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Abstract
Although inbred mouse strains have been the premier model organism used in biomedical
research, multiple studies and analyses have indicated that genome wide association studies
(GWAS) cannot be productively performed using inbred mouse strains. However, there is one
type of GWAS in mice that has successfully identified the genetic basis for many biomedical traits
of interest: haplotype based computational genetic mapping (HBCGM). Here, we describe how the
methodological basis for a HBCGM study significantly differs from that of a conventional murine
GWAS, and how an integrative analysis of its output within the context of other ‘omic’
information can enable genetic discovery. Consideration of these factors will substantially
improve the prognosis for the utility of murine genetic association studies for biomedical
discovery.

Genetic association studies in mice and biomedical discovery
Genome-wide association studies (GWAS) have successfully analyzed the genetic basis for
disease susceptibility or quantitative trait differences in human populations. Similar to a
human association study, GWAS can also be performed in mice by correlating trait values
measured in a set (usually ≤ 10) of inbred strains with alleles genotyped at single nucleotide
polymorphisms (SNPs), which were selected to represent the genetic pattern within regions
of the mouse genome. However, multiple modeling studies and analyses have purported to
demonstrate that murine GWAS cannot identify the genetic factors affecting most
biomedical traits of interest, due to low power and a high false positive rate [1–3]. The
laboratory mouse has been the premier model organism used in biomedical research. It has
many unique features that enable biomedical discovery, including: the availability of
multiple well-characterized strains, mammalian physiology, a homozygous genome,
experiments can be performed under conditions that control environmental variables, and its
genome can be genetically modified, which enables the assessment of the impact that allelic
variation has on phenotype. It would be very discouraging for all types of genetic research,
if we truly could not perform genetic association studies using this model organism.

Despite the negative predictions, haplotype-based computational genetic mapping
(HBCGM) studies have identified causative genetic factors for many biomedical traits in
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mice (Table 1). HBCGM results have generated potential new solutions for 21st century
public health problems, including treatments for prevention of narcotic drug withdrawal
symptoms [4] and for reduction of incisional pain after surgery [5, 6] that are in clinical
testing. In an HBCGM experiment, a property of interest is measured in 10 or more inbred
mouse strains; genetic factors are then computationally predicted by identifying genomic
regions where the pattern of genetic variation (in the form of pre-assembled haplotype
blocks) correlates with the distribution of trait values among the inbred strains [7, 8]. The
productivity of HBCGM requires explanation, since HBCGM is a type of murine GWAS,
which the published simulations and analyses indicate should fail. The reason for the
discrepancy between the negative predictions from the modeling studies and the actual
HBCGM results is that the modeling studies utilize standard GWAS methodology, but there
are very substantial methodological differences between HBCGM and standard methods
used in GWAS in mice. There are also differences between murine and human genetic
association studies, which affect the design and expected outcomes from these studies. A
better understanding of the methodological basis underlying HBCGM, especially how it
differs from conventional murine GWAS studies and how its output can be used to enable
genetic discovery, will substantially improve the prognosis for its utility for genetic
discovery.

Distinctions that make it different
Although they are usually considered as highly similar entities, the methodological
foundation, preferred phenotypes and the genotypic representations used in HBCGM and
conventional murine GWAS are quite distinct (Table 2). In a murine GWAS, marker SNPs
are selected to represent the pattern of genetic variation across the genome, which are
utilized to identify the causative genetic loci for measured phenotypic differences in an
inbred strain panel. The poor performance (low statistical power for detection) of murine
GWAS in several simulations [2, 3] is partly attributable to the fact that the pattern of
genetic variation within a genomic region of an arbitrarily determined size (usually 20–60
kb) is represented by a selected SNP. The selected SNP is unlikely to be the causative factor
for the analyzed trait, and it may not even be in linkage disequilibrium (LD) with a
potentially causative SNP in that region. The use of selected SNPs to cover an arbitrarily
sized genomic region does not produce a robust genetic map [9], and some of the problems
with genetic association studies result from the incorrect representation of the pattern of
genetic variation [8]. We have found that some regions of the mouse genome have very low
levels of linkage disequilibrium between SNPs [10], while other regions can have very high
rates of polymorphism among the inbred strains [11] with frequent changes in the pattern of
genetic variation, which reduces the utility of representative SNPs in these regions. Since the
genetic variation within a region must be fully analyzed to know where there is a change in
the genetic pattern, the poor performance of GWAS using representative SNPs is not
surprising [2, 3].

