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Misfolding and aggregation of prion proteins is linked to a 
number of neurodegenerative disorders such as Creutzfeldt-
Jacob disease (CJD) and its variants: Kuru, Gerstmann-
Straussler-Scheinker syndrome and fatal familial insomnia. In 
prion diseases, infectious particles are proteins that propagate 
by transmitting a misfolded state of a protein, leading to the 
formation of aggregates and ultimately to neurodegeneration. 
Prion phenomenon is not restricted to humans. There are 
a number of prion-related diseases in a variety of mammals, 
including bovine spongiform encephalopathy (BSE, also known 
as “mad cow disease”) in cattle. All known prion diseases, 
collectively called transmissible spongiform encephalopathies 
(TSEs), are untreatable and fatal. Prion proteins were also 
found in some fungi where they are responsible for heritable 
traits. Prion proteins in fungi are easily accessible and provide 
a powerful model for understanding the general principles of 
prion phenomenon and molecular mechanisms of mammalian 
prion diseases. Presently, several fundamental questions 
related to prions remain unanswered. For example, it is not 
clear how prions cause the disease. Other unknowns include 
the nature and structure of infectious agent and how prions 
replicate. Generally, the phenomenon of misfolding of the 
prion protein into infectious conformations that have the ability 
to propagate their properties via aggregation is of significant 
interest. Despite the crucial importance of misfolding and 
aggregation, very little is currently known about the molecular 
mechanisms of these processes. While there is an apparent 
critical need to study molecular mechanisms underlying 
misfolding and aggregation, the detailed characterization of 
these single molecule processes is hindered by the limitation 
of conventional methods. Although some issues remain 
unresolved, much progress has been recently made primarily 
due to the application of nanoimaging tools. The use of 
nanoimaging methods shows great promise for understanding 
the molecular mechanisms of prion phenomenon, possibly 
leading toward early diagnosis and effective treatment of 
these devastating diseases. This review article summarizes 
recent reports which advanced our understanding of the prion 
phenomenon through the use of nanoimaging methods.
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Structure of Amyloid

Significant progress has been made in understanding the struc-
ture of aggregated species at the atomic level using both com-
putational modeling and experimental studies such as X-ray 
crystallography and solid-state NMR. It is widely accepted that 
the infectious form of prions is self-propagating fibrillar or amy-
loid PrP.1 The formation of amyloid has been tightly linked to 
the development of the disease. Amyloids share common struc-
tural features and biophysical properties, including binding of 
specific dyes, elongated morphology and nucleation-dependent 
kinetics of aggregation. Based on solid-state NMR and X-ray 
crystallography data, the underlying structure of prion amyloids 
was found to share common structural features. They contain 
similarly arranged parallel β-sheets packed in register for such 
different prion proteins as Ure2p1-89 (the basis of the [URE3] 
prion),2 Ure2p10-39,3 Sup35p ([PSI+] prion),4 Rnq1p ([PIN+] 
prion).5 Generally, beta-strands of a protein molecule run per-
pendicular to the axis of the fibril and hydrogen bonding in such 
structures occurs along the fibril axis. Other models, however, 
need to be considered as some reports suggest that the parallel in-
register structural model of amyloids failed to explain experimen-
tal observation of the diversity of strain-specific morphologies of 
the Sup35 amyloid fibrils.6

Small Elements Govern Prion Aggregation

The above-described theme of structural organization of fibrils 
seems rather common in the formation of amyloid. Short seg-
ments of other non-prion amyloid proteins—amyloid-β,7,8 
α-synuclein,9,10 islet amyloid polypeptide (IAPP),11 lysozyme12 
and β2-microglobulin13—are capable of forming amyloid fibrils. 
It is reasonable to assume that the nature of amyloidogenic regions 
may be deduced from the repeating folding motif in the amy-
loid fibril. Increasing evidence indicates more and more that the 
building blocks of amyloid fibrils are short fragments of the entire 
protein sequence. This suggests that the aggregation may begin 
with only a short segment of the entire protein sequence. Any 
change in environmental condition that: (1) opens a native pro-
tein conformation, exposing this part of the sequence, and/or (2) 
stimulates conformational change to an aggregation-prone state, 
could facilitate the aggregation process. The above-mentioned 
examples support recently proposed amyloid stretch hypothesis. 
The hypothesis suggests that a highly amyloidogenic short amino 
acid stretch may trigger the self-assembly process of a protein 
into aggregates.14,15 Interactions between specific protein regions 
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determine how many molecules are added during a single event. 
The data established that the fibril growth proceeds via addition 
of NM monomers onto fibril ends, providing additional evidence 
for the mechanism of fibril growth. However, such experiments 
required labeling of proteins with dye molecules, and the intro-
duction of the labels might interfere with aggregate formation 
and/or measurement.

