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Abstract
High levels of homocysteine (Hcy), known as hyperhomocysteinmia (HHcy), are correlated with
an increase in extracellular matrix remodelling (ECM) via the matrix metalloproteinases (MMPs)
and plasminogen/plasmin system. This results in an increase deposition of collagen that leads to
endothelial-myocyte (EM) and myocyte-myocyte (MM) uncoupling; the physiological
consequences are a plethora of cardiovascular pathologies. Homocysteine-induced increase in
intracellular and mitochondrial Ca2+ plays an important role in increasing reactive oxygen species
(ROS) within mitochondria and instigating mitophagy within the cell. This occurs via several
Hcy-mitigated processes: agonizing N-methyl-d-aspartate receptor-1 (NMDA-R1), decreasing
expression of peroxisome proliferator activator receptor (PPAR) [thereby increasing oxidation],
impairing Ca2+ handling via Na+/Ca2+ exchanger (NCX1) and Sarco endoplasmic reticulum Ca2+

ATPase (SERCA-2a). The end result is an increase in ROS that directly or indirectly lead to MMP
activation within mitochondria or the cytoplasm. Hcy induces a mitochondrial permeability
transition that allows MMPs to be released from mitochondria thereby metabolizing matrix and
impairing cardiac function. Further work remains to be elucidated concerning the specific
mitochondrial mitophagic mechanisms under which matrix metabolism and remodelling occurs.
Moreover, the therapeutic implications of NMDA and PPAR ligands are some promise to patient.
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Introduction
A search for other risk factors for heart disease instigated the discovery of homocysteine
(Hcy). Hcy has been shown to be an independent risk factor in several cardiovascular
pathologies (Wilcken & Wilcken, 1976). Moreover, elevated levels of Hcy have been found
in diabetics, which could explain the association between diabetes and heart disease
(Hofmann et al., 1997; Robillon et al., 1994). Vitamin treatment has been shown to be
successful in significantly lowering Hcy levels; however, it still remains a puzzle for why
clinical trials have yielded mixed results in lowering the risk for cardiovascular-related
death.
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The heart’s conduction system is of utmost importance for proper cardiac function. The
mechanism of transmission of membrane depolarization is via gap junctions; among proteins
that make up these gap junctions are the following: connexin 40 (Cx40), connexin 43
(Cx43), connexin 45 (Cx45) (Gros & Jongsma, 1996; Miquerol et al., 2004). Deposition of
collagen in extracellular matrix (ECM) can impair cardiovascular function via endothelial-
myocyte uncoupling (EM uncoupling) and myocyte-myocyte (MM uncoupling) whereby the
signal is not properly transmitted (Givvimani et al., 2011; Moshal et al., 2008b). Matrix
metalloproteinase’s (MMPs) and the plasminogen/plasmin system are responsible for
modifying the ECM; activation of MMPs is considered pathological, whereas activation of
plasmin is thought to be beneficial in most cases (Iimoto et al., 1988; Jalil et al., 1989;
Mukherjee & Sen, 1990; Norton et al., 1997; Takeshita et al., 2004). Most MMPs are
generally considered to be either secretory or membrane-anchored (Hadler-Olsen et al.,
2011; Pei et al., 2000). However, MMPs have also been found to have roles within the
nucleus and mitochondria (McCawley & Matrisian, 2001).

Activation of NMDA-R1 will increase intracellular Ca2+ levels, and mitochondrial Ca2+

levels, resulting in oxidative stress (Gao et al., 2007). Mitochondria are involved in
translocating and activating several proteins (Hansson Petersen et al., 2008). Importing
proteins involves translocation through outer (OMM) and inner mitochondrial membranes
(IMM) via complex protein machinery (Ow et al., 2008; Rassow et al., 1994). Another
function of mitochondria aside from the role of ATP generation is sequestration of Ca2+, and
the generation and detoxification of cellular ROS; the electron transport chain is a key
connector for these roles (Brand et al., 2004; Turrens, 2003; Xi et al., 2005). It is concluded
that an increase in Ca2+ will disrupt the membrane potential of mitochondria, decrease
oxygen utilization (since oxygen is the final electron acceptor to generate water) and
produce greater amounts of superoxide (Archer, 2010; Dalton et al., 1999). One other
mechanism for MMP-9 activation involving mitochondria is via the calpain system. It was
shown that Hcy activates and translocates calpain-1 from the cytosol to mitochondria; this
results in intra-mitochondrial oxidative stress, resulting in MMP-9 activation within
mitochondria (Tyagi et al., 2010).