In contrast, HBCGM divides the mouse genome into discrete regions, which are based upon
the extent of linkage disequilibrium among all identified SNPs in a region. A new haplotype
block is produced within a region when there is a change in the pattern of genetic variation
among the inbred strains. A genetic map that accurately reflects the fine structure of genetic
variation has multiple advantages over representative SNPs (Figure 1): (1) the dimensions of
and strain groupings within each region are based upon complete knowledge of the pattern
of genetic variation; (2) since all genetic variation is analyzed, the causative SNPs are
included in the haplotype map; (3) the small sizes of the correlated genomic regions enable
the formulation of a precise hypothesis about how a genetic variant could impact a trait
value. For example, a haplotype block affecting H2-Eα gene expression was only 1 kb in
size [7], which enabled an allelic effect on gene expression to be quickly characterized. If a
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phenotype is entirely determined by alleles at a single SNP, then GWAS and HBCGM are
methodologically equivalent and will have the same detection power.

However, the genetic control of most biological traits is usually not this simple. HBCGM
cannot evaluate complex genetic traits that are affected by multiple alleles located in discrete
regions of the genome, but can evaluate phenotypic traits that are predominantly regulated
by allelic differences within a contiguous genomic region. These allelic differences can
produce a spectrum of phenotypes that can match the haplotype structure within a region. In
these situations, HBCGM is better able than a GWAS to analyze phenotypes with multiple
different states (Figure 2). For example, the composite effect of alleles at 2 SNPs
contributed to three discrete levels of H2-Eα gene expression in an inbred strain panel.
HBCGM produced a block with three distinct haplotypes, which maximized detection power
for analyzing this gene expression difference [7]. Since GWAS methodology can analyze
only one SNP at a time, it cannot distinguish the three groups with distinct gene expression
levels.

HBCGM is the most appropriate method for analyzing phenotypic data obtained from larger
numbers of inbred strains, which can have 3 or more distinct phenotypic states. These
advantages were illustrated when 3 phenotypic datasets (the response to aromatic
hydrocarbons, H2-Eα gene expression, and survival after Candida albicans infection) were
analyzed using another computational method, which is used to analyze genetic association
studies in mice. The efficient mixed-model association (EMMA) method [12] analyzes the
correlation between phenotypic data measured across a set of inbred strains and the alleles at
a single SNP, and its ability to correct for population structure and genetic relatedness
among the inbred strains has been shown to reduce the false positive rate [13]. Each of these
datasets was previously analyzed by HBCGM, and the allelic effect for the gene with the
highest correlation was experimentally verified. However, the causative gene for only the
aromatic hydrocarbon response could be identified using EMMA [14], because it is a binary
response (either present or absent) phenotype. If a binary phenotype is entirely determined
by alleles at a single SNP, then GWAS and HBCGM will have the same detection power.
For example, conventional GWAS methods have been used to identify causative genetic
factors for some traits in outbred strains of mice [15]. However, the poor performance of
EMMA when analyzing the H2-Eα gene expression and survival after fungal infection data
was striking: EMMA identified >516,000 SNPs (corresponding to 783 Mb of the genome)
with a higher correlation than the causative gene effecting survival after fungal infection,
and ~10,000 SNPs had a higher correlation with the H2-Eα gene expression data in Figure 2
than the experimentally verified cis-acting SNPs within H2-Eα. Since EMMA can analyze
only one SNP at a time, it is not the optimal method for analyzing phenotypic traits with 3
discrete phenotypic states. Although there are many situations were HBCGM will be unable
to identify the genetic basis for trait differences, it can be productively utilized to evaluate
traits that are controlled by multiple polymorphisms within a contiguous region, especially
when there are 3 or more discrete phenotypic responses.

