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ABSTRACT: In this paper, we introduce JGromacs, a Java API
(Application Programming Interface) that facilitates the development
of cross-platform data analysis applications for Molecular Dynamics
(MD) simulations. The API supports parsing and writing file formats
applied by GROMACS (GROningen MAchine for Chemical
Simulations), one of the most widely used MD simulation packages.
JGromacs builds on the strengths of object-oriented programming in
Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure,
and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate
the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the
package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user
interface resembling the command-line interface of GROMACS applications. Availability: JGromacs and detailed documentation
is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license.

1. INTRODUCTION
Molecular dynamics (MD) simulations provide a powerful tool
to study the native dynamics of biological macromolecules with
atomistic resolution.1,2 Due to recent advances in hardware and
software, as well as the development of enhanced sampling
techniques, computer simulations can now sample biologically
relevant time scales (microsecond and beyond).3 On the other
hand, while simulations can better explore the conformational
space of interest, the large number of conformations sampled
requires increasingly sophisticated methods for analysis.4

GROMACS (GROningen MAchine for Chemical Simula-
tions)5 is one of the four most commonly used molecular
dynamics simulation suites (together with CHARMM,6

AMBER,7 and NAMD8). However, GROMACS is the only
package of the four that is open-source. The GROMACS suite
also includes a series of tools to process and analyze trajectories
generated by simulations. Although these in-built tools cover a
wide spectrum of standard analysis methods (from principal
component analysis (PCA) to density calculations to
clustering), one may need to develop their own analytical
tools that process GROMACS trajectories. Even though it is
possible to modify or extend the open source GROMACS code
written in C, it would often be more convenient to build
applications from scratch that operate on GROMACS data files.
The Java API (Application Programming Interface) intro-

duced in this paper is intended to provide full freedom in
developing data analysis tools that can directly process
GROMACS data. The library contains native parsers for
some GROMACS file formats while trajectories can be parsed
via the use of gmxdump allowing simulation data to be accessed
through the Java code. Data read from input files are stored in
an object-oriented architecture representing different levels of
structural information (from sequences to structures and

trajectories). Processed data can be saved to GROMACS
formats enabling integration of GROMACS and Java-based
tools into a data analysis pipeline.
Our goal is to simplify the analysis of protein motions within

the framework of Java, one of the most popular programming
languages in academic software development and, in particular,
bioinformatics. One reason for the popularity of Java is that it
makes cross-platform GUI application development very easy,
and GUIs are often essential to visualizing bioinformatics
results. At the same time, Java is a powerful and robust object-
oriented language.9 Many existing bioinformatics tools and
packages were written in Java (including programming libraries
such as BioJava;10 analysis and visualization tools such as
StatAlign,11 Jmol,12 or Jalview;13 and complete bioinformatics
analysis platforms such as Geneious14).
BioJava is a mature open-source project providing a

framework for the analysis of biological data in general. It
provides Java classes representing biological objects and a large
collection of analytical and statistical routines covering a wide
range of fields of bioinformatics. By contrast, JGromacs is
designed to focus on the particular problem of processing and
analyzing molecular dynamics (MD) trajectories; therefore, it is
a much smaller API with more focused functionality. Packages
developed for similar purposes in different programming
languages include MDAnalysis15 and MMTK (Molecular
Modeling Toolkit)16 designed for Python, LOOS (Lightweight
Object-Oriented Structure library)17 designed for C++, and
OpenStructure18 designed for Python/C++. While all frame-
works mentioned offer object-oriented design, they have
different support for reading and writing trajectory and
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coordinate file formats. From this point of view, MDAnalysis
and LOOS are the most versatile, as they can import and export
formats used by multiple MD suites such as Gromacs,
CHARMM, AMBER, and NAMD. Unlike the other three
packages, MMTK also enables setting up and running MD
simulations. MDAnalysis, LOOS, and OpenStructure all offer
an atom selection feature; i.e., atom groups can be selected
using descriptors and boolean operators. Since JGromacs has
been designed to process Gromacs trajectories, it defines atom
groups via index sets used by Gromacs tools. By contrast to
other packages, it also supports input/output of sequences and
multiple alignments and enables the joint analysis of sequence
and structural/dynamics data.

In our paper, we will first discuss the structure and main
features of the JGromacs application programming interface
(API). It is followed by an example presenting a simple
JGromacs code and its application on a sample MD trajectory.
As illustrated in the example below, complicated concepts that
would normally take hours to code up from scratch can be
implemented in a matter of minutes with the help of the
JGromacs library.

