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12 August 2011WHAT IS ALREADY KNOWN ABOUT

THIS SUBJECT
• The elimination of montelukast occurs

mainly via metabolism and, according to its
product information, CYP3A4 and 2C9 are
the main metabolizing enzymes in vitro.

• Recent studies, however, suggest that
CYP2C8 may have a role in the metabolism
of montelukast.

WHAT THIS STUDY ADDS
• The CYP3A4 inhibitor itraconazole markedly

reduces the formation of a minor metabolite
of montelukast, but has no significant effect
on the total elimination of montelukast.

• Montelukast is predominantly metabolized
by CYP2C8, and can thus be used as a
sensitive CYP2C8 probe drug.

AIM
According to product information, montelukast is extensively
metabolized by CYP3A4 and CYP2C9. However, CYP2C8 was also
recently found to be involved. Our aim was to study the effects of
selective CYP2C8 and CYP3A4 inhibitors on the pharmacokinetics of
montelukast.

METHODS
In a randomized crossover study, 11 healthy subjects ingested
gemfibrozil 600 mg, itraconazole 100 mg (first dose 200 mg) or both, or
placebo twice daily for 5 days, and on day 3, 10 mg montelukast.
Plasma concentrations of montelukast, gemfibrozil, itraconazole and
their metabolites were measured up to 72 h.

RESULTS
The CYP2C8 inhibitor gemfibrozil increased the AUC(0,•) of
montelukast 4.3-fold and its t1/2 2.1-fold (P < 0.001). Gemfibrozil
impaired the formation of the montelukast primary metabolite M6,
reduced the AUC and Cmax of the secondary (major) metabolite M4 by
more than 90% (P < 0.05) and increased those of M5a and M5b (P <
0.05). The CYP3A4 inhibitor itraconazole had no significant effect on
the pharmacokinetic variables of montelukast or its M6 and M4
metabolites, but markedly reduced the AUC and Cmax of M5a and M5b
(P < 0.05). The effects of the gemfibrozil-itraconazole combination on
the pharmacokinetics of montelukast did not differ from those of
gemfibrozil alone.

CONCLUSIONS
CYP2C8 is the dominant enzyme in the biotransformation of
montelukast in humans, accounting for about 80% of its metabolism.
CYP3A4 only mediates the formation of the minor metabolite M5a/b,
and is not important in the elimination of montelukast. Montelukast
may serve as a safe and useful CYP2C8 probe drug.
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Introduction

Montelukast is a leukotriene receptor antagonist fre-
quently used in the treatment of asthma [1–3], being
among the top 10 drugs in the United States by the
amount of prescriptions dispensed in 2008. The oral bio-
availability of montelukast is 60–70%, it is over 99% bound
to plasma proteins and its elimination half-life is 4–5 h.
Montelukast is extensively metabolized to one major and
several minor metabolites that are mainly excreted into
the bile [4, 5].The major biliary metabolite is a dicarboxylic
acid (M4), resulting from further oxidation of a primary
metabolite, M6 (Figure 1).

According to the product information of montelukast,
the in vitro formation of M6 is catalyzed by cytochrome
P450 (CYP) 2C9 and the formation of M5 by CYP3A [6]. In
our recent in vivo study, the CYP2C8 inhibitor gemfi-
brozil greatly increased the area under the plasma
concentration–time curve (AUC) of montelukast, which
together with our in vitro findings suggests that CYP2C8 is
of major importance in the elimination of montelukast
[7, 8].

The major metabolite of gemfibrozil, gemfibrozil 1-O-b
glucuronide, is a potent and selective mechanism-based
inhibitor of CYP2C8 with a rapid but long-lasting CYP2C8
inhibitory effect [9–13]. In vivo, gemfibrozil has increased
the AUC values of many CYP2C8 substrates,e.g.cerivastatin
and repaglinide [14, 15]. In vitro gemfibrozil is also a
CYP2C9 inhibitor [16], but it has not inhibited the CYP2C9-
mediated metabolism of warfarin in vivo [17] and neither
has it had any effect on the pharmacokinetics of zafirlukast
in vivo [18]. The antimycotic itraconazole is a strong and
selective CYP3A4 inhibitor, and it has greatly increased the
plasma concentrations of numerous CYP3A4 probe sub-
strates, such as midazolam, simvastatin, buspirone and
felodipine [19–22]. Concomitant administration of itra-
conazole and gemfibrozil can lead to drastic increases in