The activation of the PPAR receptor by Hcy has been shown to promote a reducing
environment (antioxidant) (Brude et al. 1999; Hunt & Tyagi, 2002; Inoue et al., 1998).
However, an increased concentration of Hcy correlates with a decreased expression of the
PPAR receptor and its antioxidant effects (Brude et al., 1999; Gillespie et al., 2011; Inoue et
al., 1998).

Homocysteine as a marker for cardiovascular pathology
Homocysteine (Hcy) is a sulphur-containing amino acid that is derived from the essential
amino acid, methionine (HofMann et al., 2001; Zhou et al., 2001). Moreover, Hcy is shown
to be metabolized from two pathways: trans-sulphuration by cystathionine-β-synthase (CBS)
in hepatic cells or via re-methylation to methionine in non-hepatic cells (Loscalzo 2006).
Hyperhomocysteinemia (HHcy) is considered an independent risk factor for cardiovascular
disease (CVD) (Zhou and Austin 2009). Elevated Hcy levels are caused by two factors:
genetic defects in enzymes involved in Hcy metabolism or nutritional deficiencies in
vitamin cofactors (folate, vitamin B12, vitamin B6 (Milani and Lavie 2008). Other factors
involved are the following: chronic kidney disease, hypothyroidism, psoriasis, cancers, and
several drugs (Milani & Lavie, 2008).

Folic acid, Vitamin B12, and Vitamin B6 combinations are able to reduce Hcy
concentrations without lowering the risk of further cardiovascular events; it has been
suggested that some of these vitamin treatments may counteract the beneficial effects of
lowering Hcy, and cause damage themselves (Bonaa et al. 2006). For instance, treatment
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with B vitamins did not lower the risk of recurrent CV disease after MI. Pathogenesis of
coronary artery disease show reduced ability to metabolize Hcy in premature coronary artery
disease (Nasir et al., 2007; Wilcken & Wilcken 1976). One study indicates that the greater
the increase in Hcy induced by fenofibrate, the smaller the increase in HDL-c and apoA-I,
two proteins that are helpful in cholesterol uptake; hence cholesterol levels would remain
higher (Taskinen et al., 2009). Similar results were noted in a study of ischemic stroke
patients: a higher level of Hcy was independently associated with ischemic stroke (Dhamija
et al., 2009).

Vitamin treatment did lower Hcy levels by 27% among patients given folic acid plus
Vitamin B12 (Bonaa et al.,2006). One study found that a Hcy level of ≥20 μmol/L is
associated with a high mortality risk (odd ratio 2.57) (Maurer et al., 2010). Another study
found that increased Hcy levels cause abnormalities in Na+ currents in human atrial cells via
the following mechanism: slowing inactivation and promoting recovery of Na+ channels
(Cai et al.,2009). Another study found that folic acid supplementation resulted in a
significant intima-media thickness reduction after 18 months in patients with at least one CV
risk (Ntaios et al., 2010). Finally, Hcy was shown to act as an independent risk factor for an
increase in arterial stiffness (Ruan et al., 2009).

Homocysteine and diabetes act in synergy
Elevated levels of Hcy have been found in diabetics, which could explain the association
between diabetes and heart disease (Hofmann et al., 1997; Robillon et al. 1994; Wijekoon et
al. 2007). Another study showed an association between Hcy and silent myocardial
infarction (SMI) in diabetic patients (Tarkun et al., 2004). However, HHcy was not detected
in adolescent patients with type 1 diabetes (Pavia et al., 2000). In cases where there were no
renal complications in both Type 1 and Type 2 diabetes, Hcy levels were even lower than
controls (Wijekoon et al., 2007). It was concluded that in Type 1 diabetes, increased activity
of the trans-sulphuration enzymes were the major cause of reduction in plasma Hcy. In Type
2 diabetes, BHMT(betaine:homocysteinemethyltransfer ase) was considered to be
responsible in increased Hcy catabolism (Wijekoon et al., 2007). Plasma levels of Hcy are
usually normal in diabetes; however, both high and low values have been reported. They
have been modulated by hyperfiltration and renal dysfunction, and low folate status, while
insulin resistance does not seem to play a role in HHcy (Huijberts et al., 2005). It appears
that the presence of diabetes contributes to worsening HHcy determined cardiovascular risk,
and may even act in synergy in evoking their vascular effects (Becker et al., 2003; Soinio et
al., 2004). One review indicates that, in patients with Type 2 diabetes, elevated Hcy levels
have an independent risk associated with higher rates of CHD events and CHD mortality
(Soinio et al., 2004).

