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ABSTRACT

We have determined the nucleotide sequence of the rpoD gene which
codes for the sigma subunit of RNA polymerase from E. coli K12. The
gene, which we formerly cloned as a HindIII restriction fragment in
the transducing phage, Charon 25, was recloned into several plasmids.
We have determined a 2600 base pair DNA sequence which includes the
entire structural gene for sigma. The resulting amino acid sequence
agrees with previous information obtained about sigma including the
amino acid composition, partial sequence data for the N-terminus, the
highly acidic nature of the polypeptide, and the cleavage pattern at
cysteines. The molecular weight of 70,263 daltons calculated for the
613 amino acid polypeptide is significantly lower than had been determined
previously by SDS polyacrylamide gel analysis.

INTRODUCTION

The sigma subunit of E. coli RNA polymerase has been shown to play
an important role both in selective binding of polymerase to promoters
and in the efficient initiation of transcription (2-3). The rpoD gene,
coding for sigma, has been mapped to about 66 minutes on the E. coli
genetic map (4-6). Several mutants affecting sigma have been isolated
(6-11) , and for some of them, alterations in the sigma polypeptide have
been observed (12). Utilizing a temperature sensitive sigma mutant,
rpoD800, we were able to isolate a transducing phage carrying the sigma
gene rpoD (13). Other transducing phages carrying the Salmonella typhi-
murium and E. coli sigma genes have also bgen isolated (14,15).

Although physical and chemical studies of sigma have been hampered
by the difficulty of obtaining sufficient quantities of pure material,
some properties have been determined. These include amino acid composition
(16-19) , N-terminal amino acid sequence (17,19), isoelectric point (19,20),
molecular weight (19,21), a-helical content (20), thermal inactivation
behavior (22), and molecular-dimension estimated by small-angle X-ray
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studies (23).

It is known from crosslinking studies that sigma interacts with
several subunits of the core polymerase (24,25), with DNA in the promoter
region (26,27), with short nascent RNA (28), and perhaps weakly with
rifampicin bound to the beta (B) subunit (29). In order to obtain a
more detailed knowledge of the structure of the sigma polypeptide, we
have determined the DNA sequence of the sigma gene and deduced its amino
acid sequence. This sequence information will aid studies to locate the
structural and functional domains of sigma. This will allow us to better
determine the mechanism by which sigma functions in the regulation of
transcription initiation.

METHODS
1) Subcloning rpoD gene into plasmids

a. Preparation of pRRBl. Ch258ig-39H DNA (13) and pBR322 DNA (30)
were digested with restriction endonuclease HindIII, adjusted to 2 ug/ml,
mixed together and ligated overnight at 12°%C. The ligated mi_.xture was
used to transform CAG384 (an E. coli K12 C600 derivative which cannot
grow at 42° because it contains the ts sigma allele rpoD800) to ampicillin
(ampR) ts+. Such transformants should contain both the plasmid pBR322
which confers amt.»R and the 9.2 kb HindIII piece from Ch25sig-39H (see
Fig. 1A) which codes for the wild type sigma gene. Putative transformants
were picked and grown to stationary phase in LB broth supplemented with
25 ug/ml ampicillin. DNA was prepared for restriction enzyme analysis
by the method of Birnboim (31). Restriction enzyme analysis using HindIII,
BamHI and Aval confirmed that the recombinant plasmid, termed pRRBI1,
contained pBR322 and the 9.2 kb HindIII piece from Ch25sig-39H.

b. Preparation of pRRB2. The largest fragment from a HaeIIl
restriction endonuclease digest of pRRBl is a 2 kb piece which includes
1000 bases of the sigma gene itself, about 1000 bases preceding the
sigma gene, and the sigma promoter (W. Taylor, Z. Burton, R. Burgess,

R

C. Gross, unpublished results). This fragment was separated from other
HaeIIl fragments on a 6% polyacrylamide gel, eluted (Maxam & Gilbert,

32) and purified on a DEAE-cellulose column. The resulting fragment

was ligated into the Smal site of pK03, a plasmid which contains the
galactokinase gene without a promoter. pK03 is essentially the same

as pKOl [described in great detail by McKinney et al. (33)] except the
former has two additional bases, C and G, at positions 10 and 11 downstream
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from the Smal site of pKOl. Ligated plasmid was used to transform C600
galk~ to anpR gallt+. Transformants were picked and restriction enzyme
analysis of the plasmid DNA with HaeIII, HindIII, SacI and Pvull confirmed
that the 2 kb HaeIlII piece was inserted at the Smal site of pK03 in the
proper orientation for transcription to start at the sigma promoter and
read through the sigma fragment into the galactose kinase gene.