the plasma concentrations of drugs, which are metabo-
lized by both CYP3A4 and CYP2C8 [15,23]. In order to study
the contributions of CYP3A4 and CYP2C8 to the meta-
bolism of montelukast, we investigated the effects of
itraconazole, gemfibrozil and their combination on the
pharmacokinetics of montelukast in healthy subjects.

Methods

Subjects
Eleven healthy volunteers (eight men, three women, aged
21–29 years, weight 65–113 kg) participated in the study
after each gave written informed consent and were ascer-
tained to be healthy by medical history, clinical examina-
tion, and routine laboratory tests. None received
continuous medication or herbal medicines, used hor-
monal contraception or was a tobacco smoker. The study
protocol was approved by the Coordinating Ethics Com-
mittee of the Helsinki and Uusimaa Hospital District and by
the Finnish Medicines Agency.

Study design
A randomized, placebo-controlled, four phase crossover
study with a washout period of 4 weeks between the
phases was carried out. Each subject took either 600 mg
gemfibrozil (Lopid 600 mg tablets, Gödecke, Karlsruhe,
Germany), 100 mg itraconazole (first dose 200 mg, Spora-
nox 100 mg capsules, Janssen-Cilag, Borgo San Michele,
Latina, Italy), or both, or unmatched placebo (University
Pharmacy placebo tablets, University Pharmacy, Helsinki,
Finland) twice daily at 09.00 h and 21.00 h for 5 days. On
day 3, the morning dose of these medications was taken at
08.00 h and, 1 h later, a single dose of 10 mg montelukast
(Singulair 10 mg, Merck Sharp Dohme, B.V. Haarlem, Neth-
erlands) was administered orally with 150 ml water. The
subjects had fasted for 9 h before montelukast intake and
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Figure 1
The chemical structures of montelukast and its metabolites M6, M4 and M5, and the CYP enzymes participating in their formation in humans. The
diastereomers of metabolite M5 are indicated with a or b in this article, based on their chromatographic retention times
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received a standardized meal 3 h and standardized light
meals 7 h and 11 h after montelukast intake.

Blood sampling
On days of montelukast administration, timed blood
samples (4 or 9 ml) were drawn from a cannulated forearm
vein before and 0.5, 1, 2, 3, 4, 5, 7, 9, 12, 24, 48 and 72 h after
administration of montelukast. Blood samples were col-
lected into tubes containing ethylenediaminetetraacetic
acid (EDTA). Plasma was separated immediately and stored
at -70°C until analysis.

Determination of drug concentrations
For the determination of plasma montelukast and its
metabolites, plasma samples were spiked with internal
standard (IS, montelukast-d6), and the concentrations
(montelukast, metabolite M6) or the metabolite to IS peak
height ratios (metabolites M4, M5a and M5b) were mea-
sured by use of a SCIEX API 2000 liquid chromatography-
tandem mass spectrometry system (Sciex Division of MDS
Inc, Toronto, ON, Canada) after protein precipitation (mon-
telukast) or solid phase extraction (metabolites), as
described earlier. M4, M5a and M5b were identified by
their ion transitions and the different retention times of M5
diastrereomers (a and b), as described earlier [7]. Mon-
telukast sodium, montelukast-d6 sodium and montelukast
metabolite M6 were purchased from Toronto Research
Chemicals (North York, Ontario, Canada).

