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If we designed airplanes like we design drugs…
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Abstract In the early days, airplanes were put together with

parts designed for other purposes (bicycles, farm equipment,

textiles, automotive equipment, etc.). They were then flown

by their brave designers to see if the design would work—

often with disastrous results. Today, airplanes, helicopters,

missiles, and rockets are designed in computers in a process

that involves iterating through enormous numbers of designs

before anything is made. Until very recently, novel drug-like

molecules were nearly always made first like early airplanes,

then tested to see if they were any good (although usually not

on the brave scientists who created them!). The resulting

extremely high failure rate is legendary. This article describes

some of the evolution of computer-based design in the aero-

space industry and compares it with the progress made to date

in computer-aided drug design. Software development for

pharmaceutical research has been largely entrepreneurial,

with only relatively limited support from government and

industry end-user organizations. The pharmaceutical industry

is still about 30 years behind aerospace and other industries in

fully recognizing the value of simulation and modeling and

funding the development of the tools needed to catch up.
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Forty years ago this year, fresh out of graduate school, I

worked in the aerospace industry as a young engineer

(actually, ‘‘rocket scientist’’). My first aerospace job in 1971

was developing a computer program to simulate and opti-

mize the ascent trajectory of the space shuttle to get the most

payload into an orbit 150 nautical miles above the equator.

The program consisted of six boxes of punch cards (2,000 per

box) written in Fortran 4. The simulation included a rotating

earth, modeled as an oblate spheroid (to calculate how

gravity changes with both altitude and latitude), a NASA

standard atmosphere model with the ability to simulate hot

and cold days as well as wind profiles at different altitudes,

and the numerical solution of all of the differential equations

necessary to track the latitude, longitude, and altitude of the

space shuttle over the rotating earth during flight.

Our primary computer was a Univac 1108 that filled a

specially air-conditioned room occupying probably 1,000

square feet. A single run of the program simulated hun-

dreds of trajectories as it worked to optimize the steering

commands in pitch and yaw. Different ascent trajectories

result in different complex interplays of thrust, drag, and

gravity as the vehicle moved from the dense air at sea level

to the near-vacuum of space, turning first southward toward

the equator, then back to the east to end up in an equatorial

orbit, all the while getting lighter as the fuel is expended,

with a moving center of gravity, and quickly achieving

supersonic flight where a complex pattern of shock waves

forms around the orbiter, external tank, and booster rock-

ets. The objective of optimizing the steering commands is

to minimize the losses due to aerodynamic drag and gravity

during the climb, so that fuel is used most efficiently to put

as many pounds of payload into orbit as possible. Finding

an optimized steering solution for a particular set of system

weights and environmental conditions (hot day, cold day,

winds, etc.) required 12–14 h of CPU time. My laptop

today would execute the same equations and achieve an

optimized solution in a fraction of a minute. But consider

this—NASA was funding this simulation and modeling

effort 10 years before the first launch, and even before the

vehicle design was finalized.
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By the way, the computer program for the space shuttle

resulted in accidentally discovering the shuttle’s signature

roll maneuver—the program told us to roll it over on its

back and fly upside down and we’d pick up about 8,000

pounds of free payload! A combination of more efficient

aerodynamics and the required thrust vector angles for the

main (liquid hydrogen/liquid oxygen) engines to balance

the moments around the moving center-of-gravity provided

the increase. Ask many astronauts today why it flies upside

down and most can’t tell you. By developing this complex

(for its day) simulation, we assembled many bits of known

information and theory to discover something that was

unknown prior to having the simulation capability, and that

turned out to be extremely valuable.

We used complex computer simulations in all of my

aerospace jobs in the 1970s and 1980s, both to gain insight

into our systems and to optimize their designs. They saved

immeasurable time and money as we were able to try and

fail an enormous variety of ideas quickly with no actual

losses by iterating through countless virtual design options

to find an optimal solution. That was 30–40 years ago!