There is also a fundamental difference in the way that GWAS and HBCGM results are
interpreted. The results from a conventional murine GWAS are usually evaluated without
considering other types of data, and a very small genome-wide significance cutoff is applied
in order to strictly control the false positive rate. Therefore, a large sample size is required to
reduce the number of SNPs that will randomly correlate with a trait value to enable a true
causative locus to be identified. However, the sample size used in prior murine GWAS
studies was always less than 20 strains (and often 6–10 strains are used), which makes it
difficult for even a true causative locus to have a p-value that achieves genome-wide
significance level. Thus, the need to control the false positive rate leads to a high probability
that the study will produce a false negative result, which explains why investigators have
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concluded that murine association studies can’t work. In contrast, HBCGM results are
viewed within the context of integrated analysis of a biomedical trait. As a consequence, a
less stringent filtering criterion is used to evaluate HBCGM results, which increases the
number of false positives but ensures that the true positives are retained. Then, the causative
genetic candidates are selected from among the many correlated genes by applying
orthogonal criteria [16], such as gene expression and metabolomic [17] or curated biologic
data [18], or using the genomic regions delimited by prior QTL analyses [19, 20]. This
integrated approach evaluates genetic candidates using multiple criteria, even though less
stringent cutoffs are used for identification of genetic candidates. This has proven to be a
better method for murine genetic analysis, than that of a typical GWAS that is performed
using a single highly stringent criterion to identify candidates.

More may not be the same
When considering the relative utility of HBCGM, it is reasonable to ask whether 3 distinct
phenotypic states will be a rare or common occurrence when a trait is evaluated across a
large panel of inbred strains. Of direct relevance, mouse laboratory strains are
reproductively isolated populations, which were derived from at least 3 subspecies (Mus
musculus domesticus, M. m. musculus, and M. m. casteneus) that diverged ~1 million years
ago (reviewed in [21]). Analysis of murine SNPs indicated that 4 distinct subspecies
contributed to the genetic variation in the inbred strains, the vast majority of genetic
variation is derived from the founding subspecies, and 40% of murine genes contain 3 or
more different haplotypic patterns [22]. Since both mouse genealogy and murine SNP
analysis indicates that many genomic regions could have 3 or more haplotypic patterns, the
presence of 3 different phenotypic states may be a common occurrence when phenotypes are
analyzed across a larger number of strains. Since over 450 inbred mouse strains have been
described [23], a substantial number of inbred strains are available for phenotypic analyses.

Beyond the differences between the two association-based (HBCGM and GWAS) methods,
the more extreme differences between association- and linkage-based methods were not
factored into comparative modeling studies, which can produce misleading conclusions
about the capabilities of murine GWAS. For example, one modeling study [3] used 723 loci
affecting gene expression that were identified in linkage studies involving 2 inbred strains as
the ‘gold standard’ for assessing the ability of GWAS involving 15 strains to identify
causative loci. The poor correlation between the loci identified by the two different methods
led them to incorrectly conclude that murine GWAS would not be productive. However,
there is no reason to believe that genetic factors identified by analysis of gene expression
differences across >10 inbred strains would be identical to those identified by linkage
analyses involving two strains. For example, analysis of only two strains would present a
myopic picture that would not reveal that there are three distinct levels of H2-Eα mRNA
expression among the 10 strains that we analyzed [7] (Figure 2). H2-Eα expression levels
varied by 268-fold across the 10 strains, but only differed by 4.5 fold between the two
strains used in the linkage study [3]. The novel enhancer element identified by analysis of 10
strains [7] would not have been found in the linkage study, and would be regarded as a false
positive in the published modeling study [3].

Representative genetics
It has been pointed out that each of the genetic loci that were identified by analysis of inbred
strains [1, 24] accounted for only a small fraction (usually ~5%) of the overall trait variation.
This analysis has fueled the concern that murine GWAS will be futile endeavors for most
traits of interest, since these studies cannot identify genetic loci with a small phenotypic
effect. For example, our simulations indicate that genetic loci must be responsible for at
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least 15% of the overall trait difference to be reliably identified by HBCGM (80% power)
[8]. However, murine genetic studies have systematically under-estimated the percent of
phenotypic variance that can be explained by a causative genetic locus (PoPVg) for a
number of reasons. First, the PoPVg has previously been calculated from analyses that
evaluated a very small number of strains. Only two strains are evaluated in conventional
linkage studies, while genomic regions from only 6–8 founder strains are evaluated in
linkage analyses using heterogeneous stock [24] or collaborative cross [25] mice. Analysis
of a small number of strains does not represent the actual extent of phenotypic variation
present in the mouse population, and significantly under-estimates the variation that would
be observed if a larger strain panel was evaluated.