c. Preparation of pRRB3. The 3 kb Pvull fragment, containing
most of the sigma gene and no promoter (see Fig. 1), was cloned into
the Smal site of pK03 and is termed pRRB3. To construct this plasmid,
PRRBl1 was digested with Pvull, mixed with pK03 digested with SmaIl, and
ligated overnight at 12°. cells were transformed with the plasmid mixture
and selected for ampR. Thirty independent transformants were grown up
in LB both supplemented with 25 ug/ml ampicillin. DNA was prepared
(31) and subjected to restriction enzyme analysis to find a plasmid
in which the 3 kb Pvull piece was inserted.
2) Preparation of labeled fragments and DNA sequencing

Preparation of labeled DNA fragments was by the methods described
by Maxam and Gilbert (32) except that calf intestine alkaline phosphatase
(Boehringer-Mannheim) was substituted for bacterial alkaline phosphatase
in preparing DNA fragments for 5' end labeling. Some fragments were
labeled at their 3' end using the Klenow fragment of DNA polymerase I
(Boehringer-Mannheim). For 3' labeling, DNA fragments were incubated
in 10 mu Tris, pH 7.4, 6.6 mM MgCl,, 1 mM DTT, 50 mM NaCl, 50-100 uCi
of [a— P]deoxynbonucleoside triphosphate (400 Ci/mmol.) and 2.0 units
of Klenow fragment for 2 hr at 25° (adapted from Maniatis et al. (34)).

All fragments for sequencing were prepared from pRRB2 or pRRB3. DNA
sequencing of fragments was by the method of Maxam and Gilbert (32).

RESULTS AND DISCUSSION
1) DNA sequence of the rpoD gene

We have previously reported the isolation of two sigma transducing
phage carrying oveilapping fragments of E. coli DNA. In order to more
easily prepare DNA to be used for sequence analysis, the region of the
DNA containing sigma was subcloned from Ch25sig-39H into plasmids pRRB1,
PRRB2, and pRRB3 as described in Methods. The sequencing strategy employed
is presented in Fig. 1. The resulting sequence of 2600 nucleotides of
the coding strand is given in Fig. 2 along with the corresponding amino
acid sequence which it predicts. The sequenced region includes the 1839
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nucleotides coding for a 613 amino acid protein, the 524 nucleotides
preceding the initiation codon AUG, and the 234 nucleotides following
the termination codon UAA.
Our previous studies (13) had identified the direction of sigma

transcription and had located the beginning of the sigma polypeptide
to within several hundred bases of the SacI restriction site (see Fig. 1).
When the sequence of the coding strand in this region was examined we
found an initiating methionine codon AUG followed by a continuous reading
frame for 1836 base pairs. This AUG codon (doubly underlined below)
is preceded by a ribosome binding site identified by a Shine-Dalgarno
sequence (underlined below) located the expected distance from the AUG
(35). when the predicted N-terminal amino acid sequence was compared
to the published N-terminal amino acid sequence of Lowe et al. (23),
the agreement was perfect.

DNA sequence: GIGTGGATTACCGTCTTATGGAGCAAAAGCCGCAGTCACAGCTGAAACTTCTT. ..

Protein sequence: MetGluGlnAsnProGlnSerGlnLeuLysLeuLeu...
Lowe et al., 1979: HetGlelesthoGlxg;:GleeuLysLeuLeu...

2) Amino acid composition

The amino acid composition of sigma deduced from DNA sequence studies
is shown in Table I (columns 3 and 4) along with previous composition
determinations based on amino acid analysis (17,19) (columns 1 and 2).

The values for Cys and Met based on DNA sequence determination are in
very good agreement with the determinations made previously by a different
technique (16). There is reasonable agreement with our previous amino
acid analysis (19), except that Trp and Thr were significantly lower

and Arg and Tyr significantly higher than expected.

Also shown for comparison in Table I are the amino acid compositions
of the alpha (36) and beta (37) subunits of RNA polymerase deduced from
published sequence data (columns 5 and 6), and an "average" protein
composition based on 314 sequenced proteins (38) (column 7). When
the composition of sigma is compared with the other proteins, several
features are clear. First, sigma has a very high content of charged
amino acid residues (34.9%) compared to an "average" protein (25.1%).
Sigma has 20.4% acidic residues compared to 11.6% for an average protein
and 16-17% for beta and alpha which are also acidic proteins. Sigma
is also quite low in Pro and Gly and high in Met. All of the sequenced
RNA polymerase subunits are relatively high in Arg and Ile and low in
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Table I Amino Acid Composition of E. coli K12 Sigma Compared to Other Proteins

