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Abstract
Objective—Several confirmed genetic susceptibility loci for lupus have been described. To date,
no clear evidence for genetic epistasis is established in lupus. We test for gene-gene interactions in
a number of known lupus susceptibility loci.

Methods—Eighteen SNPs tagging independent and confirmed lupus susceptibility loci were
genotyped in a set of 4,248 lupus patients and 3,818 normal healthy controls of European descent.
Epistasis was tested using a 2-step approach utilizing both parametric and non-parametric
methods. The false discovery rate (FDR) method was used to correct for multiple testing.

Results—We detected and confirmed gene-gene interactions between the HLA region and
CTLA4, IRF5, and ITGAM, and between PDCD1 and IL21 in lupus patients. The most significant
interaction detected by parametric analysis was between rs3131379 in the HLA region and
rs231775 in CTLA4 (Interaction odds ratio=1.19, z-score= 3.95, P= 7.8×10−5 (FDR≤0.05),
PMDR= 5.9×10−45). Importantly, our data suggest that in lupus patients the presence of the HLA
lupus-risk alleles in rs1270942 and rs3131379 increases the odds of also carrying the lupus-risk
allele in IRF5 (rs2070197) by 17% and 16%, respectively (P= 0.0028 and 0.0047).

Conclusion—We provide evidence for gene-gene epistasis in systemic lupus erythematosus.
These findings support a role for genetic interaction contributing to the complexity of lupus
heritability.

Introduction
Recent candidate gene and genome-wide association studies (GWAS) led to the discovery
and validation of multiple susceptibility loci for systemic lupus erythematosus (1). However,
the heritability of lupus cannot be completely explained by the susceptibility loci already
discovered. We suggest that the missing heritability in lupus can be explained by three
potential mechanisms: A heritable epigenetic component, common and rare disease
susceptibility variants yet to be discovered, and gene-gene interactions involving known and
perhaps yet to be discovered genetic variants for disease susceptibility. There are very
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limited and controversial data regarding gene-gene interaction (epistasis) in lupus (2–3).
Consequently, it is widely accepted that the known lupus susceptibility loci operate
additively rather than epistatically to increase the risk for lupus.

Herein, we sought to examine gene-gene interactions in some of the previously established
and confirmed susceptibility loci for lupus, using a large set of lupus patients and controls.
We discovered and confirmed 6 novel gene-gene interactions for lupus, using both
parametric and non-parametric statistical methodologies.

Methods
Study participants and genotyping

A total of 4,248 lupus patients and 3,818 normal healthy controls of European descent were
included in this study. Eighteen SNPs representing previously confirmed and independent
autosomal lupus susceptibility loci were genotyped (Table 1). A summary for the allelic
association results in these loci using the patients and controls included in this study is
shown in Supplementary Table 1. We genotyped 2 tag SNPs in the HLA region. These 2
SNPs were selected as they were recently shown to have independent genetic effects using
logistic regression analysis of a large number of lupus-associated SNPs in the HLA region
(4). Likewise, 3 tag SNPs representing independent genetic susceptibility effects in IRF5
were genotyped (5). All lupus patients fulfilled the ACR lupus classification criteria (6–7).
Genotyping was performed using Illumina Custom Bead system on the iSCAN instrument
as part of a large lupus candidate gene association study to reduce cost of genotyping and
maximize sample size. We genotyped 347 ancestry informative markers (AIMs) in our
samples (8–11). Individuals with a genotype success rate of <90% (361 samples) were
excluded from the analysis. The remaining samples were then evaluated for duplicates or
related individuals and one individual from each pair was removed (117 samples) if the
proportion of alleles shared identical by descent (IBD) > 0.4. Samples were assessed for
mismatches between their reported gender and their genetic data and 112 samples were
removed from the analysis as they did not meet the following criteria: an assigned male was
required to have chromosomal X heterozygosity ≤10% and be heterozygous at rs2557524
and an assigned female was required to have chromosomal X heterozygosity >10% and be
homozygous at rs2557524. The SNP rs2557524 is mapped on a region on chromosome X
and Y that is identical except for this 1 base. Because of this 1 base difference males
generate a heterozygous genotype (due to the presence of both X and Y chromosomes) and
females generate a homozygous genotype (due to the presence of only X chromosomes).

