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Abstract
A paradigmatic test of executive control, the n-back task, is known to recruit a widely-distributed
parietal, frontal and striatal “executive network,” and is thought to require an equally wide array of
executive functions. The mapping of functions onto substrates in such a complex task presents a
significant challenge to any theoretical framework for executive control. To address this challenge,
we developed a biologically-constrained model of the n-back task that emergently develops the
ability to appropriately gate, bind, and maintain information in working memory in the course of
learning to perform the task. Furthermore, the model is sensitive to proactive interference in ways
that match findings from neuroimaging, and shows a U-shaped performance curve after
manipulation of prefrontal dopaminergic mechanisms similar to that observed in studies of genetic
polymorphisms and pharmacological manipulations. Our model represents a formal computational
link between anatomical, functional neuroimaging, genetic, behavioral, and theoretical levels of
analysis in the study of executive control. In addition, the model specifies one way in which the
prefrontal cortex, basal ganglia, parietal, and sensory cortices may learn to cooperate and give rise
to executive control.

Goal-directed behaviors are enabled by executive functions that help stop prepotent
responses, resolve interference, update working memory, shift mental sets, and coordinate
multiple tasks (e.g., Friedman & Miyake, 2004; Logie, Cocchini, Della Sala, & Baddeley,
2004; Miyake et al., 2000; Salthouse, Atkinson, & Berish, 2003). Such broad categories of
executive function can be fractionated into lower-level component processes. For example,
working memory updating tasks require storing information, gating information into and out
of working memory, tracking serial order, and selective attention. These processes may in
turn be mapped to diverse parietal, frontal and striatal substrates (e.g., Wager & Smith,
2003), posing a many-to-many problem in mapping executive functions to their neural
substrates. A paradigmatic example of this many-to-many mapping problem is the n-back
task (e.g., Kirchner, 1958). The main purpose of this article is to elucidate the mechanistic
basis of this complex task using a biologically constrained computational model.

The N-back Task
In the n-back task, subjects identify over consecutive trials whether the current stimulus
matches a stimulus presented n trials previously. At the cognitive level, this task is thought
to involve numerous executive processes: active maintenance of the last n items; updating of
new items so that they can be actively maintained; rapid binding of items to their serial
order, so that responses are based on the match between the current item and the n-back item
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and not between items matching at a non-n lag; and resolution of any proactive interference
arising from non-n lag items. At the biological level, neuroimaging, pharmacological, and
genetic polymorphism studies indicate that n-back performance is associated with a
distributed network of parietal, frontal and striatal sites (Owen, McMillan, Laird &
Bullmore, 2005; Tsuchida & Fellows, 2009; Olesen et al., 2003) and dopaminergic
mechanisms (Aalto, Bruck, Laine, Nagren & Rinne, 2005; Apud & Weinberger, 2007;
Goldberg et al., 2003; Egan et al., 2001; Mattay et al., 2003; Meyer-Lindenberg et al., 2005;
Tan et al., 2007). This cognitive and neurobiological complexity makes the n-back task a
useful test case for formal accounts of how executive functions arise from their neural
substrates.

One feature of the n-back task makes it especially appropriate for this undertaking: It
appears to require rapid binding of stimuli to representations of their serial order. Symbolic
cognitive models (e.g., ACT-R) fulfill this requirement through the use of propositional
representations and explicit variables, and have yielded a working n-back model (Juvina &
Taatgen, 2007). However, the brain operates on the basis of distributed representations and
slowly adapting synaptic connections. The difficulty in reconciling this distributed, slowly
adapting neural substrate with the n-back’s rapid binding requirements could explain the
absence of more biologically constrained models of this task. Here we present a model that
overcomes this challenge and is capable of learning the n-back without a mechanism
specifically implemented for symbolic binding.

Model Architecture
Our model is rooted in the biologically plausible prefrontal-basal ganglia working memory
(PBWM) architecture (Hazy, Frank & O’Reilly, 2006, 2007, 2010; O’Reilly & Frank,
2006). PBWM’s essential principle is that task-relevant information can be maintained in
PFC and help guide successful task performance by a process of biased competition
(Desimone & Duncan, 1995); the reward signals resulting from successful task performance,
in the form of phasic dopamine, can then train the basal ganglia through reinforcement
learning to send an “updating signal” for gating new information into the PFC. PBWM thus
integrates numerous ideas from computational neuroscience, implementing reinforcement
learning in terms of phasic dopamine via the Primary Value Learned Value (PVLV)
mechanism (Hazy et al, 2010; O’Reilly et al, 2006), resolving the stability-flexibility
dilemma (Goschke, 2000) with flexible gating mechanisms, and yielding biased competition
via prefrontal representations stabilized through recurrent connectivity and tonic dopamine
(e.g., Cohen, Braver & Brown, 2002). The architecture supporting these interactions is
schematically illustrated in Figure 1.

Our implementation of PBWM, depicted in Figure 2, is most closely based on the PBWM
model of the phonological loop (O’Reilly & Frank, 2006). As in that previous work, the
model receives input from a layer in which one of 10 different units is activated on every
trial of the task, each unit corresponding to a different stimulus. The network’s response on
every trial is indicated by the patterns of activation across two output layers: a “verbal
output” layer with 10 units, corresponding to each of the input stimuli indicating the
network’s best guess as to the n-back stimulus, and a “manual output” layer with 2 units,
corresponding to match and nonmatch responses, indicating the network’s best guess as to
whether the current stimulus matches the n-back stimulus. (Some n-back tasks require
subjects only to indicate whether there is a match between the current and n-back stimulus,
and not the actual identity of the n-back stimulus; we included both output requirements in
our model because subjects are likely to keep the identity of the n-back stimulus identity in
memory regardless of the precise variant of n-back they are performing.) Finally, a
“posterior cortex” layer of 100 units is bidirectionally connected with each of these layers,
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and provides a substrate for biased competition to take place. We refrain from identifying
this layer with a particular neocortical area, as it contains no special mechanisms which
might be thought to differentiate it from many areas of neocortex.