Another method has been introduced to monitor the forma-
tion process of amyloid fibrils without labeling of a protein mol-
ecule.23 The use of amyloid-fibril specific dye Thioflavin T (ThT) 
fluorescence in combination with total internal reflection fluores-
cence microscopy (TIRFM) enabled a direct observation of the 
amyloid fibril growth in real time.23-25 No additional fluorophore 
labeling was required to visualize seed-dependent amyloid fibril 
growth of β-2m,23 or Aβ1-40,24,25 at the single fibril level.

Another useful tool for direct observation of amyloid fibril 
growth which has been widely used is AFM—atomic force 
microscopy. The main advantage of AFM is its ability to moni-
tor ongoing processes under various solution conditions without 
any extra labeling required. Recently, AFM was successfully 
used to monitor the self-assembly of several amyloidogenic pro-
teins,26,27 including amylin and amyloid-beta.28,29 An assembly 
of individual fibrils formed by amyloid beta-25–35 was studied 
by a modified application of the atomic force microscopy, scan-
ning force kymography.30 This method eliminated the need to 
scan the whole image by scanning fibrils only. Such an improve-
ment significantly increased the temporal resolution with which 
the observation of single fibril elongation process is measured. 
Using this method, Kellermayer et al.30 have determined that the 
assembly of the fibril is polarized and discontinuous. The amy-
loid assembly proceeded via rapid bursts of growth that extended 
the fibril by 7 nm or its integer multiples.30 The growth phases 
were followed by pauses in a stepwise manner, suggesting a fluc-
tuation of amyloid states in which growth may be either permit-
ted or inhibited.

A single fiber growth assay was used to examine the heteroge-
neity of amyloid fibrils formed by the yeast Sup35 prion protein. 
This assay used two variants of the Sup35 that were differentially 
labeled and distinguished by AFM. The two variants differed 
in their ability to bind an antibody, providing a means of iden-
tification of one type of the protein by AFM because binding 
the antibody increases thickness of the fiber 3-fold. This study 
found that Sup35 spontaneously forms multiple and distinct 
fibril types. These types differ by the degree of polarity and over-
all growth rate, suggesting a great variation in properties of the 
fibril. The observed diversity seems to be well-suited to account 
for the range of prion strain phenotypes.31

Polymorphism and Prion Strains

Amyloid fibrils generally exhibit similar appearance in a form 
of elongated, unbranched structures. Several unrelated pro-
teins such as insulin, amyloid beta and amylin can form almost 
identical morphologies. Aggregated prion proteins also exhibit 
similar amyloid fibril appearances. Despite the general similar-
ity of aggregated species, often a mixture of fibrils with various 

facilitate the next step in the formation of a misfolded conforma-
tion. These regions are known as aggregation “hot regions”,16,17 
which are short stretches of a primary protein sequence.

An elegant approach to recognize such small elements of a 
primary sequence that nucleate and promote aggregation of 
prion protein Sup35 was recently utilized.18 An array of overlap-
ping peptides 20 amino acid in length derived from the sequence 
of the prion Sup35 were covalently attached to a glass slide. 
Peptides were printed onto the surface 10–12 nm apart from 
each other, providing high resolution and restricting self-inter-
actions. These peptide arrays were incubated with fluorescently 
labeled full length NM Sup35. The accumulation of fluores-
cence was observed after 2 hours of incubation at a very small 
set of imprinted peptides amino acids 9–39 and 90–120. These 
sequences lie within the regions which were previously identi-
fied to be in self-contact within mature fibrils.19 Such a nanoarray 
approach indicated that these small regions are not only sites of 
intermolecular contact in mature fibrils, but they also govern self-
recognition within soluble non-prion conformers with high speci-
ficity. Therefore, small stretches of protein sequence are sufficient 
to drive the conversion of full-length NM from non-prion state 
into self-templating amyloid conformation.18 Sometimes a com-
plex interaction among small recognition elements is required for 
prion propagation. For example, four QN rich domains of Rnq1 
can independently transmit the prion state but act cooperatively 
to attain the final prion conformation.20 The existence of trans-
mission barriers also is affected by the cooperative action of all 
four prion domains of Rnq1.20 Several other lines of evidence 
also point to complex interactions within prion protein for the 
formation of strains. Ohhashi et al.21 recently reported that tran-
sient non-native interactions outside the recognition elements are 
important in determining temperature-dependent strain confor-
mations of Sup35.

Direct Observation of Fibril Growth

Although convincing structural models of amyloid fibrils have 
recently emerged, the knowledge of precise kinetic mechanisms 
of fibril formation would greatly benefit our understanding of 
the prion phenomenon. Novel tools which enable the direct 
observation of individual fibril growth are important not only 
for obtaining further insight into the mechanism of protein self-
association but also for identifying compounds that inhibit fibril 
growth. Recent advances in single molecule methods offered by 
the atomic force microscopy and single molecule fluorescence 
microscopy allowed the monitoring of aggregation at the level of 
individual fibrils providing information about the rate and direc-
tion of growth.