1. 2. 3. 4. 5. 6. 7.
Amino acid analysis ______ From sequence data
I rpoD IpoA rpoB Average
(sigma) (sigma) (alpha) (beta) protein
(ref 19) (ref 17) (this paper) (ref 36) (ref 37) (ref 38)
Amino Acid moles mole$ residues mole$ mole$ mole$ mole$
Ala A 7.9 5.3 49 8.0 7.0 5.9 8.6
Asx B(D+N)|11.5 13.2 (73) (11.9) (9.1) (10.6) (9.8)
Cys Cc 0.6 0.9 3 0.5 1.2 0.5 2.9
Asp D - - 54 8.8 6.4 6.8 5.5
Glu E - - 71 11.6 10.9 9.1 6.0
Phe F 2.5 2.5 15 2.45 1.2 3.3 3.6
Gly G 4.2 4.5 24 3.9 6.1 7.9 8.4
His H 1.7 2.0 9 1.5 2.4 1.4 2.0
Ile I 6.9 6.3 43 7.0 7.3 6.3 4.5
Lys K 6.0 5.6 34 5.55 4.9 6.0 6.6
Leu L 9.0 8.0 54 8.8 11.5 9.5 7.4
Met M 4.0 4.9 25 4.1 1.5 2.8 1.7
Asn N - - 19 3.1 2.7 3.8 4.3
Pro P 3.1 3.5 19 3.1 4.9 4.2 5.2
Gln Q - - 30 4.9 3.0 4.3 3.9
Arg R 6.5 6.5 46 7.5 7.0 6.7 4.9
Ser s 5.1 4.3 29 4.7 5.2 5.5 7.0
Thr T 7.2 6.3 38 6.2 5.8 4.5 6.1
val v 5.6 5.2 34 5.55 9.1 8.2 6.6
Trp W 1.1 0.7 4 0.65 0.3 0.3 1.3
Tyr Y 1.8 2.1 13 2,1 1.5 3.2 3.4
Glx Z (E+Q)|15.3 18.4 (101) (16.5) (13.9) (13.4) (9.9)
Small aliphatic (A+G) 11.9 13.1 13.8 16.9
hydroxyl (S+T) 10.9 11.0 10.0 13.1
acidic (D+E) 20.4 17.3 15.9 11.6
acidic+acid amide (D+B+N+E+2+Q) 28.4 23.0 24.0 19.8
basic (K+R+H) 14.5 14.3 14.1 13.5
hydrophobic (L+V+I+M) 25.4 29.4 26.8 20.2
aromatic (FP+Y+W) 5.2 3.0 6.8 8.3
charged (D+E+K+R+H) 34.9 31.6 30.0 25.1
residues 613 329 1342
unmodified molecular weight (daltons) 70,263 36,511 150,543
mean residue molecular weight 114.6 111.0 112.2
|calculatea €, ol 39,040 12,000 77,400
1%
calculated BZBOn- 5.6 3.3 5.2

Trp and Cys. Groupings of similar amino acids (see ref. 38) are given
at the bottom of Table I to aid in these comparisons.

Based on the molecular weight of 70,263 daltons, the content of
four Trp and thirteen Tyr, and molar extinction coefficients at 280 nm
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of 5600 and 1280 for Trp and Tyr, respectively (39), one can estimate
a molar extinction coefficient for sigma of 39,040 H.l cn-l which gives
an B;;On_ of approximately 5.6. This is much lower than the values
of 8.4 (19) and 11.6 (20) previously reported. The most likely reason
for discrepancy is that it is difficult to prepare sigma in sufficient
quantity and purity to do the extinction coefficient measurements accurately.
3) Codon usage

The frequency of usage of the various codons in E. coli is given
in Table II for the rpoD and rpoB (37) genes of RNA polymerase, the
N-terminal 159 amino acids of the rpoA gene (40), the sum of several
ribosomal protein genes (41), the sum of the tufA (42) and tufB (43)
genes, and the sum of the trpA and trpB genes (44). The codon usage
in the sigma gene is highly nonrandom and similar in many cases to the
patterns observed with many other E. coli proteins. This pattern reflects
the abundance of the various tRNAs in E. coli (45). For sigma 17/19
Pro codons are CCA, 42/54 Leu codons are CUG, 18/19 Asn codons are AAC,
46/47 Arg codons are CGU or CGC, and 15/61 amino acid codons are used
only once or not at all. The Thr codon ACU and the Val codon GUA are
used much less frequently and the Asp codon GAU more frequently than
with the other E. coli proteins listed. The GC content of the sigma
coding region is 53% compared to the overall GC content of E. coli of
51% (39). The GC content was 48.5% for the 524 base pairs preceding
the gene and was 59.4% for the 234 base pairs following the gene. G
or C is found in the third position of the 32 quartet codons 66.5% of
the time and of the 61 codons 61.5% of the time. Grantham has classified
the codon usage of 119 genes and concluded that highly expressed bacterial
mRNAs have lower GC contents in the third position of the 32 quartet
codons than do most bacterial genes (46). The rpoB (54.1%), r-proteins
(42.5%), and tufA+B (52.8%) are highly expressed and clearly have lower
GC contents than rpoD (66.5%) or trpA+B (67.1%) which are less highly
expressed.
4) Amino acid distribution