Today, aerospace, automotive, electronics, and other

industries routinely incorporate far greater detail into sim-

ulations and run them much faster to answer questions like:

how much load a metal or composite part can take before

bending or breaking, how aerodynamic surfaces might

flutter at certain speeds and angles of attack, how the

stresses in a very hot jet engine turbine blade will be

affected as a fighter jet does a high-G maneuver, and many

more complex behaviors. Numerical methods have evolved

to speed up calculations along with the speed and memory

improvements in computer hardware. In fact, today we even

have ‘‘electronic wind tunnels’’ that can provide an accurate

estimate of the aerodynamic forces on complex vehicles

without the need to build scale models and test them in real

wind tunnels. The solution of the Navier–Stokes equations

for fluid flow was once considered so complex that even

supercomputers were not expected to solve them with a fine

enough grid to calculate such forces accurately.

This Computational Fluid Dynamics (CFD) computer-generated

image shows a model of the space shuttle. CFD has taken the place

of wind tunnels for many evaluations of aircraft and, as computing

power increases and computer models become more sophisticated,

CFD will largely replace wind tunnels. Image credit: NASA.

Many major aerospace projects require a decade or more

of R&D along with over a billion dollars in investment to

get a single new product to market. Sound familiar? Most

of these projects will involve hundreds of millions of dol-

lars spent on simulation and modeling. That part does not

sound familiar to pharmaceutical scientists. Yet the risks

and costs associated with pharmaceutical R&D are on a

level not so different from large development projects in

aerospace, automotive, and other industries.

Why has pharmaceutical research and development

lagged so far behind other industries in the development

and application of simulation and modeling for research

and development? I believe there are at least three main

factors:

1. Aerospace simulation and modeling software involves

complex physics and chemistry. Pharmaceutical sci-

ence adds biology to these, which increases variability

and complexity.

2. Aerospace simulation and modeling generally uses

well-established inputs that are measured with rela-

tively high accuracy and relatively small variance. So

even though many inputs are required for a simulation

as complex as the launch of a Space Shuttle to orbit, the

inputs for the vehicle itself are well-known. The reason

they are well-known is because the industry goes to the

time and expense to perform experiments to get

parameter values whose sole purpose is to be used as

inputs to simulations. For example, the payoff from

exhaustive (and expensive) wind tunnel experiments at

a wide variety of altitudes (ambient pressures), angles

of attack, and vehicle configurations (position of

landing gear and flaps, etc.) is that they make possible

accurate simulation of the entire flight envelope for a

new vehicle. As opposed to the vehicle inputs, those for

the environment (atmosphere) are less predictable, but

like population virtual trials, those conditions are

handled with Monte Carlo simulations that vary the

conditions over the expected range of winds at various

altitudes, temperatures, and air densities. The pharma-

ceutical industry largely does not yet recognize that

taking data with simulation and modeling in mind could

radically change the failure rate that plagues drug

discovery and development. Pharmaceutical simulation

and modeling typically has to use inputs that have been

measured in a way that sacrifices accuracy for high-

throughput go/no-go decisions.

3. Aerospace researchers are primarily engineers, who

are trained to be generalists, integrating a variety of
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disciplines as they approach problems (e.g., stress

analysis, flight dynamics, heat transfer, thermodynam-

ics, internal ballistics, solution of differential equations,

computer programming, and other disciplines all enter

into a typical rocket motor simulation of the 1970’s).

Pharmaceutical researchers are primarily scientists who

are trained in narrow silos to become specialists rather

than generalists. It takes good generalists to get

maximum benefit from system simulations that incor-

porate diverse areas of science including, for example,

physiologies of various animals and human popula-

tions, formulation issues, in vitro—in vivo correlation

methods, metabolism, transporters, solubility effects,

fasted and fed state differences, numerical optimiza-

tion, and machine learning methods.

4. The knowledge base for many aspects of physics and

chemistry provides a foundation upon which to build

good mechanistic models of the systems under study.

The knowledge base for pharmaceutical research is

growing at an encouraging rate, yet today there remain

many kinds of information that are not yet available for

certain kinds of simulation and modeling. An example

is the level of expression of various transporters in

different tissues in different species, and their variances

in populations. Fortunately, progress has been made

over recent decades and a very useful (if yet far from

complete) knowledge base now exists upon which to

build useful simulation and modeling tools.