Contraction and conduction – gap junctions
The integrity of the heart’s conduction system is paramount to maintaining proper cardiac
function. This specialized pacemaker system consists of modified cardiomyocytes and
includes the following: sinoatrial node (SA), atrioventricular node (AV), His Bundle with
two branches, and Purkinje fibres (PFs). The molecular mechanism of transmission of
membrane depolarization is via gap junctions; among proteins that make up these gap
junctions are the following: Connexin 40 (Cx40), Connexin 45 (Cx45), and Connexin 43
(Cx43) (Gros & Jongsma, 1996; Miquerol et al., 2004). A single gap junction, for instance,
is composed of 12 Cx43 units (Schulz and Heusch, 2006). Cx40 is highly expressed in
active atrial myocytes, the central part of the AV node, the His bundle, as well as the
Purkinje fibres. One study found that a null mutation in Cx40 results in impaired conduction
and conduction block, suggesting the pivotal role that this connexin plays in transmitting
signal from atria to ventricles (Gros et al., 2004; Tamaddon et al., 2000; van Rijen et al.,
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2001). Another connexin involved in gap junction machinery is Connexin 30.2 (Cx30.2);
this protein was found in both SA and AV nodes; (Kreuzberg et al. 2006). Cx30.2 was
actually shown to dampen the rate of impulse propagation in AV node in control mice
versus mutant, determined by the PQ interval (Kreuzberg et al., 2006). This provides further
evidence of the importance of different types of connexins as structural components of gap
junctions in the cardiac pacemaker.

Furthermore, Cx43 is the primary connexin component of active myocytes of the atria and
ventricles; ablation causes reduced conduction velocity, increased dispersion of conduction,
and enhanced electrical sensitivity on the ventricle (Beyer et al., 1989; Reaume et al., 1995;
van Rijen et al., 2004). Connexin 45 is located in SA and AV nodes (Coppen et al., 1998;
Kruger et al., 2000; Verheijck et al., 2001), and its ablation is lethal in mice due largely to
defects in vascularization (Kruger et al., 2000). Connexins are expressed in several tissues
including heart, blood vessels, and neural tissue (Rackauskas et al., 2007). In fact, basilar
artery SMCs are coupled in vivo with Cx43, Cx40, and other conductance channels; many of
the channels involve non-homotypic components [not entirely comprised of the same
connexin protein] (Li and Simard, 1999).

Endothelial-myocyte uncoupling and myocytemyocyte uncoupling
Remodelling is a process whereby there is synthesis and degradation of the ECM involving
a very precise balance of proteinase/antiproteinase activity; an increase in this ratio has been
shown to result in systolic and diastolic heart failure with uncoupling cardiomyocytes (Hunt
et al., 2002). This would result in impaired depolarization of the signal between endothelial
cells and cardiomyocytes [Endothelial-Myocyte uncoupling, E-M uncoupling], or between
cardiomyocytes [Myocyte-Myocyte uncoupling, M-M uncoupling]. In fact, one study
suggests a direct cause-and-effect relationship between MMP-9 activation and EM
uncoupling in LV myocardium after chronic volume overload (Moshal et al., 2008b).