The lower limit of quantification (LLQ) was 0.3 ng ml-1

for plasma montelukast and 1 ng ml-1 for M6.The signal to
noise ratio <10 was used as the LLQ for the other metabo-
lites, for which no authentic compounds were available.
The detector response (metabolite to IS peak height ratio)
of M4, M5a and M5b was shown to be linear over the rel-
evant concentration range by using a plasma dilution
series. The between-day coefficient of variation (CV) for
montelukast was 6.3% at 1.5 ng ml-1, 4.6% at 15 ng ml-1,
7.6% at 150 ng ml-1 and 4.7% at 1500 ng ml-1, and for M6
14.4% at 1.5 ng ml-1, 11.9% at 15 ng ml-1 and 8.5% at
150 ng ml-1. Gemfibrozil, its glucuronide, itraconazole or
hydroxy-itraconazole (OH-itraconazole) did not interfere
with the assays.

The plasma concentrations of gemfibrozil and gemfi-
brozil 1-O-b glucuronide in samples taken before and at 1,
3, 5, 12, 24, 48 and 72 h after montelukast administration
were determined by the use of a SCIEX API 2000 QTRAP
liquid chromatography-tandem mass spectrometry
system (Sciex Division of MDS Inc, Toronto, ON, Canada) as
described previously [7, 24]. The LLQs for gemfibrozil and
gemfibrozil 1-O-b glucuronide were 0.1 mg l-1 and
0.05 mg l-1, respectively and the between day CVs were
2.1–6.2% and 3.0–9.7% at relevant concentrations, respec-
tively. Gemfibrozil 1-O-b glucuronide was purchased from
Toronto Research Chemicals (North York, Ontario, Canada).

The plasma concentrations of itraconazole and
OH-itraconazole in samples taken before and at 1, 3, 5, 12,

24, 48 and 72 h after montelukast administration were
determined by high performance liquid chromatography
as described before [21, 25]. The LLQ for itraconazole and
OH-itraconazole was 20 ng ml-1 and the between-day CVs
were 0.8–3.3% and 1.3–2.1% at relevant concentrations,
respectively.

Pharmacokinetic assessments
The pharmacokinetics of montelukast and its metabolites
M4, M5a, M5b and M6 were characterized by observed
peak plasma concentration (Cmax), time to reach Cmax (tmax),
elimination half-life (t1/2), and AUC from 0 to 7 or 72 h or
infinity (AUC 0,7 h; 0,72 h; 0,•).The Cmax and tmax values were
taken directly from the original data. The terminal log-
linear part of each plasma concentration–time curve was
identified visually, and the elimination rate constant (lz)
was determined by linear regression analysis of the log-
linear part of the concentration–time curve. The t1/2 was
calculated by the equation t1/2 = ln2/lz. The AUC values
were calculated by the linear trapezoidal rule for the rising
phase and the log-linear trapezoidal rule for the descend-
ing phase, with extrapolation to infinity by division of the
last measured concentration by lz. The pharmacokinetic
calculations were performed with MK-Model, version 5.0
(Biosoft, Cambridge, UK).

Statistical analysis
For montelukast and metabolite M6, the pharmacokinetic
variables are expressed as geometric mean and CV in the
text and Table 1, except for tmax. Because some of the
metabolite concentrations were below their LLQ in some
of the study phases, the results for metabolites M4, M5a
and M5b are expressed as median and range in the text
and Table 1. For clarity, all concentrations in Figures are
given as mean values (standard error (SEM)). For mon-
telukast and metabolite M6 all pharmacokinetic variables,
except tmax, were log transformed and the statistical com-
parisons between the four phases were performed with
repeated measures ANOVA, followed by a posteriori testing
with the paired t-test with the Bonferroni correction.All tmax

values and all pharmacokinetic variables of M4, M5a and
M5b were compared with the Friedman two-way ANOVA

followed by the Wilcoxon signed rank test with the Bonfer-
roni correction. The level of statistical significance was P <
0.05. The analysis was performed with SPSS for Windows
version 17.0 (SPSS Inc, Chicago, IL, USA).