Allelic variants that could have a large effect on a phenotype may not be present in a small
and unrepresentative strain set. The inbred laboratory strains are reproductively isolated
populations, which are derived from several different ancestral founders that diverged ~1
million years ago [21]; and thus contain a substantial amount of genetic variation that could
affect many phenotypic traits. The observed phenotypic variance would be increased if a
larger percentage of the 450 different inbred strains [23] were evaluated. Thousands of
unrelated individuals are randomly sampled in a human association study, which ensures
that phenotypic and genetic variation present in the human population is well represented. In
contrast, the inbred mouse strains used in linkage or GWAS studies are not a random sample
of the mouse population. These studies usually examine only a limited number of strains,
and have a strong selection bias toward strains analyzed in previous studies, which may not
be relevant for the current phenotype. Analysis of a small number of strains with a restricted
phenotypic range will produce a reduced estimate of the genetic effect on a trait value. In
addition, the use of marker SNPs to represent the genetic pattern in murine GWAS also
reduces the PoPVg estimate. The underlying haplotype structure among inbred mouse
strains is ignored in a conventional GWAS that uses selected marker SNPs. When a small
number of strains are analyzed, there are many cases where a marker SNP can have very
high LD with a causative SNP, but the marker and causative SNP alleles will produce
different GWAS results; and the marker SNP will provide a reduced estimate of the PoPVg
(Box 1). Even when the marker and causative SNPs have significant LD (r2=0.8), the use of
the marker SNP will reduce the calculated PoPVg by 20% relative to the causative SNP (see
supplement).

There is another subtle, yet fundamental difference in the way that the PoPVg is calculated
in GWAS and HBCGM studies, which also impacts the PoPVg estimate. A quantitative trait
can be modeled by the equation “trait value ~ G + E + G*E + residual”; where G, E and
G*E represents the genetic effect, the environmental effect and their interaction, and the
“residual” represents the variation that can’t be explain by G or E. Many murine or human
traits can be highly variable, even when repeatedly assayed in the same human subject or
mouse strain. (The environmental variation in a human study can be exceedingly large.) As
a result, the unexplained variation can be large, which leads to a small genetic effect (G).
Multiple phenotypic measurements are made for each strain under controlled conditions, and
HBCGM uses only the average value of the strain replicates. As a result, the environmental
effects are eliminated (E and G*E) in a murine study, and the un-explained variation is also
minimized. These factors increase the PoPVg in a HBCGM study, which increase the range
of traits that can successfully evaluated by HBCGM.

‘Next-generation’ HBCGM: future directions and limitations
Improvements in HBCGM methodology should enable a wider range of biomedical traits to
be evaluated. The previous HBCGM algorithm [7] had significant limitations that inhibited
our ability to analyze many phenotypes. (1) The genetic map only covered ~15% of the
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genes in the murine genome. (2) The haplotype block construction algorithm did not allow
for overlapping blocks within a region, which enabled a causative block to easily be missed
(producing false negative results) if the algorithm selected another block with fewer
haplotypes and fewer SNPs that was preferred by the algorithm. (3) All analyses used a
single haplotype map that incorporated all available allelic data for all strains, yet
phenotypic data was usually available for a subset of the strains in a typical mapping
experiment. Inclusion of irrelevant alleles can disrupt haplotypic patterns that are uniform
among the strains of interest. To overcome these problems, a ‘next-generation’
computational genetic mapping program with three advanced features was developed [14].
(1) By merging two large SNP datasets, which included SNPs generated from analysis of the
complete genomic sequence of multiple inbred strains [26], a high quality haplotype map
with ~3 million SNPs was produced that covers virtually (>95%) the entire genome for 16
inbred strains. (2) A new haplotype block construction method was developed that allows
haplotype blocks within a region to overlap, which enables all patterns of genetic variation
within a region to be identified. (3) A 30,000-fold improvement in the computational
efficiency enables customized haplotype blocks to be dynamically produced for the strains
with available phenotypic data. The next generation method identified a causative genetic
factor that would have been missed if the previous genetic mapping method was used [14].