To say that pharmaceutical science is too difficult or

lacks a sufficient knowledge base to build good mecha-

nistic models was an argument 20–30 years ago—it is no

longer a valid argument today. George Box is often quoted,

‘‘All models are wrong, some are useful’’. Current simu-

lation and modeling tools for drug discovery and devel-

opment are very useful, and improvements are coming

rapidly. Yet their adoption has taken 10–15 years to reach

current usage levels, which remain well below where they

are in other industries.

There is no greater productivity tool than software. I’ll

say that again—there is no greater productivity tool than

software! Don’t believe it? Try working without your word

processor, databases, spreadsheets, presentation software,

e-mail, Internet, and so on. We use (and usually take for

granted until we have a glitch) software in more ways than

we realize. Managers have no reservations about purchas-

ing software for such uses. Fortunately, these types of

software are developed for millions of users, providing an

economy of scale that supports sophisticated software at

prices that even retirees can afford.

The development costs for sophisticated simulation and

modeling software are very high—in the tens millions of

dollars for the more sophisticated programs. Like simulation

and modeling software used in aerospace and other indus-

tries, the number of users is relatively small, making the cost

per user much higher than for commercial software sold in

huge quantities. Specialized teams of scientist/programmers

(or separate scientists and programmers—but that’s a sub-

ject for another article) spend many person-years bringing

such software to commercial standards and providing

ongoing support and enhancements. Many senior pharma-

ceutical R&D managers grew up without exposure to the

benefits of such tools, resulting in skepticism and difficulty

recognizing the benefits of the insight they provide.

Many pharmaceutical scientists are skeptical of com-

puter software that combines mathematical relationships in

ways that are so complex that no human can grasp the full

interplay of the equations and logic involved. Even the

simplest mechanistic simulation of oral absorption and

pharmacokinetics can involve hundreds of interacting dif-

ferential equations. Aerospace researchers expect this and

don’t expect to be able to intuit results by examining a few

key inputs. I have listened to numerous presentations at

scientific meetings where speakers drew sweeping con-

clusions from a few parameters like polar surface area,

logP, and molecular weight, with heads in the audience

nodding in agreement with the speaker. Sorry, folks, but

it’s just not that simple! If it was, we’d be releasing new

drugs every week!

Correlating molecular structures with a wide variety of

activity and ADMET properties remains a particular chal-

lenge. If the often-heard number of potential drug-like

molecules is truly on the order of 1062, then clearly there is

no hope for humankind to ever investigate all of them. In

fact, the vast number of possible interactions among atoms

within molecules and between molecules and their envi-

ronments make it highly unlikely that humankind will

derive purely mechanistic (and quantum) methods for

predicting most properties from structure with experimen-

tal accuracy in the foreseeable future. ‘‘Activity cliffs’’ or

‘‘property cliffs’’ (minor changes in molecular structure

that result in large changes in activity or other properties)

are seen regularly that defy similarity (Tanimoto, nearest

neighbor) rules and chemists’ intuition. Changing a single

atom in a molecule will affect every property of that

molecule—not only affinity for the target, but all of its

physicochemical and biopharmaceutical properties,

metabolism, potential toxicities, etc. We simply don’t have

a large enough knowledge base from which to build

ab initio models for every property of concern, so empirical

methods are going to be around for a very, very long time

in this part of pharmaceutical science. So what are we to do

to get out of the ‘‘make and test’’ mode and go more into

‘‘design, then make’’ mode that other industries enjoy?
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Fortunately, the availability of cheap computing power

has enabled the evolution of powerful machine learning

methodologies. Some of these methods are so complex that

they defy direct human comprehension, but they have

proved to provide the most accurate structure–property

predictions available to date. Pharmaceutical scientists

need to accept that there are tools that exceed the ability of

humans to grasp in simple terms. In the aerospace industry,

the use of computer numerical control (CNC) machining

has enabled the manufacture of complex shapes from

blocks of metal that would have been extremely difficult to

machine by hand using the methods of a few decades ago.

The use of composite materials has reduced weight while

increasing strength, but the new science required to model

such structures (which behave quite differently than met-

als) had to be developed.