The single-fibril growth of NM Sup35 was examined using 
total internal reflection fluorescence microscopy (TIRF).22 Cy5-
labeled seeds were attached to a glass slide via biotin-streptavidin 
linkage. The Cy3-labeled monomer NM was added to the solu-
tion. The addition of individual Cy3-labeled molecules could be 
readily detected at the ends of Cy5-labeled fibrils. Using such 
an experimental setup, where measurements could follow the 
fluorescence intensities of the addition events, made it possible to 
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in NMR chemical shifts. These coexisting conformations differ 
by the degree of local secondary structure (alpha helical versus 
beta sheet).38 Recent crystallographic studies have identified sev-
eral (8) classes of so-called steric zippers.9 Despite the fundamen-
tal similarities in the structure with extended protein strands that 
are perpendicular to the axis of beta sheets, these classes vary in 
the basic steric zipper structure. Such variation involves mainly 
orientation of peptides and beta-sheets with respect to each other. 
It was found that some peptides were capable of forming differ-
ent polymorphs with regard to their basic steric zipper structure, 
offering a possible explanation for amyloid polymorphism and 
prion strains.9

Due to the difficulty of determining the structure of amy-
loids and the potential for structural heterogeneity within a sin-
gle fibril, one appreciates the development of novel methods that 
could provide information about the morphology of aggregates as 
well as their underlying conformational differences. These meth-
ods are currently emerging as a combination of AFM and vibra-
tional spectroscopy (infrared absorption or Raman spectroscopy) 
capable of recognizing the secondary structure of proteins. IR 
and Raman scattering have recently found a wide application in 
characterization of amyloids.40-43 One of the biggest advantages 
of such combined methods is that vibrational properties can be 
observed simultaneously with the topographic image. An addi-
tional advantage is that the probing of heterogeneous sample is 
possible.

One recent illustrative example is a combination of AFM and 
near-field infrared microscopy.44,45 Apertureless near-field scan-
ning infrared microscopy (ANSIM) was utilized to study the 
morphology and secondary structure of individual amyloid fibrils 
of beta-2 microglobulin. Coupling near-field infrared spectros-
copy with AFM allowed the correlation of fibril morphology and 

morphologies is formed. Moreover, fibrils of the same polypep-
tide sequence can form distinct morphologies exhibiting a great 
wealth of polymorphism.

Figure 1 shows AFM images of fibrils formed by the 
CGNNQQNY peptide in different environmental conditions. 
Simple variations in the environment such as pH and ionic 
strength of solution, temperature and mechanical stress (for 
example, agitation) can result in the formation of fibrils with 
different characteristics. Moreover, prion proteins are capable 
of forming aggregates which differ in their patterns of protease 
resistance and transmissibility. The differences in these proper-
ties of aggregates is generally referred to as prion strains. In trans-
missible spongiform encephalopathies, distinct phenotypes of a 
disease correspond to different prion strains.32

The phenomenon of prion strains implies that there exists an 
ensemble of distinct propagating conformations for a single poly-
peptide sequence. Therefore, aggregation of polypeptide might 
produce several distinct polymorphs depending on initial mis-
folded conformation. The dynamic nature of the conformational 
space, the complexity of relationship between strains and the 
potential to generate a large number of new prion strains poses 
a critical need for addressing these issues. The great wealth of 
polymorphism and diversity of prion strains present a serious risk 
for public health.33

Individual fibrils are generally considered to be structurally 
uniform, maintaining the same structure over the length of the 
fibrils. It is believed that the morphology and structure of pre-
formed seeds is propagated in a template-like manner, passing the 
characteristics of template—morphology, structure and infectiv-
ity—to the next generation of aggregates.34-36 Such heritability 
is so strong that seeds propagate their characteristics even when 
conditions are changed to favor different conformational states.37

Recent reports, however, suggest that fibrillar structures 
are composed of protein molecules that have different second-
ary structures.38,39 A critical need for identifying (probing) the 
conformations within heterogeneous samples has been recently 
highlighted.39 It is becoming clear that there is a coexistence of 
multiple strains or subtypes of the disease-related proteins in 
aggregates. Such conformational heterogeneity may result in 
“various diseases.”

A novel immunoconformational assay (or dual color assay) 
based on specific antibodies labeled with different dyes has been 
utilized to reveal structural heterogeneity of PrP prion protein 
within a single fibril.39 This study showed the existence of the 
conformational heterogeneity across the population of fibrils as 
well as within individual fibrils.