Although it reduces the probability of producing false negative results, the new method
produces a very large number of haplotype blocks, and some blocks will correlate with trait
values purely by chance. Raising the significance threshold could reduce the number of
correlated genes, but, as discussed above, this increases the chance of producing a false
negative result. It has been previously concluded that these “spurious associations” render
HBCGM unable to identify a true causative genetic factor [2, 3]. However, HBCGM results
are only one component of a comprehensive data analysis package that is used for
biomedical trait analysis. Causative genetic candidates have been selected from among the
many correlated genes by applying orthogonal criteria [16], such as gene expression and
metabolomic [17] or curated biologic data [18], or using the genomic regions delimited by
prior QTL analyses [19, 20]. An integrated approach, where HBCGM output is analyzed
within the context of multiple ‘omic’ (metabolomic, proteomic, or gene expression) datasets,
will become an increasingly important part of 21st century biomedical discovery. This
requires a paradigm shift, since it is current practice to use genetic analysis to identify a
single major candidate gene, which will then undergo subsequent testing. In contrast, the
integrated approach uses genetic analysis to identify groups of potential candidate genes –
and the causative factor may not even have the highest correlation – which are then filtered
using other criteria. This approach is certainly not without precedent. It has been an accepted
standard for human GWAS that a replicate analysis (validation study) must be performed in
a different population “to separate true associations from the blizzard of false positives”
[27]. HBCGM output has the same filtering requirement, but other types of data (rather than
a replicate study) are used as the filtering mechanism. Given the large number of available
inbred strains, it is also possible to perform a ‘replicate’ association study using a different
set of strains.

For all of the reasons discussed above, phenotypes must be characterized across a larger
number of inbred strains to facilitate genetic discovery. Our acetaminophen toxicity study
[17], where the only resistant inbred strain was not in our genetic database, indicates that
many 21st century biomedical problems may not be solved using the inbred strains that were
commonly studied in the 20th century. Each inbred strain has unique genetic variants, and
possibly phenotypic responses, which could enable genetic discovery. Our simulated
datasets indicate that genetic loci with an effect size as low as 0.15 could be identified if 40
inbred strains were analyzed [8], which would certainly overcome prior criticism that
computational genetic mapping cannot analyze genes of small effect size [28]. Given the
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multiple factors that contribute to an under-estimation of the genetic effect size (discussed
above), it is likely that many different phenotypes can be analyzed by HBCGM when a
larger number of strains are characterized. Since additional strains must be genetically
analyzed, the new computational tool was used to examine the impact that incorporating
allelic data from an additional strain had on the genetic map. Allelic data derived from
whole genome sequencing data obtained from an additional strain resulted in the formation
of ~30,000 additional haplotype blocks, which represented 5–6% of the total number of
blocks formed. Surprisingly, new genetic variation present in the added strain was
responsible for ~50% of the newly formed blocks [14]. Genotyping arrays that characterize
known SNP alleles can provide useful information for QTL analysis [13, 29], but ~15,000
additional blocks produced by new sites of genetic variation would not be identified with
array-based genotyping data, which only characterizes previously known SNPs. The unique
genotypic variants that could be responsible for outlier phenotypic responses would be
missed if the allelic data generated by these genotyping arrays was used [14]. We have
already demonstrated that whole genome sequencing data can be used to produce
comprehensive genetic maps, which can be used for HBCGM studies [14]. Since the pattern
of genetic variation across a large number of inbred strains can be characterized at a
reasonable cost by whole genome sequencing, it is feasible to produce genetic maps that
enable a large number of strains to be used in HBCGM studies.