During heart disease, including hypertension, tissue inhibitors of matrix metalloproteinase’s
(TIMPs) are oxidized and inactivated, thereby allowing matrix metalloproteinase’s (MMPs)
to be activated (Rucklidge et al. 1992). A normal heart expresses four TIMP species:
TIMP1, TIMP2, TIMP3, TIMP4; these TIMPs are altered during progression of human heart
failure (Mann & Taegtmeyer, 2001). A reduction in TIMP3, thereby allowing MMP
activation, results in adverse remodelling affects (Fedak et al. 2003). MMPs act as
collagenases and elastases; however, their primary function is as collagenases. Hence,
collagen deposition is greater than elastin deposition when MMPs are active. The
accumulation of collagen disrupts the aforementioned connexin proteins, interfering with
depolarization of cardiomyocytes, and impairing heart function. One study found that
congenic transfer of TIMP ameliorated LV hypertrophy and cardiac dysfunction by
inactivating MMP-9 involved in remodelling (Rodriguez et al., 2008). It was found that
there are chamber-specific alterations in myocardial collagen content and MMP and TIMP
levels that may provide for diagnostic and other insight into pathogensis of atrial fibrillation
and chronic heart failure (CHF) (Mukherjee et al., 2006).

Moreover, nitric oxide (NO) generation from endocardial endothelium has a role in myocyte
contraction, relaxation and heart rate (Brady et al., 1993; Pinsky et al., 1997). Hence, an
increase of collagen between the endothelium and myocyte will lead to a longer contracting
period since endothelial-mediated relaxation via NO is impaired (Moshal et al., 2005). In
accordance with other results, another study found that an increased MMP activation
contributes to the LV dilation and increased wall stress with pacing CHF (McElmurray III et
al., 1999).
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Remodelling via plasmin and MMPs
The dynamic nature of the cardiovascular architecture requires such remodelling systems to
be in place and work in harmony to accommodate various pressures and stresses. However,
when these systems are not in proper balance, or when the stresses exceed the
accommodating capacity, physiological problems ensue (Heistad et al., 1991; Wilson et al.,
1993). It was found that myocardial fibrosis and ECM remodelling are characteristics of the
failing heart (Weber et al. 1992).

The purpose of collagen fibres is to provide an elastic force in the myocardium that allows
Starling Forces to operate properly (Weber et al., 1989). The following are characteristic of
ECM remodelling that can contribute to stiffness and systolic/diastolic failure: total collagen
content, collagen subtypes, collagen protein stability, collagen cross-linking (Iimoto et al.,
1988; Jalil et al., 1989; Mukherjee & Sen 1990; Norton et al., 1997). The activation of
MMPs involves collagen degradation with replacement of fibrotic tissue (Dollery et al.,
1995; Li et al., 2000b; Maquart et al., 1988).

Remodelling of the vessel wall will determine lumen diameter after vascular injury or
hemodynamic forces (de Smet et al., 2000; Mintz et al., 1996; Mondy et al., 1997; Tyagi
1999). The smooth muscle cells (SMCs) remodel existing extracellular matrix, as well as
contributing to further matrix deposition/removal, thereby altering the phenotype
(Tummalapalli & Tyagi 1999). One aspect of atherosclerosis involves the migration of
SMCs from media to intima of vasculature (Ross, 1993; Schwartz, 1997). In order for this
deleterious migration to occur, a degradation of matrix is necessary via MMPs and
fibrinolytic plasminogen/plasmin (Cho and Reidy, 2002; Clowes et al., 1990; Kenagy et al.,
1996).

This destructive cascade is first initated from the conversion of plasminogen to plasmin by
two plasminogen activators: tissue plasminogen activator (tPA) and urokinase plasminogen
activator (uPA) (Carmeliet et al., 1995; Lijnen, 2001). Since MMPs are secreted as inactive
zymogens (pro-MMPs), they require proteolytic activation by t-PA (Malemud, 2006).
Plasminogen activator inhibitor-1 (PAI-1) is responsible for inhibition of uPA and tPA,
thereby mediating the destructive process whereby matrix is metabolized and migration of
SMCs occurs (Carmeliet et al., 1997; Hasenstab et al., 2000). Further evidence for higher
levels of PAI-1 becoming detrimental was cited in a review of cancer and plasmin activators
(Andreasen et al., 1997). One study showed the effects of mutations in the following: u-PA,
t-PA, MMP-9 (Heymans et al., 2005). In t-PA deficient mice, cardiomyocyte hypertrophy
was discovered in conjunction with myocardial fibrosis, LV dilation, dysfunction after 7
weeks (Heymans et al., 2005); this is logical since plasmin levels would decrease, thereby
reducing fibrinolysis. One study showed evidence that reduced inactivation (moderate
activation) will result in a decrease in plasmin levels, thereby decreasing remodelling after
myocardial infarction (Askari et al., 2003). In conjunction with this study, another study
showed that an increase of PAI will serve the opposite role: decrease plasmin, and increase
in myocardial fibrosis after infarction (Takeshita et al., 2004). One study indicated that the
use of MMP-inhibitors would preserve cardiac pump function in LV overloading (Heymans
et al., 2005).