Superimposed on this structure are the core components of PBWM. These components
include prefrontal layers organized into stripes, consistent with the functional macrocolumns
observed in the monkey prefrontal cortex (e.g., Levitt, Lewis, Yoshioka & Lund, 1993;
Pucak, Levitt, Lund & Lewis, 1996; Rao, Williams & Goldman-Rakic, 1999). The units
constituting these stripes are unique relative to all other units in two ways: They are
recurrently self-connected, and they contain an excitatory hysteresis current. When
combined, these features enable persistent, self-sustaining patterns of activity. The resulting
temporally-stable patterns of activity are gated on a stripe-specific basis by a set of
corresponding stripes in a basal ganglia “matrix” layer, modeled after the medium spiny
projection neurons of the striatal matrix. Each stripe in the matrix (stripes are represented as
visible subgroups within the basal ganglia layers in Figure 2) contains “Go” and “NoGo”
units that are spatially intermixed (as they are biologically). “Go” units correspond to the
direct pathway of the striatum, and “NoGo” units correspond to the indirect pathway. As
such, “Go” units have a disinhibitory effect on corticothalamic gating, thereby allowing
working memory to be updated; “NoGo” units have an inhibitory effect on corticothalamic
gating, thereby helping to keep the contents of working memory the same despite new
incoming information.

Learning Algorithms in the Model
Central to the PBWM architecture is the use of the PVLV algorithm, which can be seen as a
biologically-plausible implementation of traditional temporal difference reinforcement
learning (Hazy, Frank & O’Reilly, 2010; O’Reilly, Frank, Hazy & Watz, 2007). The PVLV
algorithm is used specifically, and selectively, to train the “Go” and “NoGo” units of the
striatum. Ultimately, PVLV trains Go units to fire in response to stimuli that predict reward
(and which might therefore be updated into working memory) whereas NoGo units learn to
fire when stimuli do not predict anything more rewarding than the information currently
represented in working memory. In conjunction with the prefrontal layers, PBWM
implements mechanisms that at a higher level of analysis can enable basic executive
functions like active maintenance and gating (e.g., O’Reilly & Frank, 2006).2

The other components of the model are all trained with a standard Hebbian learning rule and
an error-driven learning rule (O’Reilly & Munakata, 2000). The end result of this
combination of learning rules and PVLV is that, by the end of training, networks learned to
fire primarily “Go” units in certain stripes in the basal ganglia, such that the particular
stripes activated depend on the activity patterns in other layers. This stripe-specific “Go”
firing within the basal ganglia updates corresponding stripes in the PFC with information
currently present in the input layer. Basal ganglia stripes that are not used for a given trial
fire primarily “NoGo” units, resulting in the preserved maintenance of information from
preceding trials. Finally, PFC activity representing this important maintained information
biases the posterior layer, which in turn biases the verbal and manual output layers. These
connection weights are incrementally refined via Hebbian and error-driven learning so that
they are most likely to produce the correct verbal and manual outputs (see Appendices I & II
for additional details).

2We note that the dense interconnectivity of the PBWM architecture is based on known neurobiology, and is therefore taken as a
given in the current attempt to map from neurobiology to executive function. Previous work has identified that the intact striatal and
prefrontal mechanisms of PBWM are necessary for good serial recall performance (O’Reilly & Frank, 2006), of which the n-back is a
particularly demanding variant.
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Serial Order Representations of the Model
Interestingly, the model autonomously learns to take advantage of the stripe-specific gating
possible within the PBWM architecture so as to solve to the variable binding problem posed
by the n- back task (Juvina & Taatgen, 2007). With training, the basal ganglia send an
increasingly differentiated gating signal such that the PFC can learn to maintain items in
different stripes conditional on their serial order. This increased specificity of gating enables
distribution of the task’s mnemonic demands across multiple stripes, and solves the rapid
binding problem by allowing the model to autonomously bind representations of items to
their serial order (e.g., O’Reilly, Busby & Soto, 2003).

One crucial addition to this standard PBWM architecture is the parietal layer, which
represents the serial order of successive stimuli using a graded and compressive code (in
which representations are distributed and increasingly similar to one another as the serial
order of the current stimulus increases; depicted in Figure 2B for serial orders 1, 2 and 3,
respectively). The localization of such a serial order representation to parietal cortex is
consistent with previous models (Botvinick & Plaut, 2006; Botvinick & Watanabe, 2007),
with electrophysiology and neuroimaging of serial order representation in the intraparietal
sulcus (IPS; Nieder, Diester & Tudusciuc, 2006; Marshuetz, Reuter-Lorenz, Smith, Jonides
& Noll, 2006; Marshuetz, Smith, Jonides, DeGutis & Chenevert, 2000), and with the IPS
activity observed across an n-back meta-analysis (Owen, McMillan, Laird & Bullmore,
2005). Recent evidence suggests that working memory contents are encoded as a function of
their ordinal position in the sequence of to-be-remembered items (van Dijck & Fias, in
press), consistent with our use of a parietally-based serial order mechanism to satisfy the
working memory updating demands of the n-back task. Thus, the serial order representations
in our model are different from the representations expected to support processing of other
attributes (e.g., color or shape), in that they are explicitly based on the known tuning curves
of neurons coding for serial order in the IPS.

Importantly, we implemented serial order representations not as a continuous number line
that stretches to the number of trials, but as a periodic repeat of item positions. For example,
in the 2-back task, the serial order representations alternate between 1 and 2, whereas in the
3-back task, they repeatedly cycle through 1, 2, and 3. This periodicity of the serial order
representations is imposed by fiat or “prescribed.” Although we return to this issue in the
discussion, it is a difficult and outstanding problem of how such serial order representations
and their dynamics might be learned. We abstract over this difficulty here. This nonetheless
leaves much to be solved: The model must still autonomously learn that these serial order
representations are important, to bind them to the items presented on each trial, and to
update and maintain this information appropriately.

Organization of the Current Paper
The results of our simulations are outlined as follows. After describing the details of the
model and the way in which the n-back task and its instructions were presented to the
network, we demonstrate the capacity of the network to replicate hallmark findings from the
n-back literature, spanning multiple levels of analysis (behavioral, hemodynamic, and
genetic). We then quantitatively analyze the model’s prefrontal and striatal functioning to
support an expository description of the model’s functioning. We next discuss how our
simulations inform cognitive theorizing about how executive functions like active
maintenance, gating, and the resolution of proactive interference may emerge from a highly
interactive fronto-parieto-striatal circuit. Finally, we describe how our model provides not
only a computationally explicit example of the prefrontal-parietal interactions commonly
observed in the considerable neuroimaging literature on this and other executive control
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tasks (Owen, McMillan, Laird & Bullmore, 2005; Tsuchida & Fellows, 2009; Olesen et al.,
2003; de Frias et al., 2010; Egan et al., 2003), but also how it leads to new theoretical
insights and untested predictions.