Results

Effect of gemfibrozil
During the gemfibrozil phase, the geometric mean ratio to
control of the AUC(0,•) of montelukast was 4.3-fold (95%
confidence interval (CI) 2.9, 6.3, P < 0.001), and that of its
t1/2 was 2.1-fold (95% CI 1.7, 2.5, P < 0.001), i.e. the t1/2

was prolonged from 6.4 h to 13 h (Table 1, Figure 2).
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Gemfibrozil reduced the formation clearance of the
primary metabolite M6 (Figure 2). However, the AUC(0,•)
of M6 was increased 3.5-fold (95% CI 2.4, 5.0, P < 0.001) by
gemfibrozil, because the further metabolism of M6 to M4
was strongly inhibited by gemfibrozil. Gemfibrozil pro-
longed the t1/2 of M6 4.1-fold (95% CI 3.4, 4.8, P < 0.001), i.e.
from 3.9 h to 16 h, and greatly reduced the plasma concen-
trations of the secondary metabolite M4; for example, the
median Cmax of M4 was reduced from 49 U ml-1 (control
phase) to 3.5 U ml-1 (gemfibrozil phase, P < 0.05). Also the

AUC(0,72 h) of M4 and the M4 : M6 AUC(0,72 h) ratio were
greatly reduced in the gemfibrozil phase compared with
the placebo phase (P < 0.05,Table 1, Figure 3). On the other
hand, the Cmax and AUC(0,72 h) of both M5a and M5b
metabolites were increased in the gemfibrozil phase (P <
0.05, Table 1, Figure 3).

Effect of itraconazole
Itraconazole alone, compared with placebo, had no signifi-
cant effect on the pharmacokinetic variables of parent

Table 1
Pharmacokinetic variables of montelukast and its metabolites in 11 healthy volunteers after a single oral dose of 10 mg montelukast on day 3 of a 5 day
treatment with 600 mg gemfibrozil, 100 mg itraconazole (first dose 200 mg), or both, or placebo, twice daily

Variable Placebo phase (control) Gemfibrozil phase Itraconazole phase
Gemfibrozil and
itraconazole phase

Montelukast

Cmax (ng ml-1) 457 (0.49) 665 (0.23) 511 (0.46) 550 (0.69)

Ratio to control (95% CI) 1.5 (0.93, 2.3) 1.1 (0.66, 1.9) 1.2 (0.79, 1.8)
tmax (h) 2 (1, 4) 5 (2,5) 4 (1, 5) 5 (3, 9)*,‡
t1/2 (h) 6.4 (0.28) 13 (0.23)*** 7.0 (0.24)††† 16 (0.31)***,‡‡‡

Ratio to control (95% CI) 2.1 (1.7,2.5) 1.1 (0.90, 1.3) 2.4 (2.0, 3.0)
AUC(0,•) (ng h ml-1) 2780 (0.30) 11 900 (0.30)*** 3250 (0.31)††† 11 200 (0.56)***,‡‡‡

Ratio to control (95% CI) 4.3 (2.9,6.3) 1.2 (0.78, 1.8) 4.0 (2.7, 6.0)

M6

Cmax (ng ml-1) 24 (0.63) 19 (0.37) 27 (0.75) 21 (0.91)

Ratio to control (95% CI) 0.80 (0.50,1.3) 1.2 (0.63, 2.1) 0.88 (0.44, 1.7)

tmax (h) 4 (2, 5) 12 (9,12)* 4 (2, 5)† 12 (7, 24)*,‡

t1/2 (h) 3.9 (0.28) 16 (0.25)*** 4.1 (0.20)††† 21 (0.43)***,‡‡‡

Ratio to control (95% CI) 4.1 (3.4,4.8) 1.0 (0.91, 1.2) 5.3 (3.8, 7.5)

AUC(0,7 h) (ng ml-1 h) 101 (0.56) 57 (0.46) 113 (0.66)† 37 (1.2)*,‡

Ratio to control (95% CI) 0.56 (0.29,1.1) 1.1 (0.67, 1.9) 0.36 (0.15, 0.90)

AUC(0,•) (ng ml-1 h) 160 (0.42) 555 (0.42)*** 200 (0.54)††† 749 (0.72)***,‡‡‡

Ratio to control (95% CI) 3.5 (2.4,5.0) 1.3 (0.85, 1.8) 4.7 (2.9, 7.6)

M6 : montelukast AUC(0,72 h) ratio 0.06 (0.35) 0.05 (0.21) 0.06 (0.36)† 0.06 (0.29)†††