The distribution of charged amino acid residues in the sigma polypep-
tide is shown in Fig. 3. There are several small basic regions with
no intervening acidic residues at regions 371-377, 493-502 and 593-603.
However, the major contribution to charge comes from a preponderance
of acidic residues clustered at the N-terminus. The first 215 residues

(about one third of sigma) carry a net charge of -50 whereas the entire
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polypeptide has a net charge of -36. Of the three regions with unusually
high concentrations of acidic residues, two fall in the N-terminal third
of the protein. Between residues number 33 and 90 there are 19 acidic
residues and no basic residues. The region between number 184 and 215
has 21 acidic residues out of 32 residues with no basic residues. This
includes a stretch of 18 acidic residues out of 22! These long acidic
regions would give rise to large tryptic peptides of 76 and 61 residues,
respectively. The only other major acidic region in the protein falls
between residues 503 and 540 and contains 12 acidic residues with the
only basic residue being a single histidine. This region would give
rise to a tryptic peptide of 39 residues.

It is not surprising that sigma is one of the most acidic proteins
in E. coli, with an isoelectric point, pI, estimated at 4.8-5.1 (19)
or 4.40 (20) by isoelectric focusing gel analysis. The high concentration
of negative charge in the N-terminus of sigma leads one to predict that
an N-terminal sigma fragment would be more acidic than whole sigma.

Cells containing pRRB2 (see Methods), synthesize a fusion protein consisting
of the N-terminal 351 2/3 amino acids of sigma and 20 1/3 amino acids

from the pK03 vector. This fusion protein is observable on two-dimensional
gels and has an isoelectric point even lower than that of sigma (C. Gross,
W. Walter, and R. Burgess, unpublished results).

The region between residues 419 and 434 is rich in aromatic residues,
containing 2 Phe, 3 Tyr and 2 adjacent Trp. The three Cys residues are
located at positions 132, 291, and 295. Partial cleavage of sigma at
cysteines, with nitrothiocyanobenzoic acid (NTCB) (47) gives a pattern
of peptides completely consistent with these positions (R. Burgess,

W. Walter, unpublished results).

5) Secondary structure of sigma

The secondary structure of the sigma polypeptide was estimated
from the amino acid sequence by the method of Chou and Fasman (48).
This is a statistical method for predicting regions likely to form a-
helical, B-strands, and reverse turns and is subject to a certain amount
of uncertainty in assigning structure. We estimate that sigma contains
55-60% o-helix, 10-15% B-sheet, and 13-15% reverse turn. This preliminary
estimate of high a-helical content is somewhat lower than an estimate,
based on far-UV circular dichroism spectroscopy, published recently
by Levine et al. (20). 1In that paper they calculated that sigma contains
75% of its residues in a-helical segments and less than 10% in B-sheet.
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However, using the molecular weight and extinction coefficient for sigma
reported here they have revised their figures for sigma to 55-62% a-
helix and less than 10% B-sheet (S. Beychok, personal communication).

In contrast, they found that core RNA polymerase is 33% in a-helix and
32% in B-sheet.

6) Molecular weight of sigma

The 613 amino acids coded for by the rpoD gene give an unmodified
molecular weight for the sigma polypeptide of 70,263 daltons using the
amino acid molecular weights given by Hunt et al. (49). This corresponds
to a mean residue molecular weight of 114.6 (see Table I). This molecular
weight is significantly less than the values of 82,000 daltons and 90,000
daltons determined by SDS polyacrylamide gel electrophoresis in non-
stacking and stacking buffer systems, respectively (19). It seems that
sigma is one of a number of proteins which exhibit anomalous electrophoretic
migration on SDS gels. The reason for this anomalous behavior for sigma
has not yet been determined but may be the result of its unusually high
negative charge.

7) Operon Structure

A detailed analysis of the non-coding regions flanking the sigma
structural gene is underway and will be presented elsewhere. The promoter
for the sigma operon has been determined to lie between coordinates
1 and 191 of our DNA sequence. This determination was based on subcloning
DNA fragments to the left of the structural gene into the promoter cloning
vector pKO3 (described in Methods). A strong rho-independent terminator,
containing a stable self-complementary stem followed by six uridine
residues, is predicted by the DNA sequence to lie between co-ordinatel
2418-2450. We have confirmed that the in vivo RNA for the operon ends
at this point about 80 nucleotides past the end of the coding region
(W. Taylor, Z. Burton, R. Burgess, and C. Gross, manuscript in preparation).

Since the sigma polypeptide coding region begins at co-ordinate
524, at least 333 nucleotides are transcribed which are not translated
to make sigma. It seems likely that sigma, unlike the genes for core
polymerase subunits, is the only gene in its operon. The function of
the unusually long leader region remains to be elucidated.
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