Injury of a vessel can lead to leakage of proteins into the interstitial space, which activates
the coagulation cascade with deposits of fibrin, the major substrate for plasmin (Loskutoff &
Quigley, 2000). However, it is generally accepted that fibrinolysis is a good thing since
fibrotic disease is detrimental in all major tissues. Hence, activation of PAI-1 results in
greater fibrosis, whereas the inactivation of PAI-1 results in increased fibrinolysis. This was
demonstrated in PAI-1 deficient mice compared with control mice: fibrinolysis was
enhanced, collagen build-up was reduced, and survival was dramatically prolonged in
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bleomycin-treated mice (Hattori et al., 2000). One in vivo study found that in SMCs PAI-1
plays a role in limiting flow-induced SMC migration, thereby playing a pivotal role in
controlling vascular remodelling (Cullen et al., 2004).

MMPs: intracellular, extracellular, intranuclear, intramitochondrial
A second system of remodelling includes MMPs; MMPs are a class of zinc endopeptidases
that initially exist in a pro-form that is further activated upon cleavage. Like most biological
mediators, the two systems [MMPs, plasminogen/plasmin] that play a role in remodelling
are not mutually exclusive. Plasmin, for instance, can also cleave the inactive zymogen
MMP to the active form (Dollery et al., 1995; Lijnen 2001). Both of these systems are
known to be active in plaque formation as part of the atherosclerotic process; all of the
following are increased in expression/activity: MMPs (MMP-2, MMP-9), tPA, uPA (Dollery
et al., 1995; Lijnen 2001). This role was further confirmed by using MMP inhibitors and in
vivo models of mice lacking uPA or uPA and tPA; in such cases, SMC migration and intimal
thickening were reduced (Bendeck et al., 1996; Dollery et al., 1995).

Most MMPs have two methods for completing their role of digesting substrate: secretory
and membrane-anchored roles [via a type 1 transmembrane domain or
glycosylphosphatidylinositol linkage] (Pei et al., 2000). However, MMPs have also been
found to have roles within the nucleus and mitochondria. There has been a recent
understanding that MMPs are not only located in the matrix (McCawley & Matrisian 2001),
but also act intracellularly. In fact, it has been shown that MMP-2 is expressed by fibroblasts
and cardiomyocytes, and can be found with contractile proteins such as troponin-I and
sarcomeres (Schulz, 2007; Wang et al., 2002). Moreover, MMP-2 activation has been shown
to reduce performance of contraction after ischemia-reperfusion injury (Singh et al., 2000).
The mitochondria have also been shown to contain MMPs: mtMMPs. One study has shown
that ROS, possibly generated from mitochondria, can increase MMP-2 expression as well as
activation (Nelson and Melendez, 2004).

Another study has found that MMP-1 was not only found in interstitial space, but also
intracellularly, intranuclear, and within mitochondria (Limb et al., 2005). Inhibition of the
enzyme with interference RNA (RNAi) or broad MMP inhibitor resulted in faster
degradation of lamin A, activation of caspases, and fragmentation of DNA compared to
controls. This suggests that MMP-1 expression allows the cell to resist apoptosis, thereby
explaining a known mechanism whereby tumour cells may survive for a longer period of
time (Limb et al., 2005).

One study has found that MMP-3 is located in the nucleus and is involved in apoptosis (Si-
Tayeb et al., 2006). A mutation of MMP-3 resulted in decreased apoptosis; hence, MMP-3
activation is involved in apoptosis (Si-Tayeb et al., 2006). This is in stark contrast to
MMP-1 expression in cells that allow cells to resist apoptosis (Limb et al., 2005). Another
study found that MMP-2 is present in the nucleus of cardiac myocytes with the role of
cleaving poly (ADP-ribose) polymerase (PARP) in vitro (Kwan et al., 2004).

