H-MRS spectra were taken from two
regions of interest (ROIs), the genu and splenium of the corpus callosum. The genu of the
corpus callosum connects the orbitofrontal and frontal cortices while the body and splenium
connect temporal, parietal, and occipital regions [22]. From prior 1H-MRS studies of MTBI
along with our earlier hypothesis we expected to find alterations in the neurometabolite
ratios in the corpus callosum that correlate with the strength of interhemispheric functional
connectivity. Specifically we predict there will be a decrease in NAA in levels, an increase
in Cho levels while Cr levels remain relatively constant.

A strict testing schedule was adhered to in order to compensate for individual differences in
severity of MTBI and differential rates of recovery. Specifically, all subjects under study
were scanned within 24 hours of clinical symptom resolution, return to baseline on
neuropsychological testing (Balance Error Score System and Scat-2), and clearance from a
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medical professional for the first stage of aerobic activity. On average scanning took place
10.8 days post injury. 15 student-athletes (6 male, 9 female, mean age 20.6 +/− 1.2 years)
who had recently suffered from a sports-related grade 1 MTBI (Cantu Data Driven Revised
Concussion Grading Guideline, 2006) and 15 neurologically normal volunteer (NV) student-
athletes with no history of MTBI (7 male, 8 female, mean age 20.4 +/− 0.8 years) were
recruited for this study. The initial diagnosis of MTBI was made on the field by certified
athletic trainers (AT) and as a part of the routine protocol of the Sport Concussion Program
at the Pennsylvania State University. All subjects signed an informed consent form and the
Institutional Review Board of the Pennsylvania State University approved this protocol.
MRI scanning did not elicit any clinical symptoms and no radiological findings were
observed on the anatomical T1, therefore no subjects were excluded from the study.

1H-MRS and anatomical images were acquired on a 3.0 Tesla Siemens Trio whole-body
scanner (Siemens, Erlangen, Germany) using a 12 channel head coil. Three-dimensional
isotropic T1 weighted magnetization prepared rapid gradient echo (MP-RAGE) anatomical
images were acquired in the axial plane parallel with the anterior and posterior commisure
axis covering the entire brain (0.9mm × 0.9mm × 0.9mm resolution, TE= 3.46ms, TR=
2300ms, TI= 900ms, flip angle= 9°, 160 slices, iPAT= none, NSA= 1). Three-dimensional
multivoxel 1H-MRS Chemical Shift Imaging (CSI) (120mm × 120mm × 80mm Field of
View, 10.0mm × 10.0mm × 12.5mm voxel size, TE=135ms, TR=1510 ms, iPAT= none,
NSA= 1) was implemented to evaluate in-vivo NAA, Cho, and Cr metabolite peaks. The CSI
volume of interest (VOI) was centered anteriorly/posteriorly and inferiorly/superiorly over
the corpus callosum.

The 3D 1H-MRS CSI data were processed off-line using standard scanner software
(spectroscopy Card, Siemens) and included zero filling, eddy current correction, water
suppression, Fourier transform, baseline and phase correction post processing steps. Spectra
and metabolite maps (with peaks for NAA= 2.02 ppm, Cho at 3.22 ppm, and Cr at 3.04
ppm) were automatically calculated for each voxel within the entire VOI. Within the VOI
the genu and splenium of the corpus callosum were demarcated into 2 ROIs. Each ROI
consisted of 6 voxels that were individually selected to be within the genu and splenium of
the corpus callosum based upon anatomical T1 images overlaid with the corresponding
acquired 1H-MRS voxels. NAA/Cho, NAA/Cr, and Cho/Cr ratios of these selected voxels
were then averaged to come up with a mean value for each ROI [20, 28]. Minitab 16
Statistical Software (Minitab, Inc., State College, PA www.minitab.com) was used to
perform statistical analysis. Metabolite ratios between the MTBI group and NV group were
compared by one way ANOVA and considered significant if p < 0.05. Similar findings were
found in both the genu and splenium of the corpus callosum.