In 1982, I developed a computer program to calculate the

optimum filament winding angles for the first graphite/

epoxy rocket motor. We knew enough from experiments to

know how the composite material would behave in terms of

both longitudinal (the length of the motor) and hoop (in the

direction of the diameter of the motor) stresses. Making a

rocket motor from a long filament of carbon fiber and a pot of

epoxy had not been done before. The fiber has to be con-

tinuous from one end of the motor to the other to support the

longitudinal stresses that try to stretch the motor when the

pressure inside goes from zero to thousands of pounds per

square inch in a fraction of a second. The fiber, wetted with

epoxy, is wound over a mandrel, around each end and returns

in barber-pole fashion, but at a relatively shallow angle.

After the longitudinal winds are completed, a second process

begins with a filament wound around the motor diameter in

consecutive circles (hoops) to give it the strength it needs in

the hoop direction. After all the windings are completed and

after a curing process in an autoclave, the mandrel is

removed and the case is ready for loading with propellant.

We did exactly that, added the nozzle, and fired the motor—

the world’s first graphite/epoxy rocket motor, designed by a

computer program, was a complete success.

We have to accept that we can learn things we don’t

know from things that we know—i.e., we may know a

large number of individual facts and measurements (and

molecular and atomic descriptors), but we don’t know how

they all interact. The pharmaceutical industry spends mil-

lions of dollars filling databases, spreadsheets, and reports

with bits of diverse data, but with rare exceptions, no one

can look through all of the data on a compound and tell you

how it’s going to behave in vivo. Only through highly

sophisticated simulation and modeling do we have a

chance at gaining insight into how all of the diverse

properties play together.

The state-of-the-art today for predicting most properties

from structure yields root-mean-square errors on the order

of 0.3–0.5 log units, or about two-to three-fold. Aerospace

designers would have a very tough time with such high

uncertainty, since the safety factor added to some calcu-

lations is often as low as 1.4! Imagine if a part needs to

carry a stress of 1,000 pounds, and is designed stronger to

fail at an estimated 1,400 pounds in order to provide that

safety factor of 1.4. If the actual error in the stress capa-

bility was 0.3 log units lower than expected, then the

failure would occur at 700 pounds when it needed to

handle 1,000, and disaster would follow. Fortunately, we

don’t have to deal with such tight safety factors for most

drugs.

Every drug that fails in a clinical trial or after it

reaches the market due to some adverse effect was ‘‘bad’’

from the day it was first drawn by the chemist. State-of-

the-art in silico structure–property prediction tools are not

yet able to predict every possible toxicity for new

molecular structures, but they are able to predict many of

them with good enough accuracy to eliminate many poor

molecules prior to synthesis. This process can be done on

large chemical libraries in very little time. Why would

anyone design, synthesize, and test molecules that are

clearly problematic, when so many others are available

that can also hit the target? It would be like aerospace

companies making and testing every possible rocket

motor design rather than running the simulations that

would have told them ahead of time that disaster or

failure to meet performance specifications was inevitable

for most of them.

The pharmaceutical industry is undergoing an awak-

ening with respect to simulation and modeling tools. You

can see it in the titles of presentations and posters at

major scientific meetings, and in the number of smaller

meetings with a strong focus in these areas. I predict that

the day will come (probably not in my lifetime, but it will

come) when pharmaceutical research and development

will be so heavily driven by simulation and modeling

tools that many fewer failures will occur in clinical and

preclinical phases. Discovery efforts guided by de novo

design tools available now offer the promise of more

rapid discovery of good lead compounds and elimination

of the majority of ‘‘losers’’ without the need to make and

test them. Exploration of very large compound libraries

automatically is already underway in a few organizations.

I believe that many others will come to realize that

simulation and modeling tools, properly applied, repay

their costs many times over. A commitment to the

investment in developing skilled generalists and support-

ing the development of the tools themselves has been

made in relatively few organizations to date. Hopefully,

the awakening we’ve seen in recent years will continue to

grow and senior management will recognize that simu-

lation and modeling does not cost money—it saves
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considerable time and money. For an industry that

requires a long-term view of research and development,

recognizing the value of predictive tools would seem to

be a no-brainer.
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