Hcy and NMDA-R1 activation leading to an increase in Ca2+

Chronic heart failure (CHF) includes propensity of arrhythmias, systolic failure and diastolic
failure; moreover, an overactive sympathetic system can contribute to the abnormality, and
decrease in normal function (Colucci et al., 1981; Singh et al., 2000; Sood et al., 2002).
CHF has been shown to correlate with an increase in glutamatergic activity that mediates
sympathetic regulation. An upregulation of N-methyl-D-aspartate receptor-1 subunits
(NMDA-R1) in the hypothalamus during CHF has been demonstrated (Li et al., 2003).
Moreover, ischemia and reperfusion-induced arrhythmias are sensitive to NMDA-R1
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blockade (D’Amico et al., 1999). One study has shown that the antagonist to NMDA-R1,
MK-801, protects against Hcy-induced oxidative damage in neurons (Folbergrova, 1994),
and an increase in heart rate by an analogue of NMDA (D’Amico et al., 1999). Another
study found that the activation of NMDA-R by Hcy increases oxidative stress and Ca2+ load
in mitochondria, leading to cardiomyocyte death in neonatal rats (Gao et al., 2007).

NMDA-R1 is well-known as being expressed in neural tissue; however, NMDA-R1 is now
known to be expressed in cardiomyocytes and endothelial cells (Huang & Su, 1999; Krainc
et al., 1998; Qureshi et al., 2005). Activation of NMDA-R1 will increase intracellular Ca2+

levels, and mitochondrial Ca2+ levels, resulting in oxidative stress (Gao et al., 2007). HHcy
was shown to decrease myocyte contractile performance by agonizing the NMDA-R1
receptor. An increase in Hcy decreased the contraction amplitude with an increase in Ca2+

concentration; recent studies suggest that HHcy condition increased mitochondrial NO
levels and mitochondrial permeability transition (MPT), leading to the poor cardiac
performance (Moshal et al., 2009). This cascade of events is illustrated in Figure 1.

Mitochondrial mechanism of ECM metabolism
Hcy-induced increase of Ca2+ leads to ROS production. The mitochondria are involved in
several cellular processes aside from its well-known role of providing energy through
oxidative phosphorylation. In fact, mitochondria have a well-known role in cellular death
that includes the release of many pro-apoptotic intermembrane space proteins: cytochrome
c, apoptosis inducing factor, endonuclease G, and DIABLO/Smac (Du et al., 2000; Kroemer
& Reed 2000; Li et al., 2001; Liu et al., 1996; Spiess et al., 1999; Susin et al., 1999; Van et
al., 2001; Verhagen et al., 2000). Another protein found to be released is Omi, a homologue
to the bacterial HtrA gene product: a chaperone and active protease (Van et al., 2002a).
HtrA2/Omi has a role in degrading improperly folded proteins in times of cellular and
endoplasmic reticulum stress, heat-shock, and even ischemia/reperfusion (Faccio et al.,
2000; Gray et al., 2000). In fact, many studies demonstrate a role for serine proteases in
apoptotic cell death (Kagaya et al., 1997; Wright et al., 1997). One study also found that the
alteration of mitochondrial membrane potential contributes to apoptosis. A decrease in
mitochondrial membrane potential leads to matrix condensation with an exposure of
cytochrome c into IMM space; this facilitates cytochrome c release and cell death (Gottlieb
et al., 2003).

Mitochondria are involved in translocating and activating several proteins. For example,
amyloid β-peptide is imported into mitochondria via translocase of outer membrane (TOM)
import machinery, and is localized into the mitochondrial cristae (Hansson Petersen et al.,
2008). Import of proteins involves translocation through the outer (OMM) and inner
mitochondrial membranes (IMM) involving complex protein machinery (Rassow et al.,
1994). One such example of this is the MIM44 and mt-hsp70 cooperation in translocation of
pro-proteins (Rassow et al., 1994). For instance, it was found that the translocation of the
protein, Bax, and its activation to mitochondria will alter the mitochondrial transmembrane
potential; the consequences could be cell death (Tikhomirov and Carpenter, 2005).