METHODS
Implementation

To illustrate the biologically-constrained nature of our model, here we briefly review the
Leabra framework (O’Reilly, 2001). This framework simulates neural processing in terms of
interconnected units, each of which has a membrane potential determined by separate
excitatory, inhibitory and leak conductances. Fluctuations in the resulting membrane
potential are thresholded and transformed to yield a rate-coded output that contributes to the
excitatory conductance of all other units to which a particular unit is connected, in
proportion to the connection weight. Connection and bias weights are initially randomized
but are shaped over the course of training according to Hebbian, reward-driven, and
biologically realistic error-driven learning rules (see below). Units are grouped into layers
that undergo a k-winners-take-all function for simulating the influence of local inhibitory
interneurons. These biologically-inspired mechanisms have been used in over 40 models to
capture a variety of detailed phenomena (e.g., O’Reilly & Munakata, 2000), indicating that
these simple biological mechanisms can yield human-like performance in a number of
domains.

In addition to the PBWM implementation (see Appendix I, and depiction in Figure 2A),
sequential order was represented via the scaled log-normal function (Botvinick & Watanabe,
2007):

where Rρ(r) is the activation level of the ρth unit in the layer on a trial with rank r, and σ is a
parameter determining the relative specificity of each unit to its preferred rank. We
elaborated on this scheme by convolving the activation levels specified by this scaled-log
normal function with gaussian variance conforming to that empirically observed in the IPS
(Nieder et al., 2006); this convolution is included here as an additional biological constraint
on the parietal layer, and can be observed as “noise” in the activation dynamics depicted in
the parietal layer of Figure 2B. In the model, this parietal layer is interconnected both with
the prefrontal cortex and (strongly) with the basal ganglia, consistent with the known
anatomy of humans and other primates (Fernandez-Miranda et al., 2008; Yeterian & Pandya,
1993) and with the functionally interconnected parieto-fronto-striatal network commonly
observed in neuroimaging studies of the executive functions.

Each named layer of the model contains features which uniquely associate its layers with the
identified brain regions. For example, prefrontal layers are unique due to recurrent
connections and an excitatory hysteresis current, as well as the stripe organization connected
with a parallel stripe organization in striatal layers; parietal layers are unique due to the
graded and compressive activation dynamics imposed there; striatal layers are unique due to
their dopamine-driven reinforcement learning. The posterior layer is distinct because it
contains none of the unique features above, but only the more general mechanisms
implemented by Leabra and thought to apply to neocortex in general. Moreover, the
connectivity among these layers is based on known neurobiology (Hazy, Frank & O’Reilly,
2006, 2007, 2010; O’Reilly & Frank, 2006).
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Training & Testing
All models were run in batches of 25 networks, and each network was initialized with
random patterns of connection weights. To compare performance on the 2- and 3-back tasks,
we employed networks with 12 PFC stripes so that the same networks were capable of
learning both tasks, as the 3-back task seemed to require more working memory “capacity”
than the 2-back task. For all other analyses, we used a scaled-down model consisting of only
6 stripes, both to speed training time and make detailed analyses of network behavior more
tractable.

Training on the 2- and 3-back tasks consisted of activating one of 10 possible input units and
the corresponding distributed representation of serial order in the parietal layer (each trial
corresponds to one of the three serial orders illustrated in Figure 2B). “Lure” trials, in which
the current stimulus matched a previous stimulus at a non-n lag, were allowed to occur.
“Recent” lure trials are those where the current stimulus matches the n-1 stimulus; “Non-
recent” lure trials are those where the current stimulus matches a preceding stimulus with a
lag larger than n.

Human subjects are instructed on the value of n for each n-back task they perform. In our
simulations, the network was informed of the value of n by way of a small, probabilistic bias
to replace stimuli occurring at values of n. This bias was implemented in the 2-back task by
increasing the activity level of the Go units in the matrix layer on a random 10% of the trials
in which they had not fired on the previous trial. Similarly, in the 3-back task, the activity
level of those units was increased on a random 10% of the trials in which they had not fired
on the previous two trials. This probabilistic bias yields a proportion of trials in which the
prefrontal cortex is updated with a periodicity of n. For this bias to yield good performance,
the network must not only perform correctly on the few trials where this probabilistic
updating occurs, but must also generalize that behavior across all trials and stimuli.

For testing, the patterns of activity in the verbal and manual output layers were recorded
after those activity patterns had stabilized or a maximum number of cycles had occurred
(here we use the Leabra default of 60 cycles). The most active output unit was considered
the network’s response, and this output was compared with the correct output for computing
the error statistics described in Results. Networks were trained in epochs of 500 trials each
until the network was tested to perform above 80% correct in terms of both its verbal and
manual outputs for 7 consecutive epochs. This performance criterion allows networks to
develop individual differences in the range of those observed in humans: Some networks
will perform substantially better than 80% correct by the end of training, whereas others
may have a shallower learning curve. For all analyses except those pertaining to learning
across the entire course of training, network behavior is tested during the final 10% of
training.

For individual differences analyses, three batches of 25 networks were run with variations in
the gain of prefrontal units (a proxy for tonic prefrontal dopamine) but the same 25 random
seeds were used to initialize weights across each batch to ensure comparability across model
runs. Generalization was assessed in terms of the verbal responses in a distinct batch of 25
networks on a randomly selected set of 10 trial sequences; these 10 trial sequences had been
entirely omitted from the training set. For example, the sequence A1X2B1 might have been
excluded from the training set for the 2-back network, where the intervening “X” stimulus
could have been any of the possible stimuli.

The activation dynamic resulting from training is schematically illustrated in Figure 3 for the
2- back task. The first trial is a nonmatch trial with input stimulus “A” and serial order “1”
(in Results, this type of trial is represented with the phrase “A1”). A subset of basal ganglia
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stripes fire (the leftmost three basal ganglia units in Figure 3), resulting in maintenance of
stimulus “A” within a corresponding subset of PFC stripes (the left-most three PFC units in
Figure 3). On the following trial a different subset of basal ganglia stripes fire, resulting in
the maintenance of the next stimulus (“D”) within the corresponding new subset of PFC
stripes. This two-part activation dynamic repeats across all subsequent trials, but is
illustrated for several trials in Figure 3 for clarity, including a recent lure trial, a non-recent
lure trial, and a match trial. Three-part activation dynamics emerge in networks trained to
perform the 3-back task, such that PFC, parietal, and basal ganglia layers have three distinct
activation states (as opposed to the two distinct states illustrated in Figure 3). The only
remaining difference in 3- back is that the correct verbal and manual outputs correspond to
matches between the item presented currently and that presented 3 trials previously in the 3-
back.