Ratio to control (95% CI) 0.78 (0.54,1.1) 1.1 (0.78, 1.5) 1.0 (0.73, 1.5)
M4

Cmax (U ml-1) 49 (0, 360) 3.5 (0,32)* 75 (0, 587)† 0 (0, 31)*,‡
tmax (h) 5 (4, 9) 12 (12,24) 5 (3, 9) 24 (12, 48)
AUC(0,72 h) (U ml-1 h) 656 (0, 2930) 26 (0,1130)* 728 (0, 3340)† 0 (0, 764)‡
M4 : M6 AUC(0,72 h) ratio (U ng-1) 4.5 (0, 13) 0.05 (0,1.9)* 3.7 (0, 10)† 0 (0, 1.1)*,‡

M5a

Cmax (U ml-1) 208 (62, 339) 464 (236,1160)* 15 (0, 43)*,† 57 (8.9, 326)*,†

tmax (h) 3 (2, 4) 4 (3,9)* 4 (2, 5) 9 (4, 24)*,‡

t1/2 (h) 3.0 (2.1, 4.8) 16 (12,23)** – –

AUC(0,72 h) (U ml-1 h) 1210 (335, 2150) 9640 (4600,16 500)* 94 (0, 167)*,† 1440 (88, 6640)†,‡

M5a : M AUC(0, 72 h) ratio (U ng-1) 0.37 (0.22, 0.68) 0.76 (0.54,1.1)* 0.03 (0, 0.04)*,† 0.12 (0.02, 0.44)*,†,‡
M5b

Cmax (U ml-1) 195 (59, 393) 322 (142,1030)* 16 (0, 78)*,† 27 (0, 267)*,†
tmax (h) 3 (2, 5) 3 (2,5) 4 (2, 12) 5 (3, 12)*
t1/2 (h) 2.4 (1.5, 3.0) 16 (7.3,25)** – –
AUC(0,72 h) (U ml-1 h) 938 (259, 1860) 5100 (1550,8540)* 80 (0, 693)*,† 729 (0, 3880)†,‡
M5b : M AUC(0,72 h) ratio (U ng-1) 0.33 (0.16, 0.64) 0.38 (0.26,0.70) 0.02 (0, 0.16)*,† 0.06 (0, 0.26)*,†

For montelukast and M6, data are given as geometric means (geometric CV), except for tmax, which is given as median (range). For M4, M5a and M5b, data for all variables are given
as median (range). The t1/2 values of M5a and M5b during the itraconazole and gemfibrozil-itraconazole phases are not given, because they could not be reliably determined for
a majority of the subjects. Cmax, observed peak plasma concentration; CI, confidence interval; tmax, time to reach Cmax; t1/2, elimination half-life; AUC(0,7 h), area under the
concentration vs. time curve from time 0 to 7 h; AUC(0,72 h), area under the concentration vs. time curve from time 0 to 72 h; AUC(0,•), area under the concentration vs. time
curve from time 0 to infinity; M, montelukast; U, arbitrary units (the ratio of the peak height of the metabolite to the peak height of the internal standard). *P < 0.05 vs. control,
**P < 0.005 vs. control, ***P < 0.001 vs. control, †P < 0.05 vs. gemfibrozil, ††P < 0.005 vs. gemfibrozil, †††P < 0.001 vs. gemfibrozil, ‡P < 0.05 vs. itraconazole, ‡‡P < 0.005 vs.
itraconazole, ‡‡‡P < 0.001 vs. itraconazole. For M4, M5a and M5b 0 stands for median values that were under the lower limit of quantification.
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montelukast or the metabolites M6 or M4. However, the
pharmacokinetic variables of M5a and M5b were consid-
erably affected by itraconazole, compared with placebo
(Table 1, Figure 3). The median Cmax and AUC(0,72 h) of
both M5a and M5b were more than 90% smaller during
the itraconazole phase than during the placebo phase (P <
0.05).