HBCGM is one of several methods that are being utilized to advance murine genetic
analysis. For example, large arrays of ~1000 recombinant inbred mouse strains are being
produced as a genetic-mapping resource [30]. HBCGM methodology could be used to
analyze phenotypic datasets obtained from these strains. However, despite the large number
of recombinants, this panel only contains the genetic variation present within eight founder
strains. Although some phenotypes that are not found in the parental strains could appear
within recombinant strains, it will have a limited ability to analyze many disease traits
whose causative genes are not variable within the limited set of founder strains. However,
the acetaminophen study [17] also illustrates a very significant limitation of using these
recombinant panels. Because the strain that was uniquely resistant to acetaminophen-
induced liver toxicity was not among the founder strains, this panel could offer little insight
into this important problem. If a SNP of interest happens to be in the recombinant strain
panel, HBGCM of data obtained from analysis of a panel of inbred strains could be used to
quickly identify the candidate genes located within an identified QTL interval, as we have
already demonstrated [19, 20].

A major limitation of HBCGM is that it cannot analyze traits with a complex genetic
architecture, which is a major strength for linkage analysis. However, it currently costs only
~$6,000 to sequence the genome of an additional inbred strain with a recently discovered
phenotype of interest, which enables it to be used in a HBCGM experiment. In contrast,
multiples of $10 million are required to create and maintain new collaborative cross panels
that incorporate new strains. Moreover, identification of genetic modifiers affecting a strain-
specific phenotype produced by transgene expression or by a gene knockout will be of
increased importance in 21st century studies. While it would be prohibitively difficult to
introduce a knockout or transgene onto a large panel of recombinant inbred strains, it can be
bred onto a set of inbred strains to enable haplotype-based computational genetic studies.

Concluding remarks
Murine genetic association studies can identify genetic factors affecting a wide range of 21st

century biomedical phenotypes. However, some alterations to the methodology, which was
developed in the 20th century, is required to ensure that murine genetic association studies
produce useful results. To facilitate genetic discovery, investigators should: 1) assess a
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phenotype across a large number (≥20) of inbred strains; 2) perform the genetic analysis
using recently developed methods (such as ‘next generation’ HBCGM) that can optimally
analyze the phenotypic data obtained from a large inbred strain panel; 3) use comprehensive
genetic maps produced by analysis of whole genome sequencing data; and 4) integrate the
analysis of the genetic association results with gene expression, metabolomic or other types
of ‘omic’ datasets that are relevant to the phenotype. Next generation sequencing enables a
genetic map covering a very large number of inbred strains to be assembled. Although not
all biomedical traits can be analyzed by this approach, these four modifications should
greatly increase the number of genetic discoveries that emerge from murine genetic
association studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Box 1