RESULTS AND DISCUSSION
The Model Captures Benchmark Findings in the N-back Literature

Our model was capable of de novo learning of both the 2-back and 3-back tasks, without an
underlying symbolic variable system for performing rapid binding. This learning was not
rote, in that all networks generalized to untrained sequences at a rate significantly above
chance t(1,24)=17.9, p<.001 for 2-back, and t(1,24)=12.9, p<.005 for 3-back. As described
below, the model also captured numerous benchmark features of human performance in the
n-back task.

One hallmark finding in the n-back literature is reduced accuracy as n increases from 2 to 3.
The model also showed this pattern, such that 2-back accuracy was higher than 3-back
accuracy, F(1,24)=10.54, p<.005, as shown in Figure 4A. This result arises from two
features of the n-back: Relative to 2-back, 3-back requires an additional item be maintained
by the prefrontal layers; also, 3- back involves a less reliable signal of a current item’s serial
order, owing to the logarithmic compression of the parietal layer. These two constraints
jointly produce lower performance on (and also slower learning of) the 3-back task, because
they diminish the ability of the network to appropriately bind an item to its serial order, and
to maintain this binding over subsequent trials.

A second benchmark finding in the n-back literature is that performance is sensitive to the
presence of lures – items that match a preceding item but not at the critical n lag. The model
also captures this phenomenon, such that accuracy was significantly lower for recent lures
than non-recent lures (Figure 4B) in both the 2-back, F(1,24)=77.2, p<.001, and the 3-back,
F(1,24)=15.8, p=.001. This effect reflects interference caused by items in the input which
match items maintained in memory, albeit with a different temporal order, thereby yielding a
tendency for the network to inappropriately detect a match on lure trials. Moreover,
accuracy is particularly low on recent lure trials (n-1), reflecting proactive interference,
because the prefrontal layers are more likely to represent items with lags less than n than
items with lags greater than n (the latter are task-irrelevant); thus the network is more prone
to erroneously detect matches in the former case.

One counterintuitive result from the n-back literature is that the effect of n-1 lures, relative
to the effect of non-recent lures (i.e., lures at positions > n), is reduced as n moves from 2 to
3-back (Oberauer, 2005). Although this effect is counterintuitive – one might expect that the
cost of lure trials on accuracy would increase proportionally with overall difficulty – the
model reproduced the observed result (Figure 4B; F(1,24)=18.14, p<.001). Consistent with
the model’s functioning, this effect reflects the fact that proactive interference arising from a
match between the current item and maintained items is diluted when more items are being
simultaneously maintained, as in the 3-back task.
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Neuroimaging studies of this kind of proactive interference reveal a larger hemodynamic
response in the lateral prefrontal cortex to recent relative to nonrecent lures (Jonides & Nee,
2006; Badre & Wagner, 2005; Jonides et al 1998). The hemodynamic response is thought to
reflect metabolic demands; furthermore, 50-80% of the brain’s energy consumption reflects
the input and output activity of its neurons (Buzsáki, Kaila & Raichle, 2007). As an
approximation of this metabolic demand, we calculated a proxy hemodynamic response by
summing the net input to each unit in the PFC, with each unit’s contribution to the sum
weighted by its net output. Consistent with extant neuroimaging data on proactive
interference, our simulated hemodynamic response was markedly increased in prefrontal
layers during recent lures, relative to nonrecent lures or targets, t(24)=11.35, p<.0005 and
t(24)=5.01, p<.001, respectively; see Figure 5. This result was not due solely to simulated
excitatory neurotransmission: The same pattern was observed in terms of net inhibitory
input (see Appendix I for details about inhibitory currents in Leabra), consistent with
theories of inhibitory contributions to the hemodynamic response (Buzsáki, Kaila & Raichle,
2007), and with the involvement of inhibition in resolving proactive interference (Jonides et
al., 1998).

The Model Captures Individual Differences in Human N-back Performance
In addition to capturing the above hallmark phenomena in the n-back task, we also tested
whether the model captures individual differences. One source of individual differences is
genetic variation related to dopaminergic functioning, such as the Val158Met polymorphism
in the gene coding for catechol-O-methyl transferase (COMT), the principal enzyme that
degrades dopamine in the prefrontal cortex (Boulton & Eisenhofer, 1998). The low
efficiency variant (the met allele) yields a large net reduction in prefrontal dopamine
metabolism relative to carriers of the higher efficiency val allele (Chen et al., 2004;
Mannisto & Kaakkola, 1999). This differing efficacy results in a higher tonic level of
prefrontal dopamine in met carriers (Bilder, Volavka, Lachman & Anthony, 2004).

Consistent with the hypothesized inverted U-shaped curve relating prefrontal dopamine
levels to executive control (see Mattay et al, 2003), homozygotes for the val allele perform
worse on the n-back than met carriers, either in terms of performance (e.g., Goldberg et al.,
2003) or efficiency (i.e., neural activation required to achieve the same level of peformance;
e.g., Egan et al., 2001). Additionally, met carriers perform worse following pharmacological
manipulations thought to increase prefrontal dopamine levels, such as administration of
amphetamine (Mattay, et al, 2003). Some recent studies suggest that the effect of the
Val158Met polymorphism on n-back performance is weak, if it exists at all (e.g. Barnett et
al, 2008). However in practice any conclusion about the influence of COMT polymorphisms
is complicated by other unmeasured and confounding genetic differences that may also
distinguish val and met carriers (e.g., linkage disequilibrium or functional epistasis; Meyer-
Lindenberg et al., 2006; Tan et al., 2007). Biologically-constrained computational modeling
can offer clarity to this situation, as a way of testing the underlying hypothesis that extremes
in prefrontal dopamine should be associated with worse performance when all other factors
are held constant.