Recent X-ray crystallography and NMR structural studies 
emerged to suggest strongly the origin of polymorphic variation. 
Multiple layers of beta-sheets are closely packed to create amy-
loid structures. Differences in the packing of these beta-sheets, 
originating from side-chain packing, register or topology of beta-
sheets, may explain morphological variants of fibrillar structure. 
Solid-state NMR studies clearly showed the coexistence of three 
distinct conformations of the GNNQQNY peptide within a sin-
gle fibril.38 Different packing arrangements of peptides within a 
fibril were proposed to be responsible for the observed differences 

Figure 1. Scheme illustrating that a protein molecule can adopt several 
conformational states which may result in aggregates of different 
morphologies. AFM images of CGNNQQNY peptide from Sup35 yeast 
prion protein aggregated with the formation of fibrils of distinct 
morphologies at different conditions. Scale bar is 500 nm.
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easily by multivariate statistics, for instance. This renders TERS 
a highly sensitive method, with even single-molecule sensitiv-
ity.50,51 Simultaneously to spectra acquisition with a lateral resolu-
tion determined by the nanoparticle dimensions, the topography 
of the sample also is mapped with a spatial resolution compa-
rable to standard AFM technology. Furthermore, TERS operates 
label-free and non-destructive, which means that the samples can 
be used for a subsequent analysis.

Figure 2A shows a typical TERS setup. Three spectra of a 
single amyloid fibril formed from a CGNNQQNY peptide (frag-
ment of Sup35 yeast prion protein) at pH 5.6 are selected and 
shown in Figure 2B. The spectra were recorded at equidistant 
(7 nm) positions perpendicular to the main fibril axis. Since the 
peptide had only a short sequence of eight amino acids, all spectra 
in Figure 2B are similar. The specific positions of the amide I and 
amide III bands provide evidence of a b-sheet structure that is 
stable in this area of the fibril. For fibrils with varying secondary 
structures, TERS enables the precise localization and assignment 
of different conformations.

From previous TERS studies on amino acids it is known that 
distinct amino acids are distinguishable by specific spectral fea-
tures.52,53 In the present experiment, an assignment of cysteine 
(C) and tyrosine (Y) is possible and corresponding signals are 
marked in the spectrum. Such an assignment can deliver valuable 

underlying secondary structures. It was observed that the sample 
exhibited a heterogeneous population of fibrils: some fibrils had 
parallel and some anti-parallel beta sheet arrangements.

One disadvantage of ASNIM is its limitation to only a few 
selected wavelengths. This can yield to misleading interpreta-
tions if an image contrast of only one or two selected wavelengths 
is considered. Overlapping features of unexpected bands, slight 
bands with changes or shifts can therefore easily spoil an inter-
pretation. In order to overcome this shortcoming, a full spectrum 
is required, but this is only possible with sophisticated equipment 
at synchrotron sources.

A related approach that allows studies of the secondary struc-
ture of fibrils is realized by tip-enhanced Raman scattering 
(TERS).46-48 In TERS, an AFM or STM (scanning tunneling 
microscope) is combined with a standard Raman microscope in 
order to exceed the diffraction limit and to increase the sensitivity 
of conventional Raman spectroscopy. This is realized by attach-
ing a single silver or gold nanoparticle to the apex of an AFM tip 
or by utilizing an etched wire. Similar to the ASNIM approach, 
vibrational modes of molecules under the tip experience a signal 
enhancement of several orders of magnitude. For an overview, 
see ref. 49. Given that TERS is a scattering type of spectroscopy, 
a single excitation frequency yields a full spectrum. Hence, over-
lapping bands of unexpected compounds can be distinguished 

Figure 2. (A) Sketch of a back reflection TERS setup, (B) TERS spectra of a fibril formed by CGNNQQNY peptide from Sup35 yeast prion protein on 
adjacent points separated by 7 nm.
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main cause of the diseases. There exists an uncertainty about 
what species in this complex aggregation pathway are responsible 
for this toxicity. Although the infectivity of prions is associated 
with a wide range of aggregated states, small oligomers of aggre-
gated prion proteins have been suggested as minimal infectious 
particles. A recent study revealed that the infectivity of PrP is the 
greatest for particles 17–27 nm in size, corresponding to 300–600 
kDa.62 These oligomeric particles should consist of 14 to 28 prion 
monomers. The infectivity is decreased for larger aggregates and 
virtually absent for oligomeric fraction of <5 molecules.62

The above-described experimental observations support even 
more strongly the new emerging view that infectious and toxic 
species of prion might have different identities1 with distinct bio-
physical properties.55 Although amyloid forms of PrP are infec-
tious, they might not be toxic.55 An increasingly accumulating 
body of evidence suggests that oligomeric assemblies of amyloid 
proteins are toxic species,63-67 while large aggregates and fibrils are 
rather inert or even protective.68