The effect of marker SNPs on GWAS results

A simulation study was used to investigate the impact of using a marker SNP as a
surrogate in a genetic association study. We assume that a bi-allelic causative SNP exists
that divides the 12 analyzed strains into two groups of equal size (S1-S6 and S7-S12); the
trait values in both groups are normally distributed and have the same standard deviation,
and the difference between the two group means is 3 times the standard deviation (i.e. the
causative SNP has an effect size of 3). Assume that a nearby representative SNP is
selected as a surrogate marker in an association study, and that the representative and the
(un-genotyped) causative SNP have only one discordant allele among the 12 strains,
which is found in strain 7 (S7). Although both SNPs are in very high LD (D′ = 1 and r =
0.85), the calculated p-values (averaged from among 1000 simulations) for the
association of the causative and marker SNPs with the trait values are 0.002 and 0.02,
respectively. The PoPVg explained by the causative SNP was 0.73, while that of the
marker SNP was only 0.52. Table I examines these differences when the number of
strains (12 or 16, which are still divided into 2 groups of equal size) or the genetic effect
size (2–3) is varied, when there is one single allelic difference between the causative SNP
and the marker (i.e. the allele for one strain in one group is altered to that in the other
group). Although the SNPs are in very high LD (D′ =1, and r=0.8–0.9) in all cases, the
marker SNP significantly underestimates the actual PoPVg. If a causative SNP has a
large genetic effect, the significant difference in the calculated p-values indicates that it is
more difficult to detect a causative genetic factor in murine GWAS using representative
SNPs.
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Figure 1.
(A) A diagrammatic representation of the pattern of genetic variation within a region of the
mouse genome. Each of the 18 identified SNPs within this genomic region is represented as
a row, and the blue and yellow colored boxes indicate different alleles for each of the 12
strains analyzed. (B) The computational method for haplotype block formation will organize
these SNP alleles into two haplotype blocks that accurately represent the pattern of genetic
variation within this region. The first haplotype block has three different strain groupings
(haplotypes), while the 2nd block has two different haplotypes. Strains 1–6, strains 7–9 and
strains 10–12 have distinct genetic patterns, which gives rise to the three different
haplotypes in the first haplotype block. While in the 2nd block, strains 1–3 and 7–8 have one
allelic pattern, and strains 4–7 and 10–12 have the other allelic pattern, which produce the
two haplotypes in this block. (C) In contrast, if the genetic variation is represented by the
alleles at a single SNP-without knowing the true pattern of genetic variation within this
region the allelic pattern and strain groupings will vary, depending upon the marker SNP
that is selected to represent this region.
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Figure 2.
The difference in perspective when pulmonary H2-Eα mRNA expression is analyzed by
linkage analysis in 2 strains, or in 10 inbred strains using HBCGM or GWAS methodology.
(A) Graph showing pulmonary H2-Eα gene expression as the natural logarithm of the
average of 3 independent measurements for each of 10 analyzed strains. The strains are
divided into 3 distinct groups with high, intermediate or low levels of H2-Eα expression,
which are indicated by different colored bars. The expression level of the DBA/2 strain
(highest) is 269-fold greater than that of 129Sv (lowest), and is 37-fold greater than that of
C3H/He (intermediate); while the two strains (C3H/He and C57BL6) analyzed by linkage
analysis in [3] differ by only 4.5-fold (reproduced [7] with permission from Science). (B)
HBCGM identified a haplotype block with 8 SNPs within the H2-Eα gene. Each SNP is
represented as a row, and the colored boxes indicate the allele for each of the 10 analyzed
strains. There were 3 different haplotypes within this region, and the one-way ANOVA
model [7] showed a very strong correlation (p=1×10−7) between the haplotypic strain
groupings and H2-Eα mRNA expression. (C) In contrast, a GWAS uses a two-sample t-test
to assess the correlation between alleles at one SNP and the phenotypic data. The poor
(p=0.054) or insignificant (p=0.31) correlation between individual selected SNP alleles
(indicated by arrows) and the H2-Eα expression makes it impossible to detect the causal
genetic locus if other spurious loci with smaller p-values were produced by the analysis, or
after correction for multiple comparisons. This demonstrates the advantage that HBCGM
has over GWAS methodology when multiple SNPs exert a composite effect on the
phenotype.
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Table 1

Biomedical models that were successfully analyzed by HBCGM.

Biomedical model Gene Reference Year

Gene expression H2-Eα [7] 2004

Pharmacogenetic factors

 Warfarin Cyp2c29 [31] 2006

 Irinotecan Ugt1a [32] 2007

 P38 kinase inhibitor Aox1 [18] 2010

Susceptibility to infection

 Invasive aspergillosis Plg [33] 2008

 Respiratory syncitial virus MHC (H2) [34] 2010

 Candida albicans C1r/s [14] 2011

 Analgesic medication response Kcnj9 [19] 2008

Narcotic drug responses

 Mechanical hyperalgesia Adrb2 [35] 2006

 Thermal hyperalgesia Abcb1b [36] 2006

 Analgesia Kcnj9 [19] 2008

 Withdrawal Ht3a [4] 2009

Inflammatory pain responses

 Early formalin response Atp1b3 [20] 2009

 Late formalin response Mapk8 [37] 2010

 Incisional wound biology Nalp1b [5], [6] 2010
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Table 2

Comparison of the properties of murine HBCGM and GWAS.

GWAS HBCGM

Unit of analysis Marker SNPs Haplotype blocks

Genetic map Representative SNPs All genetic variants

Selected for regions of same size Actual genetic pattern represented by blocks

Causative SNPs Usually absent Included

PoPVg(a) Under-estimate Actual

Analysis preferences

Phenotypic pattern Dichotomous 3 or more phenotypic states

Genetic control Single SNP Composite SNPs within a region

(a)
PoPvg: Percent of population variance explained by a genetic locus.
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