Higher extracellular dopamine levels are frequently thought to increase the gain in
individual pyramidal cells’ activation function so as to make strongly active cells more
active – an excitatory effect – and weakly active cells less active – an inhibitory effect
(Cohen, Braver & Brown, 2002). The net result is an increase in signal-to-noise ratio for
PFC as a whole (Durstewitz, Seamans & Sejnowski, 2000; Stefanis, van Os, Avramopoulos,
Smyrnis, Evdokimidis & Stefanis, 2005; Winterer et al., 2006). In this way, individual
differences at the Val158Met locus of the COMT gene might be hypothesized to produce
differences in the relative sharpness of active representations in prefrontal cortex. All things
being equal, sharper, sparser representations will promote faster processing and more robust
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maintenance in PFC areas (O’Reilly & Munakata, 2000). Thus, to mimic the putative effects
of individual differences in COMT function, we trained models to perform the 2-back task
under variations in tonic dopamine’s aforementioned (and most widely-hypothesized)
influence on prefrontal cortex: signal-to-noise ratio (Durstewitz, Seamans & Sejnowski,
2000; Stefanis, van Os, Avramopoulos, Smyrnis, Evdokimidis & Stefanis, 2005; Winterer et
al, 2006; Cohen, Braver & Brown, 2002). Specifically, we increased the gain of the
sigmoidal activation function on the units in the prefrontal layers from the default value
(from 400 to 600). The gain was also decreased from the default value as a proxy for
reduced levels of prefrontal dopamine (from 400 to 100).

Results of the simulations indicate that while none of these variations in prefrontal dopamine
precluded learning of the 2-back task to criterion, the final levels of performance reached by
these networks after training conformed to the expected U-shaped curve, F(1,24)=5.25, p=.
027 and F(1,24)=9.09, p=.006 for target and lure trial accuracy, respectively; see Figure 6.
In our model, the U-shaped curve arises by rebalancing the flexibility-stability tradeoff:
With low gain/tonic dopamine, prefrontal representations are somewhat unstable, but with
high gain/tonic dopamine, prefrontal representations become somewhat difficult to update.
Note that the individual differences resulting from PFC gain are not unique to n-back or
PBWM; other models positing similar dopamine effects in PFC may exhibit similar results
(e.g., Tagamets & Horwitz, 2000; Chadderdon & Sporns, 2006; Deco, 2006), and as such,
this result represents an important point of convergence across multiple formalisms.

Another source of individual differences in the n-back relates to the influence of control
strategies and response bias on behavioral performance. Juvina and Taatgen (2007) showed
that subjects encouraged to use a high-control strategy in this task – i.e., to rely on active
maintenance as opposed mere familiarity – show a positive correlation between accuracy on
recent lure trials and on target n-back trials. In contrast, subjects encouraged to use a low-
control familiarity strategy demonstrate a negative correlation between these trial types.
Because our model includes only the mechanisms thought to be involved in high-control
strategies, the model should also show this positive correlation. Indeed, we observed a
robust positive correlation, r(73)=.44, p<.0005, between lure and target accuracy in the 2-
back task (Figure 7) performed by models that varied in their PFC gain parameters (as
described in the previous paragraph). This positive correlation arises because networks
differing in prefrontal gain consequently also differ in their ability to update and maintain
information in working memory – abilities which support performance on both lure and
target trials alike3.

Inside The N-back: How Gating, Binding, and Resolution of Proactive Interference Occur
As described above, our model captures numerous empirical phenomena from the n-back
task. Crucially, this good match to empirical data is enabled not by the explicit fitting of
parameters, but rather by the types of representations that develop through learning in
PBWM. These representations can be readily understood as instantiations of the very
executive functions hypothesized to be crucial for n-back performance: the need to flexibly
update working memory, to bind stimulus representations to representations of serial order,
and to manage proactive interference. Below, we demonstrate how these functions are
accomplished using quantitative analysis of the model’s learning trajectories.

3We suggest this effect is intrinsic to the model’s emergent behavior, and not merely epiphenomenal, for two reasons. First, a more
likely result would have been a negative correlation between the accuracy on lure and target trials, owing to the fact that Leabra
involves the learning of “bias weights” which might produce the widely-observed tradeoff between hit and false alarm rate in target
detection tasks. Second, this correlation was specific to networks in the trained state; no significant correlation between lure and target
accuracy was observed following the first epoch of training (r=.10, ns).
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Gating—One principal executive function important for the n-back task is working
memory updating; our model reveals what form this updating may take as a result of the
striatal reinforcement learning mechanisms implemented in our model. In particular, the
striatal layers learn to maximize reinforcement by firing differentially in terms of the serial
order of each stimulus (i.e., 1, 2 or 3) instead of stimulus identity (i.e., A, B, C, etc). This
policy develops because it is supported by network connectivity (such that parietal layers
project particularly strongly to striatal layers) but also because it maximizes reinforcement.
Had striatal layers learn to fire differentially based on stimulus identity information (i.e., A,
B, C, etc), then it would be up to prefrontal layers to learn to represent whether each of those
stimuli had been seen 1, 2, or 3 trials ago or not at all, as would most commonly be the case.
Because it is less efficient to use limited prefrontal resources to represent stimuli that have
not been recently experienced than to specifically represent those stimuli that have been seen
recently, the latter updating policy is what emerges naturally through reinforcement
learning.

The order-based gating striatal policy can be seen in how the activity patterns of these layers
become more discrete with respect to serial order as training progresses. Formally, this
change can be quantified as a reduction in entropy (such that lower entropy reflects greater
certainty in which striatal units will be activated by a particular serial order) over the course
of learning, as illustrated in Figure 8A. Thus, increasingly distinguishable neural patterns in
the basal ganglia occur for distinct serial orders as training progresses, thereby yielding an
order-specific gating signal.

The importance of this reduction in entropy can be seen in its relationship to performance.
Although all networks ultimately reached approximately the same level of updating ability
(i.e., near-zero entropy by the end of training), differences in accuracy on the task at that
final point could be predicted based on the history of striatal entropy. That is, networks that
were less error-prone at the end of training showed no difference in striatal entropy at that
late point, but rather lower striatal entropy only early in training (as illustrated in Figure 8B).
This effect occurs because the separation of items occurring with different serial orders to
different prefrontal stripes is essential for two subsequent developments: the differentiation
of items by prefrontal stripes, and the active maintenance of this information to resolve
proactive interference. Networks that achieve earlier reductions in striatal entropy have a
“head start” in these subsequent and slow refinements, each discussed in turn below.

Binding—A stable, order-specific gating signal is a prerequisite for prefrontal units to learn
to differentiate items occurring with different serial orders – i.e., binding, an important
process for n-back performance (Oberauer, 2005; Badre & Wagner, 2006). The binding that
occurs in our model is distinct from that typically occurring in connectionist models, which
relies on coactivation of shared features. Our model binds items to serial order in a
fundamentally different way, as described below.