Characterization of oligomeric species with conventional, 
ensemble based methods is challenging due to dynamic and tran-
sient nature of oligomers. Single molecule methods can provide 
unique information on the structure, energetics and dynamics 
of intermediate transient species formed during initial stages of 
aggregation. Recently, a dual-color, single-molecule fluorescence 
technique has been utilized to look at the early stages of aggrega-
tion of the SH3 domain of PI3 kinase during aggregation lag 
and growth phases.69 The study found that the oligomeric spe-
cies formed in the aggregation reaction comprise a heterogeneous 
ensemble of oligomers with the median size of 38 ± 10 molecules. 
Interestingly, this stage of aggregation reaction has been previ-
ously found to be maximally cytotoxic. The innovative character 
of the study is the application of TCCD—two-color coincidence 
detection—to study the protein self-assembly process. Protein 
molecules were labeled with two different dyes (Alexa Fluor 488 
and Alexa Fluor 647) that can be detected separately. The forma-
tion of oligomers proceeded via assembly of proteins incorporat-
ing both types of dyes into aggregated species. The presence of 
oligomers is manifested by simultaneous fluorescence bursts in 
both red (Alexa Fluor 647) and blue (Alexa Fluor 488) channels. 
This allowed resolving the individual species present during the 
initial stages of aggregation process. Interestingly, the study also 
found that the stability of oligomeric species increases with time 
while the size of oligomers stays virtually the same. One possible 
explanation for this effect is that the internal conformational 
reorganization of disordered oligomers leads to enhanced stabil-
ity during fibril formation.69 Such a conclusion is in the line with 
previously proposed nucleated conformational conversion (NCC) 
model for Sup35.70 Importantly, a recent study of β-lactoglobulin 
aggregation proposed a similar mechanism of fibril formation.69 
Oligomers should undergo a critical conformational change to 
become nucleating oligomers that seed amyloid formation. The 
size of such nucleating oligomers has been proposed to be as small 
as 16 molecules.71

The above-described studies emphasize the advantage of 
nanotools to understand the mechanisms underlying dynamic 
early events of protein self-association that involve formation of 

information if the fibril was generated from various or even 
unknown peptides.

The Nature of an Infectious Agent

The relationship between prion propagation phenomenon and 
the formation of amyloid fibrils is poorly understood. Most 
known amyloid-forming proteins are not prions and even amy-
loids of prion proteins are not always transmissible.54-56 There 
is still a poor understanding of why changes in the conforma-
tion of misfoded proteins can alter their physiological effects. 
Recently proposed hypothesis of “frangibilty” of amyloid fibrils 
offered an explanation that might clarify this complicated issue.57 
The mechanical properties of amyloid and amyloid’s propensity 
to break, generating new seeds, seem to define their physiologi-
cal impact.57 Tanaka et al.57 looked at the differences in three 
conformations (strains) of prion protein Sup35 formed at 4°C 
(Sc4), 37°C (Sc37) and room temperature (SCS). These three 
prion strains differ by their polymerization rates and cause dis-
tinct color phenotypes in the ADE color assay. An AFM-based 
single-fiber growth assay was used to measure fiber growth rates 
for these three distinct conformations. It was found that despite 
the fact that Sc4 leads to the strongest strain phenotype, it has 
the slowest intrinsic fiber growth of the three conformers. The 
physical strength of the conformers turned out to be different, 
too. The slower growth of Sc4 is accompanied by a greater degree 
of fragmentation upon stirring. AFM imaging revealed that stir-
ring shattered Sc4 amyloids into many small fibrils (less than  
100 nm). Such treatment also increased seeding efficiency 
consistent with larger number of fibril ends. The variability in 
the brittleness of the fibrils was proposed to represent a major 
mechanism by which the strength of prion strain phenotypes is 
determined by conformational state of the protein.57 It appears 
that, in vivo, the Hsp104 chaperone helps to fragment fibrils of 
Sup35 prion protein, and it is also responsible for disaggregating 
large protein deposits. This chaperone may play an important 
role in propagation of prion because deletion of Hsp104 has been 
demonstrated to eliminate the infectivity of prions (reviewed in  
ref. 58).

Recent studies established a strong correlation between the 
incubation period of prion disease and conformational stabil-
ity of synthetic prion.59,60 The conformational stability of a 
synthetic prion formed from a full-length mammalian prion pro-
tein was also found to correlate with the smallest possible size 
of the fragments.61 Less stable conformations produced smaller 
pieces of fibrils upon fragmentation, providing additional evi-
dence that fragmentation may be important in transmissibility 
of prion aggregates and prion disease development. Sun et al.61 
also showed that αB-crystallin, a heat shock protein (sHsp), is 
capable of fragmenting rPrP fibrils.61 An alternative hypothesis 
for the origin of fibrils by their interactions with a surface of cel-
lular membrane has been proposed.61

Protein aggregation is a complex process which proceeds via 
many intermediate states, including oligomers, protofibrils and 
fibrils. There is increasing evidence that the end product of aggre-
gation—the formation of fibrils and big aggregates—is not the 
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Generally, the seeding process is viewed as propagation of 
morphology and the structure of preformed seeds. This process 
is believed to overcome sequence- and/or condition-based struc-
tural preferences, resulting in fibrils that inherit the character-
istics of the template (reviewed in ref. 74). On a similar note, 
transmission through a cross-species barrier is considered to pro-
duce the same strain of the prion. However, strain switching has 
been observed for several prion systems. Recent studies illustrated 
that an amyloid can accommodate a significant conformational 
switch within a single fibril.37 Such a conformational switch was 
shown to occur when the amino acid sequence of the precursor 
did not match the sequence of the template. The fibril formation 
of mouse PrP was seeded with preformed fibrils of hamster PrP. 
Despite the mismatch in amino acid sequence, individual fibrils 
were able to recruit the heterologous recombinant prion protein. 
The elongation of the fibril in this case proceeded through an 
adaptation of a different conformational state.37

Recent reports also add to the complexity of the species barrier 
phenomenon by showing that the lack of prion coaggregation for 
two species does not correlate with decreased cross-species prion 
transmission.76 This observation, therefore, suggests that prion 
transmission specificity is controlled at the level of conforma-
tional transition rather than coaggregation.