Another function of mitochondria aside from the role of ATP generation is sequestration of
Ca2+, and the generation and detoxification of cellular ROS; the electron transport chain is a
key connector for these roles (Brand et al., 2005). One study found that endothelin-1 (ET-1)
promoted oxidative stress through mitochondrial ROS in vascular smooth muscle cells
(Touyz et al., 2004). Rate of superoxide formation within mitochondria is greatly affected
by the coupling state of mitochondria; Ca2+ plays a great role in this state (Dalton et al.,
1999). Furthermore, the redox state can determine the oxidation state of thiols and
pyrimidine nucleotides (Dalton et al., 1999). An increase in intracellular Ca2+ will also
increase mitochondrial Ca2+ via a simple mechanism linked to the proton gradient that is
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established via the electron transport chain (Dalton et al., 1999). Hence, it is concluded that
an increase in Ca2+ will disrupt the membrane potential of mitochondria, decrease oxygen
utilization (since oxygen is the final electron acceptor to generate water) and produce greater
amounts of superoxide (Dalton et al., 1999).

A mitochondrial manganese-containing superoxide dismutase (Sod2) is one of several
enzymatic defences to reduce injury from oxidation (Van et al., 2002b). Sod2, for instance,
is responsible for catalysing the reaction of superoxide to hydrogen peroxide. One study also
indicates that a Sod2-dependent production of hydrogen peroxide leads to MMP-1
expression. Mice that have this gene removed will develop fibrosis and collagen deposition.
Under basal conditions, mitochondria have a buffering capacity that is largely determined by
glutathionine redox system (Ranganathan et al., 2001). Sod2 expression results when such
systems are overwhelmed (Ranganathan et al., 2001). Another study showed that over
expression of Sod stimulated activation of MMP-2 with an increase of ROS (Zhang et al.,
2002). One possible mechanism for MMP activation in mitochondria is generation of
hypochlorous acid (HOCl) from H2O2 by the enzyme, myeloperoxidase (Fu et al., 2001).
One study indicated that HOCl regulates the activity of MMP-7 in vitro. In addition, HOCl
activated pro-MMP-7 to MMP-7 in vivo via converting thiol residue of cysteine switch to
sulphinic acid (Fu et al., 2001). Figure 2 illustrates how ROS, produced from mitochondria,
can cleave pro-MMP to active MMPs; this results in contractile dysfunction. This is a
distinctly different mechanism from proteolytic cleavage of MMP (Mukherjee et al., 2006).

One other mechanism for MMP-9 activation involving mitochondria is via the calpain
system. It was shown that Hcy activates and translocates calpain-1 from the cytosol to
mitochondria; this results in intra-mitochondrial oxidative stress, resulting in MMP-9
activation within mitochondria. There has also been a link to ERK ½ pathway in activating
calpain-1 (Moshal et al., 2006). Moreover, this is a Ca2+-dependent mechanism whereby
calpain-1 is activated via induction of dissociation of calpain subunits (Moshal et al., 2006).
The requirement for Ca2+ activated calpain-1 in MMP-2 and MMP-9 expression was also
demonstrated via the calpain inhibitor, CP1B which reduces expression of MMP-2 and
MMP-9 (Popp et al., 2003). Use of ERK ½ blocker also resulted in a decrease in MMP-9
expression (Moshal et al. 2006). It has also been suggested that there is a negative feedback
mechanism involved whereby an increase in ROS would impair mitochondrial membrane
potential, thereby disrupting function (Zhou et al., 2007).

A mechanism whereby Hcy controls this process begins with calpain protease activation;
upon activation, there is an induction of mitochondrial permeability transition (MPT)
(Moshal et al., 2008a). Treatment with MK-801, a blocker of NMDA-R1 will attenuate the
induction of MPT in the presence of Hcy (Moshal et al., 2008a). The mechanism by which
this is proposed to occur is Hcy-induced ROS and Ca2+ load in the mitochondria. One study
reports that HHcy increases MMP-9 expression by agonizing the NMDA-R1 receptor, the
consequences of which are an increase in ROS and Ca2+ load in mitochondria (Moshal et
al., 2008c). One study found that in conditions of HHcy, the Ca2+ clearance rate declined
from a decrease in the expression of SERCA-2a and NCX – Ca2+ handling proteins. An
increase in Ca2+ may have induced MPT, thereby reducing the ability of the mitochondria to
generate ATP resulting in a decline of myocyte contractility (Moshal et al., 2008c). The
mechanism of Hcy-induced activation of calpain and MPT is emphasized in Figure 1,
whereby activated MMPs translocate and can cause contractile dysfunction.