First, the order-specific gating policy developed by striatal reinforcement learning
mechanisms exposes particular PFC stripes to stimuli occurring with a particular serial
order, and other PFC stripes to stimuli occurring with other serial orders. By itself, this
order-specific gating policy does not suffice for binding; the network must also be able to
differentiate between the stimuli of any given serial order (e.g., to differentiate an A of serial
order 1 from a B of serial order 1). Because this stimulus identity information is not
provided by firing in striatal layers (which is serial-order based), the prefrontal layers must
discriminate stimulus identity on the basis of posterior representations. Ultimately, this
discrimination is accomplished through a process of representational differentiation
supported by Hebbian and error-driven learning4, such that each prefrontal stripe will learn
to discriminate all items occurring with the serial order that that stripe is preferentially
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exposed to (via the order-based striatal gating policy). This progressive differentiation both
within and across stripes in the PFC reflects the network emergently learning to bind items
to their serial order.

The nature of the resulting bound representations can be quantified in terms of the Euclidean
distance between prefrontal activity patterns across the various items and order
combinations. This high-dimensional analysis can be illustrated with a cluster plot in which
the y-axis represents item by order combinations, horizontal lines represent the Euclidean
distances between clusters, and cluster membership is indicated by vertical lines. We
performed this type of hierarchical cluster analysis on the activity patterns, both before and
after training, of one PFC stripe that learned to code for items appearing with one serial
order (Figure 9A & 9B) and for a different PFC stripe that learned to code for items
appearing with a different serial order (Figure 9C & 9D). The resulting figure reveals an
initially haphazard pattern of representational similarity across items by order combinations
(represented as a letter followed by a number; e.g., “D1”; left panels of Figure 9). After
learning, this disorganization resolves into a highly structured representational scheme (right
panels of Figure 9) in which all items occurring with a non-preferred serial order for a given
PFC stripe are highly similar, as indicated by very short horizontal lines linking the items
into large clusters. In contrast, items of a preferred serial order become much more
differentiated, as indicated by the increasingly pairwise clusters.

Thus, reinforcement learning mechanisms drive an order-based gating policy, while
Hebbian/error-driven mechanisms support representational differentiation within particular
serial orders. These processes jointly give rise to the active maintenance of item-context
bindings in our model, such that items are bound to their context in terms of which PFC
stripe they are gated into. Our model further suggests that this binding may occur through a
sensitivity of the prefrontal cortex to serial order; indeed, empirical evidence suggests the
prefrontal cortex encodes information about serial order (Amiez & Petrides, 2007), and our
model demonstrates how such sensitivity might emerge.

Proactive Interference—As the prefrontal-striatal circuit learns to gate and actively
maintain information about items and their serial order, the network must also learn to
resolve proactive interference from lure trials. In essence, the network must produce
responses based on the match or mismatch between the current stimulus and information
that was updated n-trials previously, while avoiding responses that would be based on any
mapping between the current stimulus and the information updated and maintained from
non-n lag lure trials. This constraint is at its core a selection problem: The prefrontal stripe
with stimulus identity information for the current trial’s serial order – and not stripes with
information from other serial orders – must convey this information to the verbal output and
posterior cortical layers so that corresponding match/non-match outputs can be activated.

The network learns to solve this selection problem through two mechanisms that emerge
over learning. First, the stimulus identity information relevant to the current trial’s serial
order biases the verbal output unit that corresponds to that stimulus’s identity, as learned in
the weights connecting that prefrontal stripe and the verbal output layer. Second, the
posterior cortex acts as a kind of comparator, such that error-driven and Hebbian learning
mechanisms craft a set of weights in the posterior cortical layer to detect matches between
the stimulus input and verbal output layers and activate the appropriate manual output (see
Appendix II for more details). The source of lure errors is therefore multicausal: Some errors
(approximately 25%) reflect inappropriate detection of input/output matches by the posterior
cortical area (i.e., the verbal output is correct and does not match the current stimulus, but

4Appendix II describes how error-driven and Hebbian learning cooperate to support representational differentiation.
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the manual output nevertheless indicates a match response). Other errors (approximately
75%) reflect item confusion in the prefrontal layers as a result of interference from current
stimuli, ultimately leading to the biasing of the incorrect unit in the verbal output layer
(Appendix II provides a detailed analysis of recent lure errors in the 2-back task, which
provides no evidence for the interpretation that lure errors arise because of incorrect gating
on previous trials).

Figure 10 illustrates that this selection problem is solved relatively slowly over the course of
training, with more rapid reductions in the proportion of errors that occur on non-recent
lures and match trials than on recent lure trials, as well as a lower asymptotic error rate on
those trials. We thus observed a relatively protracted development of resistance to
interference, which is consistent with new evidence on developmental trajectories in the n-
back (Schleepen & Jonkman, 2010). Our model shows this protracted development due to an
interdependency between the resolution of proactive interference and other executive
functions: Gating, maintenance, and binding control processes, supported by reinforcement
learning (in the case of gating) as well as Hebbian and error-driven learning, must first
construct a relatively stable state before those representations can be incrementally refined
to reduce proactive interference through additional Hebbian and error-driven learning.

GENERAL DISCUSSION
Here we report a biologically based model of the parieto-fronto-striatal system that learns to
perform the n-back task, emergently producing representations that support executive
functions like gating, binding and the resolution of proactive interference. The model’s
acquisition of these functions enables its close match to empirical data, including behavioral,
genetic, and neuroimaging findings, without the need for fine-grained tuning of the model’s
underlying parameters. Specifically, the updating of working memory is accomplished as the
basal ganglia learn to provide a gating signal that is increasingly differentiated by an item’s
serial order, quantified above in terms of entropy. Active maintenance occurs as the
prefrontal cortex learns to bind items and their serial order, quantified above via hierarchical
cluster analysis. Finally, proactive interference resulting from recent lure trials affects these
prefrontal representations via increases in net input, unit activation, and inhibitory
neurotransmission, consistent with the increased BOLD response observed in the PFC
during proactive interference (Jonides et al., 1998; Badre & Wagner, 2005). The model also
captures the effect of individual differences in prefrontal tonic dopamine, individual
differences observed when humans use the same type of high-control strategy implemented
by our model, as well as decreased overall accuracy and an increase in the relative accuracy
of recent lures as n moves from 2 to 3.