Next, samples with increased heterozygosity (>5 standard deviation around the mean) were
removed from the analysis (5 samples). Finally, 42 genetic outliers were removed from
further analysis as determined by principal components analysis. An additional 2 outlier
samples identified by admixture proportions calculated using ADMIXMAP were also
removed. After applying the quality control measures detailed above, samples included in
our analysis consisted of 3,936 European-derived lupus patients (3,592 females, 344 males),
and 3,491 European-derived normal healthy controls (2,340 females, 1,151 males).

Detection of gene-gene interaction
Testing for gene-gene interaction was performed sequentially using two independent
statistical approaches. First, a parametric analysis for epistasis was applied as implemented
in PLINK (12). Epistatic interactions detected using PLINK were validated using allelic 2×2
tables among lupus patients to calculate interaction odds ratios and identify the specific
alleles in each SNP pair that contributed to the interaction detected. Allelic 2×2 tables
(Figure 1) were obtained from 3×3 genotypic tables (Supplementary Figure 1) for each
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interaction tested. The allelic 2×2 tables are based on 4N allele counts, where N is the total
number of individuals, with each individual contributing a total of 4 independent alleles. Z-
scores were calculated as the natural logarithm of the odds ratio divided by the square root
of the variance, and associated P values were assigned from the z-scores for each
interaction. Chi-square statistics for pair-wise interaction were calculated as were chi-square
derived P values. Second, a pair-wise non-parametric epistasis test was applied utilizing
multifactor dimensionality reduction analysis (MDR) (13–14).

The false discover rate (FDR) method as described by Benjamini and Hochberg was used to
correct for multiple comparisons (15–16).

Results
To test for gene-gene interactions within the known lupus susceptibility loci examined, we
performed a 2-step epistasis analysis using a parametric approach followed by a non-
parametric analysis. This 2-step approach has the strength of examining and confirming
epistatic interactions using 2 independent statistical methods. This is necessary as the best
methodology to detect gene-gene interaction remains controversial.

We first used a case-only pair-wise epistasis analysis implemented in PLINK. The case-only
analysis was selected as it was shown to be a more powerful test for epistasis compared to
case-control analysis (17–18). Interactions with FDR of ≤ 0.05 were considered established,
and those with FDR >0.05 and ≤ 0.25 were considered suggestive interactions that require
confirmation. A high FDR was used in the initial screening for suggestive interactions to
avoid excluding true gene-gene interactions from confirmatory analyses.

We discovered six gene-gene interactions using parametric analysis (Table 2). The two most
significant interactions were between CTLA4 and the two SNPs representing two
independent genetic effects within the HLA region (FDR≤ 0.05). The detected epistasis
signal between the risk alleles in CTLA4 and rs3131379 (HLA region 1) and CTLA4 and
rs1270942 (HLA region 2) showed an interaction odds ratio of 1.19 and 1.18 (z-score= 3.95,
P= 7.8×10−5, and z-score= 3.88, P= 1.0×10−4, respectively). These data indicate that in
lupus patients, the presence of the lupus-risk allele in CTLA4 increases the odds of carrying
the risk allele in either of the HLA lupus associated loci by ~20% and vice versa (Figure 1).
Four additional suggestive gene-gene interactions (FDR≤ 0.25) were found between the
HLA and IRF5, the HLA and ITGAM, and IL21 and PDCD1 (Table 2). The presence of the
risk allele in the two HLA lupus-associated loci examined (rs1270942 and rs3131379)
increases the odds of carrying the lupus-risk allele in IRF5 (rs2070197) by 17% and 16%,
respectively, and vice versa (P= 0.0028 and 0.0047). Interestingly, our data suggest that the
presence of the risk allele in ITGAM increases the odds of carrying the protective allele in
rs3131379 (HLA) by 16% (P= 0.0075).