2. STRUCTURE AND FEATURES OF THE API

2.1. Object-Oriented Description. The JGromacs library
comprises 5 subpackages, each of which is a collection of Java
classes sharing a distinct function. The core subpackage,

Figure 1. JGromacs classes and multiple levels of data represented: (A) structures and trajectories, (B) sequences and alignments, (C) atomic index
sets and MD frame index sets. Blue circles depict different levels of information; green pentagons depict Java classes. Arrows between circles show
hierarchical relationships, while arrows between circles and pentagons indicate mapping between data and JGromacs objects.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci200289s | J. Chem. Inf. Model. 2012, 52, 255−259256



jgromacs.data, contains 13 classes representing different levels
of structural data from single atoms and amino acid residues to
protein structures to complete MD trajectories. The subpack-
age also contains classes to handle amino acid sequences,
multiple sequence alignments, atomic index sets, simulation
frame index sets, and mathematical objects such as three-
dimensional points, point sets, angles, matrices, and vectors.
The objects defined in jgromacs.data are the basic building
blocks of JGromacs applications and can be interconverted
between each other in many ways.
Figure 1 shows how these hierarchically related classes

represent multiple levels of sequence, structure, and trajectory
information. The class Structure, for example, can be used to
store single structural models read from coordinate files and
separate polypeptide chains. A Structure object wraps a
collection of Residue objects that represent amino acid
residues, water, and other molecules in the structure. On the
other hand, a Residue object wraps a collection of Atom objects
representing the atoms in the residue. Atomic coordinates are
stored by objects of the Point3D class. JGromacs defines
groups of atoms with the help of index sets, analogously to the
index (.NDX) files in GROMACS.
MD trajectories and structural (e.g., NMR) ensembles are

stored in objects of the Trajectory class. Frames of a trajectory
can be retrieved either as Structure or PointList objects which
are used to extract atomic coordinates. The Sequence and
Alignment classes are designed to represent amino acid
sequences and multiple sequence alignments. Atom and residue
types are defined in subpackage jgromacs.db.
The classes in jgromacs.data provide methods for retrieving

and modifying the properties of data objects such as rotating
and translating atoms, calculating interatomic and inter-residue
distances, extracting trajectory segments, retrieving an amino
acid sequence from a protein, etc. For further information on
the functionalities of subpackage jgromacs.data, see the API’s
documentation (also available in the SI).
2.2. Parsing GROMACS Files. The jgromacs.io subpackage

provides native parsers for PDB, GRO, and NDX. XTC and
TRR formats are parsed via use of the gmxdump package
within GROMACS. This enables JGromacs to import
structures, trajectories, and index groups to JGromacs objects.
Structures and index sets can be saved back to GROMACS files
with the output routines of jgromacs.io. The jgromacs.io
subpackage also offers parsers and output functions for FASTA
format to import and export sequences and alignments.
Importing and exporting data between GROMACS files and
JGromacs objects enables us to connect Java tools and
GROMACS tools in an integrated data analysis pipeline.
Furthermore, the subpackage jgromacs.io provides an option to
execute any GROMACS commands from within the Java code
and automatically import the output files as JGromacs objects.
2.3. In-Built Analysis Toolkit. The subpackage jgromacs.a-

nalysis offers a collection of analytical routines covering various
areas from calculating dihedral angles to extracting contact
matrices to weighted superposition of structures. Making use of
the toolkit, one can for example retrieve the mean distance
matrix or covariance matrix of a trajectory, calculate the root-
mean-square inner product (RMSIP) between conformational
subspaces, look at the cumulative variance profiles in PCA,
extract time series of interatomic distances or dihedral angles,
find the simulation snapshot where two atoms are in closest
proximity, use Gaussian network models, and many more.
These analysis functions operate on the objects defined in

subpackage jgromacs.data. The toolkit can easily be extended
with additional routines that fit into this framework.

2.4. User Interface Support. Finally, subpackage
jgromacs.ui provides a simple way to add a user-friendly
interface to JGromacs applications. The user interface (UI) can
easily be set up with an XML configuration file. It supports help
messages, log files, and command line argument parsing and in
many aspects resembles the UI of GROMACS tools.