Our model integrates previous work to use an order representation in PBWM (as in the
phonological loop model developed by O’Reilly & Frank, 2006) by more firmly rooting it in
the biology of the IPS (as in Botvinick & Watanabe, 2007) and thereby differentiating the
serial order signal from representations that might be used for dimensions like color or form.
This work extends the phonological loop model in two important ways. First, the n-back
task differs from the serial recall performed by these models, in that serial order
representations must now do “double-duty” – simultaneously supporting the recall of old
information as well as the storage of new information. Second, our model addresses the lack
of an explicit external frame of reference for the representation of serial order by positing an
internally generated one, such that there is a periodicity relation rather than a strictly serial
relation between successive stimuli. While the importance of a self-imposed periodicity
function for our model actually leads to testable predictions, how these representations
might autonomously develop nonetheless remains an important and unsolved problem.
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Insights
Our model also leads to a number of theoretical insights. First, previous literature suggests
that executive functions show unity and diversity at both behavioral and genetic levels (e.g.,
Friedman et al., 2008), but our model may challenge modular interpretations of this unity
and diversity. Executive functions emerge here from an integrated parieto-fronto-striatal
circuit instead of discrete mechanisms involved in only some executive tasks (c.f. Cooper &
Davelaar, 2010). Instead, a more emergent view of unity and diversity may enable a better
match to neural mechanisms. Our model also indicates this emergent view will need to
include frontal, striatal, and parietal areas, at the minimum. Executive functions are often
discussed in terms of frontal, parieto-frontal (e.g., Corbetta & Shulman, 2008), or fronto-
striatal (O’Reilly & Frank, 2006) substrates, but theoretical accounts of frontal, parieto-
frontal or fronto-striatal interactions may be substantially incomplete without considering all
three parts to the larger, integrated network. For example, though executive control might be
considered relatively distinct from abilities like serial order processing, our model indicates
the neural mechanisms supporting behavior across these domains may be related; this
relationship should be explicitly considered in determining the role of parietal cortex in
updating tasks.

However, it is also likely that other areas of parietal cortex contribute to performance in
ways that do not selectively relate to time or order representations (Collette et al., 2005), and
our model does not encapsulate the only form of parieto-frontal interaction. These
anatomically and functionally diverse regions (e.g., Rushworth, Behrens, & Johansen-Berg,
2006) are likely to support multiple forms of processing. Thus, other computational and
theoretical models of fronto-parietal function (Edin, et al., 2009; Corbetta & Shulman, 2002;
Corbetta, Patel & Shulman, 2008) may describe aspects of the parietal cortex not captured
by our model, and vice versa.

The model also provides insight into the ability to resolve proactive interference. Our
simulations suggest that the increased hemodynamic response observed during recent lures
may reflect the presence of interference, and not a separate control process recruited to
resolve interference. Instead, proactive interference resolution unfolds as an emergent
consequence of the network’s learning in general. That is, proactive interference resolution
depends on striatal gating becoming increasingly specific to serial orders (which reduces
interference across different serial orders that involved presentation of the same item), and
increased representational differentiation among items of the same serial order within PFC
(which reduces interference across different items presented with the same serial order).
However, proxy-hemodynamic increases to recent lures also reflect that a similar preceding
item is being strongly maintained and that the current stimulus is being fully processed.
These multiple facets of the hemodynamic response to proactive interference may explain
the seemingly paradoxical findings that activation of the lateral prefrontal cortex positively
correlates with fluid intelligence (Gray, Chabris & Braver, 2003), which presumably relies
on strong maintenance and full processing of stimuli, but also positively correlates with
behavioral indices of proactive interference (Nee, Jonides & Berman, 2007). Our model thus
offers one explanation for these apparent contradictions in the current empirical literature.

Predictions and Extensions
Our n-back model also leads to new testable predictions. First, because the models rely on a
periodic serial order representation, 2-back accuracy should be differentially disrupted if
subjects must simultaneously complete a task that requires a different periodicity of serial
order representations (e.g., a 3-movement spatial tapping task relative to a 2-movement
one). Indeed, serial order may be important for precisely this type of motor control (Salinas,
2009).
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Second, the neural substrates of self-imposed periodicity should be identifiable with fMRI,
using regressors whose onsets correspond to a periodicity of n. Striatal activation should
show the same parametric variation with n as has been previously observed in the cortex:
Our model predicts these areas form a highly-interconnected circuit modulated by memory
demands. Moreover, representational similarity analysis or other multi-voxel pattern
analysis methods might reveal the same striatal hemodynamics reported here in terms of
representational differentiation patterns.

Third, to the extent that humans are capable of good performance on n>3 -back tasks, they
may recruit additional mechanisms, such as the hippocampal complex (HPC), to compensate
for the logarithmically compressed nature of serial order representations in the IPS. Indeed,
the HPC has only been inconsistently observed during performance of 2- and 3-back tasks
(de Frias et al., 2010; Egan et al., 2003), and other accounts of n-back might predict HPC
involvement only insofar as subjects adopt a low-control (i.e., familiarity-based) strategy
(Juvina & Taatgen, 2007). In contrast, the current model predicts high-control strategies will
involve additional mechanisms not modeled here, when n>3.

This third set of predictions suggests several possible of the model to capture different
strategies and training effects. The parietal layer is an important constraint on the ability of
networks to perform adequately on n>3-back tasks, because its tuning curves becomes
increasingly compressed at higher serial orders. Parietal serial order representations simply
become too compressed at high levels of n to support discrete representations. Nonetheless,
because humans are apparently capable of learning n>3 back tasks with training, one
extension to our model would be a top-down projection to this area from the prefrontal
cortex. Over training, the network might learn to support increasingly discrete serial order
representations using a top-down biasing signal (e.g., Edin et al., 2009). Our model might
also be extended to capture the HPC mechanisms possibly used by subjects adopting a
familiarity-based strategy. Conceptually similar mechanisms are used in a symbolic model
of the n-back task (Juvina & Taatgen, 2007), such that a “time tagging” system is integrated
with a familiarity system that relies on declarative memory. Different control strategies are
then simulated in terms of whether the time tags are actively-maintained (as in our current
model), or retrieved only when familiarity is detected. With the appropriate biological
extensions, our model might capture these and more n-back phenomena.