Molecular Mechanisms of Protein Misfolding

There is an increasing amount of evidence showing that many 
proteins (if not all) have the ability to form fibrils under appro-
priate conditions.77,78 It seems that although they are very diverse 
in length, function and location in the organism, aggregates 
and fibrils have similar morphologies and common proper-
ties. Despite the diversity of structural peculiarities of aggrega-
tion precursors, they may be rich in β-sheets, a-helices or even 
natively unfolded proteins; the aggregation is accompanied by 
destabilization of the native structure and simultaneous forma-
tion of β-sheets. β-sheets are formed between alternating peptide 
strands which run perpendicular to the long axis of the fibrils 
(reviewed in ref. 79). These structures may be stabilized either 
by the network of hydrogen bonding between both main-chain 
amides and by side chain residues, which turn them into so-called 
“polar zippers”80 or by hydrophobic interactions.81 It has become 
certain that the aggregation process and β-sheet acquisition are 
concerted events.82 The aggregation induced by the formation of 
β-sheet-rich structure is a universal phenomenon, not restricted 
to a special category of proteins. This suggests that common 
molecular mechanisms most likely underlie the aggregation of 
various proteins into highly ordered fibrillar aggregates.83-85

According to molecular dynamics (MD) simulations, it has 
been suggested that the relative stability of a monomer’s beta-
prone state determines the fibrillogenesis of a peptide.86 Increasing 
relative stability of beta-prone state results in changing the aggre-
gation pattern form disordered aggregation to fibril formation, 
with on-pathway intermediates and finally to fibrillogenesis with-
out any intermediates.

Atomic force microscopy (AFM) was also instrumental in 
elucidating the molecular origin of fibril properties by providing 

transient oligomeric species. Additionally, single-molecule meth-
ods avoid averaging of information over the ensemble, addressing 
such important issues as the heterogeneity of the formed species.

Species Barrier

The limited ability to transmit the infectious state between prion 
proteins of different species is referred to as “species barrier.” The 
molecular basis of this process is currently poorly understood. 
However, it is hypothesized that the species barrier is controlled 
by the misfolding of the prion protein and its conformational 
properties.72,73 Nevertheless, the species barrier is believed to be 
closely related to the specificity of interactions between the tem-
plate and the substrate.

Among other factors, primary structure (amino acid sequence) 
plays a critical role in defining the ability of prion to propagate 
through a species barrier. It generally has been believed that the 
efficiency of cross-species prion transmission is directly related 
to the degree of homology in the primary sequences of prions for 
two species.74 Some reports indicate, however, that interspecies 
transmission is a much more complex phenomenon than simple 
transmission between closely related species. Depending on the 
species and the direction of prion transmission, the species barrier 
of prion infection varies significantly. For example, fibrillization 
of mouse prion protein PrP (23–144) can be seeded with fibrils 
of both mouse prion and hamster prion proteins which have 94% 
homology in sequence.73 On the other hand, the aggregation of 
hamster prion protein could only be seeded by hamster amyloid 
fibrils but not mouse. Remarkably, mouse amyloid fibrils which 
were seeded by hamster amyloid fibrils could seed fibrillization 
of the hamster monomer. Alteration of phenotypic patterns was 
also observed in the cross-species reverse transmission of Sup35 
protein of Saccharomyces cerevisiae [PSI+] to S. paradoxus or S. 
bayanus and back to S. cerevisiae.75 A strong variant of S. cere-
visiae prion was reversible when propagated via a protein with 
S. paradoxus prion domain, but the transmission via S. bayanus 
prion domain altered the phenotype of isolated [PSI+], resulting 
in a weaker strain.75

Previous studies demonstrated that a single amino acid sub-
stitution within a short sequence stretch, located in a prion 
domain, drastically changes patterns of cross-species prion 
conversion.75

A new idea has emerged, suggesting that a primary struc-
ture alters the spectrum of preferred conformations for a protein, 
thereby affecting transmission specificity.35 The range of such 
preferred conformations might be sensitive not only to a primary 
sequence but also to environmental conditions. It seems that the 
existence of prion strains and “species barrier” are closely related 
phenomena. A distinct strain conformation of Sup35 has recently 
been identified that is capable of transmission from S. cerevisiae 
to the highly divergent Candida albicans.35 Interestingly, the 
newly generated prion strain could be transmitted back to yeast, 
stimulating aggregation of Sup35 in S. cerevisiae. These results 
suggest that even strong species barrier (only ~40% similarity in 
sequence of prion domains between Sc and Ca) can be bridged 
and therefore no species barrier can be considered absolute.35
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tools are emerging which are capable of addressing the misfolding 
phenomenon at the level of a single molecule.