Effect of gemfibrozil-itraconazole combination
Compared with the placebo phase, the gemfibrozil-
itraconazole combination had similar effects on the phar-
macokinetics of montelukast and its M6 and M4
metabolites as gemfibrozil alone. The geometric mean
ratio to control of montelukast AUC(0,•) was 4.0-fold (95%
CI 2.7, 6.0, P < 0.001) and that of its t1/2 was 2.4-fold (95% CI
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2.0, 3.0, P < 0.001). The AUC(0,•) and t1/2 of montelukast
differed from those observed during the itraconazole
phase, but not from those observed during the gemfibrozil
phase (Table 1, Figure 2). Regarding the pharmacokinetic

variables of the minor metabolites M5a and M5b, the effect
of the gemfibrozil-itraconazole combination was similar to
that of itraconazole alone (Table 1, Figure 3). However, the
Cmax and AUC values of M5a and M5b were reduced to a
lesser degree during the gemfibrozil-itraconazole phase
than during the itraconazole alone phase, because of the
opposite effects of itraconazole and gemfibrozil on the
concentrations of these metabolites (Table 1, Figure 3).

Plasma gemfibrozil, gemfibrozil
1-O-glucuronide, itraconazole and
OH-itraconazole
Concomitant use of itraconazole with gemfibrozil did not
affect the plasma concentrations of gemfibrozil and gem-
fibrozil 1-O-b glucuronide, compared with the gemfibrozil
alone phase (Figure 4). In contrast to this, the geometric
mean plasma concentrations of itraconazole and
OH-itraconazole were more than 50% lower during the
gemfibrozil-itraconazole phase than during the itracona-
zole alone phase (Figure 4).

Discussion

The primary aim of our present drug interaction study was
to characterize the roles of CYP2C8 and CYP3A4 enzymes
in the elimination of montelukast in humans. To this end,
we administered gemfibrozil and itraconazole, both alone
and in combination, and gave a single therapeutic dose of
montelukast during each of these treatments, followed by
plasma sampling over the next 72 h. This long sampling
period and repeated administration of the CYP2C8 and
CYP3A4 inhibitors were considered to be necessary,
because our previous study had uncovered that gemfi-
brozil slows the elimination of montelukast and some of its
metabolites [7].

Gemfibrozil and itraconazole are strong inhibitors of
CYP2C8 and CYP3A4 in vivo, respectively, and they are rec-
ommended to be used as probe inhibitors of these
enzymes in the US Food and Drug Administration (FDA)
and/or the European Medicines Agency (EMA) guidelines
[26–29]. Although gemfibrozil is an inhibitor of CYP2C9 in
vitro [16], it is not known to inhibit any other CYP enzyme
than CYP2C8 in vivo in humans. For example, gemfibrozil
does not inhibit CYP2C9 [17] or CYP3A4 [30] enzymes in
vivo. The effect of gemfibrozil on CYP2C8 is principally
mediated by the gemfibrozil 1-O-b-glucuronide metabo-
lite, which is a selective irreversible, mechanism-based
inhibitor of CYP2C8 [10, 11]. Itraconazole and some of its
metabolites, including hydroxy-itraconazole, are potent
inhibitors of CYP3A enzymes [31–33] and therefore admin-
istration of itraconazole leads to strong inhibition of
CYP3A4 in vivo [19]. However, itraconazole does not signifi-
cantly inhibit the CYP2C8 and CYP2C9 enzymes. For
example, itraconazole does not affect the pharmacokinet-
ics of the CYP2C8 substrate pioglitazone [34] or reduce the
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CYP2C9-mediated metabolism of losartan to its active
metabolite in humans [35]. Gemfibrozil and itraconazole
have long-persisting enzyme inhibitory effects in vivo, the
former due to the irreversible CYP2C8 inhibition and the
latter because of its long half-life [12, 13, 36, 37]. Thus,
the twice daily dosing of these inhibitors caused a strong
and uninterrupted inhibition of the CYP2C8 or/and
CYP3A4 enzymes for the 72 h follow-up after montelukast
ingestion. In addition, the results of the plasma concentra-
tion monitoring confirmed the compliance in the inges-
tion and absorption of gemfibrozil and itraconazole in all
the volunteers.