Our model may be relevant to the burgeoning field of executive functions training, in which
the n-back is playing a prominent role. For example, n-back performance improves
following training on the letter memory task (Dahlin et al., 2008). Our model is also capable
of performing the letter memory task, and the types of executive functions that emerge in
our model from its training on letter memory are extremely similar to those reported here.
However, in the current report our models were trained only on the n-back task; clearly,
human performance in any task relies on a longer and more varied history of experience than
the training we provided to our model. Future work will pretraining models on a larger
variety of more elemental cognitive tasks and test transfer effects.

Conclusions and Future Directions
Follow-up work is ongoing, including the more complete modeling of these and other neural
structures with a role in executive functioning and a more elaborate mapping of this type of
model to behavior in other executive function tasks. Indeed, the PBWM framework used
here can model a number of other tasks, and the overlap among these models may reveal the
computational origin of the unity and diversity of executive functions (Friedman et al., 2008;
Miyake et al., 2000). The current work represents a first step in that direction, by specifying
a formal computational link between anatomical connectivity studies demonstrating a highly
interconnected parieto-fronto-striatal network with studies of genetic polymorphisms, with
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individual differences at the behavioral level, and with theoretical accounts of the executive
functions important for working memory updating tasks.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic illustration of core PBWM architecture, in which prefrontal context
representations of relevant prior information and current goals bias the sensory-motor
mappings that are learned by posterior cortical “hidden” layers. The prefrontal context
representations are updated via dynamic gating by the basal ganglia. These gating functions
are learned by the basal ganglia on the basis of input from the PVLV system, which provides
modulatory dopaminergic input depending on the reward value of the actions performed by
the basal ganglia.

Chatham et al. Page 19

J Cogn Neurosci. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
A. The PBWM architecture includes units based on the prefrontal cortex and basal ganglia,
including ventral and dorsal striatum, grouped into “stripes” (the visible subgroups within
prefrontal and striatal layers). Input is provided to the model about the identity of the current
stimulus and its serial order; the model is required to produce a manual output about whether
the current stimulus matches that presented n trials previously, and a verbal output
corresponding to the identity of the stimulus presented n trials previously. B. The parietal
layers represent the serial order of successive trials in terms of n, using a graded and
compressive code based on the mean and variance observed in the tuning curves of rank
order sensitive neurons in the horizontal segment of the intraparietal sulcus.
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Figure 3. A schematic example of a trained model’s inputs, outputs, and “hidden” layer
activations on the 2-back task
Trial #1. The network is presented with the input A and a parietal representation
corresponding to serial order 1. The three leftmost units for the striatum have learned to fire
on trials with this serial order, and therefore gate the stimulus “A” into the corresponding
units in the PFC, which has learned to represent “A”. This conjunction of the item “A” in the
stripe that has learned to represent information from serial order “1” produces a bound
representation that can be termed “A1.” Finally, the network has learned to produce the
verbal output corresponding to the 2-back item (n/a here, since this is the first trial), and the
manual output corresponding to “nonmatch”, since the current item does not match the item
presented 2- back. Trial #2. The network is presented with input “D” and serial order #2 is
represented in the parietal layer; the right most units in the striatum fire for this serial order,
and therefore gate the stimulus “D” into the corresponding PFC units, producing a bound
representation that can be termed “D2.” Trials #3-6. New stimuli are presented, the parietal
layer continues to count off the serial order of the current stimulus, and the striatal layer
continues to fire at the appropriate times, thereby updating PFC with the current stimulus in
the correct set of units. The network produces nonmatch responses for all trials except trial
#4, which is a match trial.
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Figure 4.
A. The model reproduces the benchmark result of lower accuracy on 3-back than 2- back. B.
The model shows reduced accuracy on recent (n-1) lures, relative to both non-recent lures
(>n) and match trials. In addition, the relative difference of these trial types is smaller in the
3-back task than the 2-back task, consistent with human data.
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Figure 5.
Recent lures were associated with a greater simulated hemodynamic response than non-
recent lures and targets, where the hemodynamic response is simulated as the weighted
average of unit inputs and unit activations in the prefrontal cortex layers.
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Figure 6.
As a proxy for the effects of the polymorphisms in the COMT gene, we manipulated the
effects of dopamine in the prefrontal layers of the model. This manipulation revealed an
inverted U-shaped curve relating dopamine levels to performance, consistent with the
hypothesized effects of varying dopamine levels in prefrontal cortex.
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Figure 7.
The model captures the individual differences in the relationship of lure and target trial
accuracy observed empirically when subjects are encouraged to adopt the same strategy as
adopted by our model.
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Figure 8.
A. The model learns to appropriate gate information into working memory by developing
increasingly discrete firing patterns in the striatum over the course of training, here
visualized in terms of reductions in entropy. B. Individual differences in the ultimate post-
training performance of models across runs can be predicted based on the reduction in
striatal entropy much earlier in training: networks that ultimately commit less errors
following training (solid vs. dotted lines) show significantly more (* p<.05) discrete patterns
of firing between 0 and 10% of the total training time (vertical bars). Shaded regions
represent standard error of the mean for each time point.

Chatham et al. Page 26

J Cogn Neurosci. Author manuscript; available in PMC 2012 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
Cluster plots reflect the Euclidean distance (indicated by the length of horizontal lines)
between every item (indicated by letters along the y axis) and serial order (indicated by
numbers along the y-axis); thus, if the path from one item to another requires a large amount
of horizontal travel, then the representations of those items are relatively distinct. A. One
prefrontal stripe shows an initially haphazard pattern of representational similarity across
items, as indicated by the lack of systematic clustering between items and their order. B.
After training, the same prefrontal stripe illustrated in A develops a highly structured
representation, by collapsing across all items of serial order 2 (upper half of cluster plot) but
differentiating among all items of serial order 1 (as indicated by the large horizontal lines
separating each item; lower half, enclosed by rounded rectangle). This stripe is preferentially
tuned to code items of serial order 1. C. A different PFC stripe also shows initially
haphazard representational similarity. D. After training this stripe shows a different pattern
than that illustrated in B, in that it collapses equally across all items of serial order 1 (upper
half of cluster plot) but increasingly differentiates every item occurring with the other serial
order (lower half, enclosed by rounded rectangle).
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Figure 10.
Performance on recent lures trials undergoes a shallower learning curve than performance
on all other trial types, reflecting a more rapid reduction in error rate on trials that do not
require the resolution of proactive interference (match and non-recent lure trials as
compared to recent lures).
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