The transient nature of misfolded conformations and self-
propagating nature of amyloids highlights the importance of 
understanding what interactions between protein molecules 
drive the formation of a stable nucleus of aggregation. Misfolded 
aggregation-prone conformations of a protein molecule differ 
from other conformations by their enhanced propensity to asso-
ciate with each other, promoting formation of nano-aggregates.89 
A monomeric protein should undergo structural reorganization 
to adopt an intermediate conformational state required for the 
initiation of aggregation.90 The propensity for such adaptation 
could be modulated by a primary sequence or external factors 
such as environmental conditions, interactions with other pro-
teins, toxins, cellular components and/or cellular membrane.

Recently, atomic force spectroscopy single-molecule unfold-
ing methodology has been applied to study the amyloidogenic 
properties of β

2
-microglobulin91 and the conformational diversity 

of alpha-synuclein—a protein involved in Parkinson’s disease.92 A 
single-protein molecule was flanked by three I27 domains, which 
acted as molecular handles as well as a well-identifiable finger-
print in the measured force curves allowing clear recognition 
of signals from mechanical stretching of single alpha-synuclein 
molecule. Such an approach probes the full conformational space 
of the protein, identifying even poorly populated conformers of 
alpha-synuclein. Three main distinct conformations were identi-
fied and classified as random coil, mechanically weak and beta-
like structures. The latter are directly related to aggregation of 
alpha-synuclein.92 Interestingly, pathological conditions which 
are known to increase propensity of alpha-synuclein to aggregate, 
such as high ionic strength and presence of Cu2+, shifted con-
formational equilibrium towards beta-like structures. Also, this 
approach was used to characterize pathological mutants of alpha-
synuclein—A30P, A53T and E46K.93 The study revealed signifi-
cant differences in the conformational behaviors of the mutants 
compared to the wild-type protein. All mutants had higher popu-
lation of beta-like structures, indicating their higher propensity 
to aggregate.93

The above-described studies reinforced the hypothesis pro-
posed earlier that misfolded conformations which are capable 
of triggering protein aggregation are characterized by elevated 
propensity to interact with one another.94 The use of AFM 
force spectroscopy has been proposed to probe the properties of 
interacting individual molecules of the aggregating proteins.94,95 
The strategy for such characterization is described in detail else-
where.89,96,97 Briefly, individual molecules are covalently attached 
to AFM tip and the probed surface using recently developed sur-
face chemistry.89 The dimer can form when the tip approaches 
the substrate and the interacting forces between molecules within 
dimeric contact are measured upon tip retraction. McAllister et 
al.94 have used AFM to study misfolding, inducing interactions in 
three different and structurally distinctive proteins: α-synuclein, 
amyloid β-peptide (Aβ) and lysozyme. The strength of interpro-
tein interaction was measured at various pH values, using pH as 
a stimulating factor for conformational changes in the proteins.  
Low pH values are known to induce misfolding of these proteins 

insight into what determines such material as an amyloid fibril.87 
Several peptides which readily form amyloid fibrils with low 
sequence similarity were analyzed in terms of bending rigidity 
of the formed fibrils. The mechanical properties of fibrillar struc-
tures were characterized by AFM topographic data which enabled 
the analysis of the decay of tangent along the fibril. Such decay 
accurately reflects the mechanical properties of the fibrils—some 
of which appear to be flexible and some are very stiff. Bending 
rigidities for different fibrils vary by as much as 4 orders of mag-
nitude. It was shown that the major contribution to the fibril’s 
rigidity comes from the generic hydrogen-bonding network of 
backbone-backbone interactions, which is modulated by side-
chain interactions.87 The above-described finding only reinforces 
the hypothesis that the ability to form amyloid fibril is a generic 
property because these structures are stabilized by main-chain 
interactions of the polypeptide backbone. It also explains why so 
many unrelated proteins form such fibrillar aggregates.74

It is becoming clear that currently available widely used ensem-
ble-based methods bear limitations that prevent full characteriza-
tion and understanding of protein misfolding and aggregation 
phenomena. Such methods provide a general picture of a system 
in which the information is averaged over the ensemble of all 
conformations present in the system. However, misfolding and 
early events in protein aggregation are too quick and involve spe-
cies that are too small for experimental probing by most currently 
available techniques. The limitations of the current methods force 
scientists to look for alternative tools to study mechanisms of mis-
folding and aggregation. Given the inherent nanoscale of these 
single-molecule events, it is inevitable that existing and emerg-
ing nanoimaging tools will be applied to solve these challenging 
problems by opening new possibilities to understand the mecha-
nisms of protein diseases, to improve diagnosis and to develop 
effective therapeutic approaches. Current trends and advances in 
nanoscience indicate that single-molecule methods might help to 
overcome the limitations of currently used methods.