In the genu both NAA/Cho (p=0.001) and NAA/Cr (p=0.022) ratios were significantly lower
in the MTBI group compared to the NVs. However, there was no difference between groups
in the Cho/Cr ratio for the genu. Similar to Genu, the splenium showed significantly lower
NAA/Cho (p=0.04) and NAA/Cr (p=0.01) ratios. Again, Cho/Cr ratio was not significantly
different between groups. It should be noted that despite being a reliable tool to accurately
assess MTBI [28]; spatial resolution of 1H-MRS is poor and small discrepancies or
delineations in metabolic information may be masked or missed [15]. In our analysis we
based the results upon metabolite ratios not absolute measurements which may mask
alterations if both metabolites in the ratio are equally affected [8].

In our previous study [25] we observed decreased functional interhemispheric connectivity
of the dorsolateral prefrontal cortex (DLPFC) and hippocampus. Correlation analysis was
performed on the significantly altered metabolic ratios, NAA/Cho and NAA/Cr, to explore
if 1H-MRS values were indicative of the strength of functional interhemispheric
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connectivity. Indeed, the metabolic ratios at genu were correlated with DLPFC functional
interhemispheric connectivity and those at splenium were correlated with the hippocampal
functional interhemispheric connectivity in normal volunteers, but not in MTBI subjects.
Specifically, we observed a significant correlation between the NAA/Cho ratio in the
splenium and the magnitude of inter-hippocampal functional connectivity in the NV group
(r = 0.639, p = 0.019). In contrast, we did not observed any trends of relationship between
metabolic measures (NAA/Cho in splenium) and functional inter-hippocampal connectivity
in MTBI group (r=0.125, p=0.685). Also, as can be seen from Fig.3, this lack of correlation
may be a result of NAA/Cho ratios below 1.8 in the majority of MTBI subjects. This was
accompanied by relatively low values (<0.75) of inter-hippocampal connectivity compared
to NV.

As expected, we observed decreases in NAA levels and increases in Cho levels that resulted
in reduced NAA/Cho and NAA/Cr ratios [8]. This finding is in agreement with earlier 1H-
MRS studies of MTBI [2, 5, 7, 28]. The novel evidence from this study is that metabolic
profiles in the corpus callosum correlate with functional inter-hippocampal connectivity
only in NV but not in MTBI. Therefore, multimodal brain imaging approach may be a
valuable tool not only to reveal cerebral dysfunctions in acute phase of brain injury [6], but
also monitor the recovery from MTBI. It is our current research focus to track evolution of
MRS measures in MTBI patients over year post-injury to address an important question of
whether these patients ever return to “normal”.

While functional connectivity does not necessarily mean structural connectivity due to
indirect pathways and compensatory measures, there is growing evidence that the two are
related to a certain degree. In line with this notion, we have here provided additional
evidence suggesting that disruptions of structural integrity may compromise the brain
functional architecture [13, 19, 24]. Future research is needed to further explore this
interaction. Clinically, this multimodal approach may be critical for accurate evaluation of
brain injury evolution. Longitudinal and follow-up scanning combining various imaging
modalities may address the important question of whether resolution of MTBI symptoms
reflects the restoration of baseline brain network integrity or substitution of some
compensatory function.

In conclusion, MTBI produces an imbalance in brain metabolites that is not yet restored to
pre-injury levels when there has been the initial clinical symptom resolution and a return to
baseline on neuropsychological testing. Similar findings have been recently reported in the
literature [10, 28]. There is growing evidence through advanced neuroimaging techniques
that despite a return to premorbid status (based upon current clinical measures), there are
still residual deficits within brain structural and functional networks [12, 18, 25, 32] in the
sub-acute phase of MTBI. This should be a major clinical concern when clearing athletes for
sport participation, since subtle alteration of brain networks due to prior history of MTBI
may put an individual at a higher risk from subsequent brain injuries.
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Highlights

> 1H-MRS was used to investigate the integrity of the corpus callosum in
subactue MTBI

> Reduced ratios for NAA/Cho and NAA/Cr were observed in the MTBI
population

> NV had a significant correlation of NAA/Cho ratio with interhippocampal
functional connectivity
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Figure 1.
Examples of 1H-MRS spectra acquired from one voxel for MTBI and NV group. Notice the
increased Cho and decreased NAA peaks in the MTBI subjects compared to NV.
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Figure 2.
Bar graph of average brain metabolite ratios for each group (NV and MTBI) in each ROI
(genu and splenium) * indicates that ratio is significant (p<0.05).
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Figure 3.
Correlation analysis for each group (NV and mTBI) of functional interhemispheric
connectivity in the hippocampus with NAA/Cho ratio in the splenium.
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