According to the product information of montelukast
and the early in vitro study of Chiba et al., CYP3A4, CYP2C9
and CYP2A6 can metabolize montelukast [6, 38]. The for-
mation of the metabolite M5 was described to be cata-
lyzed by CYP3A4 and the formation of M6 by CYP2C9 [38].

However, the in vitro study was performed using a mon-
telukast concentration exceeding over 10 000 times its
therapeutic free concentration in plasma [38]. This is likely
to have resulted in saturation of the CYP2C8-mediated
metabolism of montelukast, due to the potent CYP2C8
inhibitory effect of montelukast [39], leading to an overes-
timation of the significance of CYP3A4, CYP2C9 and
CYP2A6 in the total metabolism of montelukast.

Our present study confirms that gemfibrozil greatly
increases the plasma concentrations of montelukast, and
inhibits its further metabolism to M6 and M4 [7]. The
AUC(0,•) of montelukast was increased about 4.3-fold and
its t1/2 over two-fold by gemfibrozil, compared with
placebo. The formation of the main metabolite M6 was
impaired, and its further oxidation to M4 was almost abol-
ished by gemfibrozil. Our in vivo findings are thus in a good
agreement with the recent in vitro results of Filppula et al.
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Figure 4
Mean � SEM plasma concentrations of gemfibrozil and gemfibrozil-1-O-b-glucuronide, itraconazole and OH-itraconazole in 11 healthy volunteers on days
3 to 5 of a 5 day treatment with 600 mg gemfibrozil or 100 mg itraconazole (first dose 200 mg), or both, twice daily. Time 0 refers to administration of
gemfibrozil and itraconazole, i.e. 1 h before the administration of montelukast. The dotted lines indicate dose intervals, where no plasma samples were
available
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[8]: in human liver microsomes gemfibrozil 1-O-b-
glucuronide strongly inhibited the formation of M6
metabolite from therapeutic concentrations of mon-
telukast, and recombinant CYP2C8 catalyzed the depletion
of montelukast and the formation of M6 at a six times
higher intrinsic clearance than did CYP2C9, while other
CYP isoforms produced no M6.On the basis of these in vitro
results, the authors estimated that on average, CYP2C8
accounts for more than 70% of the oxidative metabolism
of montelukast in vivo, with a 16% contribution by CYP3A4
(M5 formation) and 12% by CYP2C9 [8].Taken together, the
results of the recent in vitro and our in vivo interaction
studies in humans indicate that CYP2C8 plays a crucial role
in the metabolism of montelukast.

We also studied the effect of the CYP3A4 inhibitor itra-
conazole alone and in combination with gemfibrozil, on
the pharmacokinetics of montelukast. Itraconazole alone
had only a minor, statistically non-significant effect on the
Cmax, AUC and t1/2 of parent montelukast. Furthermore, the
effect of the itraconazole-gemfibrozil combination on
these variables was comparable with that of gemfibrozil
alone, indicating that itraconazole has no relevant additive
effects on these variables, compared with the effects of
gemfibrozil alone. The only significant effect of itracona-
zole was a large reduction in the formation of the minor
montelukast metabolites M5a and M5b (21-hydroxylation
of montelukast). The median Cmax of M5a and M5b
decreased to less than 10% of control during the itracona-
zole phase and to less than 30% of control even during the
gemfibrozil-itraconazole phase. This effect of itraconazole
is in good agreement with in vitro results suggesting a
crucial role for CYP3A4 in the formation M5a/b [8, 38].
However, at therapeutic plasma concentrations of mon-
telukast, the contribution of CYP3A4 to the total elimina-
tion of montelukast (via formation of M5a/b and other
metabolites) is obviously negligible, even when the domi-
nant CYP2C8-mediated route is strongly inhibited.This was
demonstrated in the present study by the lack of differ-
ence in montelukast exposure between the gemfibrozil-
itraconazole phase and the gemfibrozil phase.