3. AN EXAMPLE: DYNAMICAL NETWORKS
An example is presented below to illustrate how JGromacs
simplifies the implementation of complex ideas such as the
concept of dynamical networks.19

3.1. Dynamical Networks. The definition of dynamical
networks was introduced by Sethi et al. (2009, PNAS) to study
allosteric signaling in tRNA:protein complexes. Their idea was
to represent a tRNA:protein complex as a weighted graph in
which each amino acid residue and nucleotide of the complex is
represented by a single node. Two nodes are connected in the
network if the monomers are in contact; i.e., their closest heavy
atoms are within 4.5 Å of each other for at least 75% of the MD
simulation frames. An edge between nodes i and j is weighted
by the absolute value of the Cij correlation between the two
monomers calculated over the course of the MD simulation.
The weight of a link estimates the probability of information
transfer between the two residues. The “length” of a link was
defined as −log|Cij|. Adding information about dynamics, these
networks give a more realistic picture about the system than the
unweighted protein structure networks (PSN) constructed on
the basis of the contact pattern of a single structure. Sethi et al.
used network analysis concepts (i.e., shortest path, betweenness
centrality, suboptimal path, and community analysis) to identify
nodes and paths in the network crucial for intramolecular signal
transduction, highlighting possible allosteric communication
pathways within the complex.

3.2. Implementation in JGromacs. The following 13-line
JGromacs code calculates the weight matrix of the dynamical
network of a protein from a GROMACS MD trajectory:

As a first step, the example code imports structure and
trajectory data from GRO and XTC files. It then determines
the frequency-based contact matrix using a 0.45 nm distance
cutoff and a 0.75 contact probability cutoff. After extracting the
trajectory of α carbon atoms, it calculates their correlation
matrix. Finally, the contact and correlation matrices are
combined into the output matrix W that defines the
connectivity and weights of the dynamical network. The weight
matrix W is the input of further analysis.

3.3. Application to Example Data. Figure 2 shows the
dynamical network of the N-terminal PDZ domain of InaD
(Inactivation no afterpotential D) protein from Drosophila
based on a 20 ns molecular dynamics simulation. The topology
and the weights of the graph were calculated with the short

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci200289s | J. Chem. Inf. Model. 2012, 52, 255−259257



JGromacs code above. Figure 2 was created using the network
analysis and visualization software Pajek.20 Starting from
scratch, generating this network from an MD trajectory file
would be time-consuming, but JGromacs significantly reduces
programming time. Further examples and a step-by-step Quick
Start Guide are downloadable from the project Web site.

4. CONCLUSIONS

As computer simulations are becoming more and more
effective in sampling the conformational dynamics of biological
macromolecules, the storage, management, and analysis of the
generated data present an ever-increasing challenge. There have
been not only efforts to address the storage issues21 but also an
additional analysis suite as found in the BioSimGrid platform.22

The analysis toolkit of BioSimGrid is an extensive collection of
standard analysis routines (e.g., root-mean-square deviations,
volume and average structure, interatomic distance,s and
surface area) facilitating cross-comparison of the deposited
trajectories. On the other hand, molecular dynamics software
packages such as GROMACS and CHARMM have their own
in-built analysis tools providing the significant advantage of
performing simulations and analysis within the same frame-
work. However, in addition to making use of the standard
analysis routines implemented in these platforms, one may also
need a flexible framework for developing their own novel tools
for analyzing MD data.
JGromacs is a lightweight Java library supporting simple and

fast development of analytical tools for data sets produced with
the commonly used MD software GROMACS. The objective
of our project is to create a framework for implementing
increasingly complex analytical routines that can be used
through simple user interfaces. Since in research the goal is not
always to develop ready-made applications but to experiment
with new ideas as quickly as possible, simplicity of the package
was of utmost importance.
While JGromacs also contains a standard analysis toolkit, its

main advantage is that it provides an object-oriented framework
for novel tool development. The programmers can easily build
up their own algorithms and applications based on the basic
JGromacs classes and analytical routines already implemented
in the package. Furthermore, the library provides options for
integrating Java and GROMACS analysis tools.

A detailed documentation (including Quick Start Guide,
examples and description of all subpackages, classes, and
methods), Javadoc (HTML) documentation, a comprehensive
JUnit test suite, a library of executable example codes, and an
example data set are available on the project Web site: http://
sbcb.bioch.ox.ac.uk/jgromacs/.

■ ASSOCIATED CONTENT

*S Supporting Information
Complete documentation and data sets are given as Supporting
Information as outlined below:

1. Complete documentation of JGromacs v1.0. API (PDF
file): jgromacs_v1_doc.pdf

2. JavaDoc documentation of JGromacs v1.0. API (gzipped
tar file): jgromacs_v1_javadoc.zip

3. Library of example codes (gzipped tar file): jgromacs_-
v1_examples.zip

4. Test suite: jgromacs_v1_test.zip

This information is available free of charge via the Internet at
http://pubs.acs.org/.
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