Next, and in order to confirm the two gene-gene interactions that we established using
parametric tests, and to test if the other 4 suggestive gene-gene interactions can be
established, we applied the multifactor dimensionality reduction test (MDR) to the
interactions initially discovered using parametric analysis. MDR is a non-parametric test for
non-linear epistasis. A pair-wise MDR analysis was applied to test the specific interactions
discovered in stage 1. It should be noted, however, that results obtained using the MDR non-
parametric analysis reflect a joint effect consisting of the main genetic association effect in
the loci examined and the interaction effect. These results are presented in Table 3 (See
Supplementary Table 2 and Supplementary Figure 2 for details).
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Discussion
The very existence and nature of genetic epistasis in lupus has been elusive. We combined
the strengths of two independent approaches to test for genetic epistasis in lupus, and
identified several novel gene-gene interactions using a large European-derived sample. The
most significant interaction we identified was between the HLA region and CTLA4. Indeed,
two independent lupus-associated SNPs within the HLA region (rs3131379 and rs1270942)
showed evidence for significant interaction with rs231775 in CTLA4 (Tables 2 and 3). The
HLA-CTLA4 interaction in lupus underscores antigen presentation and T cell stimulation as
an important process involved in the pathogenesis of lupus. This interaction is biologically
logical as CTLA4 is upregulated on T cells following T cell activation by antigen presenting
cells (19). Following T cell activation via the binding of MHC:antigen complex to the T cell
receptor (signal 1), the binding of CD80/CD86 on antigen presenting cells to CD28 on the
surface of T cells (signal 2) ensures T cell activation and IL-2 production (19). CTLA4
competes with CD28 to bind CD80/CD86 and provides a negative signal that suppresses T
cell activation. This process is thought to be important to control T cell activation and
prevent autoimmunity.

A role for antigen presenting cells in lupus is highlighted again with the HLA/ITGAM gene-
gene interaction, though this interaction is between the risk and protective alleles in these 2
loci. ITGAM (integrin, alpha M) encodes for CD11b, the alpha chain in the integrin
molecule CD11b/CD18 (MAC-1, CR3). It is expressed on the surface of antigen presenting
cells and neutrophils, and plays a role in cell-cell adhesions, leukocyte extravasation, and in
complement-mediated phagocytosis of C3bi opsonized antigens (20–21).

We also showed evidence for gene-gene interaction between the 2 independent lupus-
associated SNPs within the HLA region with rs2070197 in IRF5. This interaction
emphasizes the role of the interferon pathway in the pathogenesis of lupus.

The other gene-gene interaction we identified was between rs907715 in IL21 and
rs11568821 in PDCD1. This interaction is very interesting as it highlights a role for
follicular helper T cells (TFH) in lupus. High PDCD1 expression and IL-21 production is a
hallmark of TFH cells (22). TFH cells promote germinal center formation, plasma cell
differentiation, and antibody isotype switching (23). PDCD1 deficiency results in impaired
germinal center B cell survival and diminished production of long-lived plasma cells (24).
Indeed, the production of IL-21 is reduced in TFH cells from Pdcd1−/− mice (24). IL-21
deficiency results in impaired germinal center formation, plasma cell differentiation, and
isotype class switching (23), emphasizing a central role for IL-21 in TFH function. Of
interest, a higher fraction of circulating TFH cells was detected in the peripheral blood from
patients with lupus compared to normal controls (25).

In summary, we provided strong evidence that the presence of one risk allele can influence
the presence or absence of other risk alleles in lupus patients across different loci. We have
identified novel gene-gene epistatic interactions in lupus. Gene-gene interactions might help
explain at least part of the “missing heritability” in complex diseases. Our findings argue
against a simple “additive” genetic model in autoimmunity, and highlight antigen
presentation and T cells activation, the interferon pathway, and follicular helper T cells as
important contributors to the pathogenesis of lupus.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Allelic 2×2 tables in lupus patients used to calculate interaction odds ratios and identify the
specific alleles in each SNP pair that contributed to the interaction detected.
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Table 3

Multifactor dimensionality reduction (MDR) analysis for pair-wise interactions detected using parametric
analysis in lupus patients and controls.

Interaction Cross Validation Consistency Balanced Accuracy Chi2 P Value

CTLA4 (rs231775) × HLA (rs3131379) 10/10 0.5737 208.57 5.9×10-45

CTLA4 (rs231775) × HLA (rs1270942) 10/10 0.5744 212.76 7.4×10-46

HLA (rs1270942) × IRF5 (rs2070197) 10/10 0.5949 270.60 2.3×10-58

HLA (rs3131379) × IRF5 (rs2070197) 10/10 0.5946 268.81 5.6×10-58

HLA (rs3131379) × ITGAM (rs1143679) 10/10 0.5985 287.71 4.6×10-62

PDCD1 (rs11568821) × IL21 (rs907715) 10/10 0.5235 17.44 5.7×10-4

Df of 3 was used to calculate P values

Cross validation consistency reflects the number of times MDR found the same model as it divided up the data into different segments. Balanced
accuracy is defined as (sensitivity+specificity)/2 where sensitivity = true positives/(true positives +false negatives) and specificity = true negatives/
(false positives+true negatives). This gives an accuracy estimate that is not biased by the larger class (38).
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