Another study analysed the effects of reactive oxygen species on neutrophil and fibroblast
collegnases; it was found that pro-MMP-8 was preferentially activated by ROS such as
hydrogen peroxide and hypochlorous acid versus the traditional serine proteinases: trypsin,
chymotrypsin (Saari et al., 1992). Again, figure 2 illustrates this kind of interaction whereby
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ROS of mitochondrial origin cleaves pro-MMP to MMP. Studies have shown that the
plasminogen/plasmin system can be activated by oxidative stress (Tanaka et al., 1997), and
also by xanthine/xanthineoxidase generation (Liu & Gaston Pravia, 2010). Another study
indicated that reactive oxygen species are able to activate NF-κB. NF-κB is involved in
many cytokine genes, such as TNF that stimulates plasminogen activators (Mariappan et al.,
2010).

Other mechanisms of ROS generation and extracellular metabolism
There are several nuclear transcription factors (NF) receptors that control oxidation/
reduction balance of the cell. NF-κB has been shown to be induced by Hcy (Ferlazzo et al.,
2008; Wang et al., 2002). Activation of the PPAR receptor by Hcy has been shown to
promote a reducing environment (antioxidant) (Brude et al., 1999). Moreover, an increased
concentration of Hcy correlates with a decreased expression of the PPAR receptor and its
antioxidant effects (Inoue et al., 1998). An activated PPAR receptor will increase the
expression of superoxide dismutase (SOD) and catalase while decreasing NAD/NADPH
oxidase (Inoue et al., 2000; Inoue et al., 2001; Poynter and Daynes, 1998; Takenouchi et al.,
2010). This can serve as one potential mechanism by which high levels of Hcy result in the
increased production of reactive oxygen species (ROS) and cell injury (Berman & Martin,
1993; Jiang et al., 2011; Mujumdar et al., 2001; Zhang et al., 2000). Moreover, it was found
that agonists of PPAR will decrease oxidative stress and MMP activity in macrophages (Lee
et al., 2011; Marx et al., 1998; McGregor et al., 2000). Another method whereby matrix
remodelling is decreased by PPAR activity is via a decrease in mRNA expression of the
plasminogen activators and increase of plasminogen activator inhibitors (Xin et al., 1999).
One study suggests Hcy may enhance vascular constrictive remodelling by inactivating
PPARα and PPARγ in ECs and PPARγ in SMCs (Mujumdar et al., 2002). Some data
indicates members of the plasminogen activator system, in addition to MMP-2/9, increase
with growing potential of ovarian tumours; hence there has been some interest in using
MMP-inhibitors to treat certain types of cancer (Schmalfeldt et al., 2001).

The transcription factor, TNFα, was also found to increase MMP expression; over
expression of TNFα, and subsequent MMP expression, can cause heart failure phenotype
(Kubota et al., 1997; Li et al., 2002). One study found that ECM remodelling in transgenic
mice that over express TNFα can be modulated using an anti-TNFα treatment (Li et al.,
2000a).

Conclusions
The role of mitochondria in myocardial matrix metabolism and remodelling is still not clear.
This review briefly mentions some mechanisms that could activate the MMP system and
modulate plasminogen/plasmin that involves Hcy-induced production of oxidative stress
during cardiovascular remodelling.
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Figure 1.
Hcy increases intracellular Ca2+ by: agonizing NMDA-R1 receptor, impairing ability of
NCX-1 protein to extrude Ca2+ from the cell in exchange for Na+, impairs SERCA-2a
uptake of ER Ca2+. This increases Ca2+ in mitochondria, disrupting electron transport chain,
and increasing presence of ROS. An increase in ROS will activate MMPs; Calpain-1 will
activate mitochondrial pore transition, resulting MMPs exiting mitochondria and causing
contractile dysfunction.
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Figure 2.
Hcy increases intracellular Ca2+ by: agonizing NMDA-R1 receptor, impairing ability of
NCX-1 protein to extrude Ca2+ from the cell in exchange for Na+ impairs SERCA-2a uptake
of ER Ca2+. This increases Ca2+ in mitochondria, disrupting electron transport chain, and
increasing presence of ROS. An increase in ROS will activate MMPs. ROS is also generated
via decreased expression of PPAR receptor, allowing greater presence of ROS that will
activate MMPs within the cell, and result in contractile dysfunction.
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