For example, recent studies using single-molecule fluorescence 
resonance energy transfer (SM-FRET) and fluorescence corre-
lation spectroscopy investigated the structure and dynamics of 
monomeric prion yeast protein Sup35.88 The results of this study 
demonstrated that the NM part (N-terminal and Middle part) of 
the monomeric protein accommodates an ensemble of conforma-
tions in physiological buffers. The ensemble consists of rapidly 
interconverting compact conformations indicating the highly 
dynamic nature of protein conformational space.

This study reinforced the idea that new experimental tools 
are required to fully characterize protein misfolding and aggrega-
tion at the level of single molecules. Such tools will allow unam-
biguous measurements of the kinetics of interconversion between 
different protein conformations and distinguish conformational 
changes in individual protein molecules prior to aggregation as 
well as changes induced by interactions of protein with another 
protein or other factors. It is also important to note that some 
conformations (misfolded states) might be more important in 
aggregation pathways than others even though they are only 
transiently populated. The transient nature of misfolded confor-
mations makes them not amenable to traditional methods. New 
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chemistry previously developed and tested.89 Measurements of 
rupture forces over a range of loading rates resulted in a dynamic 
force spectrum (DFS). Figure 3A shows the DFS plot obtained 
for interactions between CGNNQQNY peptide at pH 5.6. The 
plot has very distinct parts which divide DFS into several slopes. 
Dissociation of intermolecular contact that involves overcoming 
more than one activation barrier results in a dynamic force spec-
trum with several distinguishable linear regimes characterized 
by different slopes.101 If the dynamic force spectrum is divided 
into two parts, assuming two linear regimes in the range of load-
ing rates between 200 and 120,000 pN/sec, these two slopes 
of DFS plot for the peptide-peptide dimeric contact are trans-
lated into two activation energy barriers. A very steep linear plot 
characterizes the rupture force dependence at high loading rates. 
This slope produces the off-rate dissociation constant as high as 
147 s-1 when fitted with Bell’s model.101 The second regime at low 
loading rates is characterized by a much smaller value of off-rate 
constant, k

off
 = 1.8 s-1. The dimer lifetime corresponding to this 

value of off rate constant was found to be 0.6 seconds, suggest-
ing high stability of dimeric species compared to the dynamic 
characteristics of the protein in monomeric state.100 The dimers, 
thus, may serve as stable nuclei for the formation of multimeric 
and aggregated forms of the peptide. This observation is in line 
with a previous study that suggested a critical role of dimeriza-
tion in the aggregation of a-synuclein.97 Moreover, a similar pat-
tern was observed for Aβ-40 peptide.100 Thus, all data lead to 
a new model of the protein aggregation in which the very first 
stage, the formation of dimers, is a key step triggering the entire 
self-assembly process.

In conclusion, we believe that further exploitation of single-
molecule approaches will provide new important insights into the 
mechanism of protein misfolding and aggregation. We anticipate 
that single-molecule methods will advance our understanding of 
such phenomena as misfolding, aggregation and nature of toxic 
species. Such knowledge is critical for controlling these processes 
and the development of effective therapeutic agents to prevent 
related neurodegenerative diseases.
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promoting aggregation and simultaneously conformational tran-
sition to β-type structures.98 The propensity of a protein for 
aggregation, its acquisition of β-sheet conformation and strength 
of interprotein interactions were found to correlate very well, sug-
gesting intimate relationships among all three.94 The results of 
this study illustrate the power of force spectroscopy in addressing 
molecular mechanisms of protein misfolding and aggregation by 
measuring the strength of interprotein interactions.89,94 A recent 
application of this single-molecule approach to alpha synuclein97 
led to a finding that the formation of a dimer of misfolded alpha-
synuclein dramatically increases the lifetime of the protein mis-
folded state. Such stabilization of misfolded protein in a dimeric 
form enormously increases the propensity to aggregate further. 
This is a fundamental finding suggesting that dimerization of 
amyloidogenic protein triggers the formation of the disease-prone 
assemblies and thus initiating the disease.

We have used this powerful force spectroscopy approach to 
analyze interactions between individual molecules of the short 
peptide CGNNQQNY with a cysteine incorporated to facilitate 
immobilization of the peptide for the force spectroscopy studies. 
This peptide is a part of Sup35 yeast prion protein and was found 
to be amyloidogenic, seeding aggregation of the entire protein.99 
The aggregation of this peptide results in aggregates of fibril-
lar morphology in a wide range of environmental conditions. 
The aggregation kinetics for this peptide was observed to be the 
fastest at pH 5.6 among all tested pH values.100 We have chosen  
pH = 5.6 to measure the interactions between individual pep-
tides. The peptide monomers were covalently attached to AFM 
tip and mica surface using terminal cysteine residue with surface 

Figure 3. Dynamic force spectrum of CGNNQQNY peptide interactions 
measured at pH 5.6.
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