Previously, the effects of gemfibrozil, itraconazole and
their combination have been investigated on the pharma-
cokinetics of repaglinide, pioglitazone and loperamide
using a similar study design as in the present study [15, 23,
34].The mean AUC of repaglinide was increased 8.1-fold by
gemfibrozil alone, 1.4-fold by itraconazole alone and even
19.4-fold by their combination [15]. Similarly, the AUC of
loperamide was increased 2.2-fold by gemfibrozil, 3.8-fold
by itraconazole and 12.6-fold by their combination. On the
other hand, gemfibrozil increased the AUC of pioglitazone
3.2-fold, whereas itraconazole neither influenced pioglita-
zone AUC nor changed the effect of gemfibrozil on it [34].
Thus, both CYP2C8 and CYP3A4 have significant roles in
the elimination of repaglinide and loperamide, and the
concomitant inhibition of both enzymes causes a supra-
additive increase in their AUC values. In contrast to these,

CYP3A4 is only of marginal importance for montelukast
and pioglitazone, and its ‘knock-out’ does not increase sig-
nificantly the exposure to montelukast and pioglitazone.

As gemfibrozil and itraconazole do not inhibit CYP2C9
in vivo [17, 35], the exact role of CYP2C9 in the metabolism
of montelukast in vivo remains unknown.However,as gem-
fibrozil alone increased the AUC of montelukast almost
five-fold, it can be estimated that CYP2C8 accounts for
about 80% of its metabolism, and only about 20% of its
metabolism is mediated by other enzymes in humans.
Moreover, the contribution of CYP2C9 to the total metabo-
lism of montelukast is likely to be negligible, because its
contribution in vitro at clinically relevant montelukast con-
centrations is smaller than that of CYP3A4 [8] and because
the present data indicate that CYP3A4 also has an insignifi-
cant role in the total elimination of montelukast, despite its
role in the formation of M5 from montelukast.

In the present study, gemfibrozil and gemfibrozil 1-O-
b-glucuronide plasma concentrations were not affected
by itraconazole, in line with those reported earlier [7].
However, the plasma concentrations of itraconazole and
OH-itraconazole were over 50% lower during the
gemfibrozil-itraconazole phase than during the itracona-
zole phase. This phenomenon has been observed already
in earlier studies [15, 34], and can possibly be explained by
reduced bioavailability of itraconazole or its displacement
from plasma proteins by gemfibrozil. However, the indi-
vidual concentrations in all phases were consistent with
good compliance by all subjects.

In its draft guidance on drug interaction studies, the
FDA lists repaglinide and rosiglitazone as suitable probe
substrates of CYP2C8 for in vivo studies [26, 27, 29]. The
EMA states in its draft guideline, that there is no well-
documented CYP2C8 in vivo probe drug at present, and
lists amodiaquine and cerivastatin as alternatives that may
be used [28]. However, neither of them is on the market in
the European Union (EU). In addition, rosiglitazone is not
available in Europe, since EMA recommended suspension
of its marketing authorization in the EU in September 2009
due to increased cardiovascular risks [40].

Repaglinide has been widely used as an in vivo probe
for CYP2C8. As mentioned, gemfibrozil has increased the
AUC of repaglinide about eight-fold (ranging from 5.5- to
15-fold) even after a single dose of gemfibrozil [12, 13, 15,
41]. However, repaglinide is also a substrate of organic
anion-transporting polypeptide 1B1 (OATP1B1) and its
pharmacokinetics are influenced by SLCO1B1 polymor-
phisms [42]. Moreover, it may, as an antidiabetic drug,
induce hypoglycaemia even after a single dose in healthy
volunteers. This risk can be seriously increased in some
subjects and by CYP2C8 inhibition, and therefore its use as
an in vivo probe requires frequent blood glucose monitor-
ing and carbohydrate administration.

The usefulness of montelukast as an in vivo probe of
CYP2C8 activity is easily defendable, as montelukast has
proved relatively safe in clinical use, and even with 900 mg
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daily doses no clinically important adverse effects have
been observed in short-term clinical studies [6]. Therefore,
no specific safety monitoring is needed in its use. As shown
in our previous and present studies [7], montelukast can be
a sensitive and specific CYP2C8 probe drug: the effect of
CYP2C8 inhibition by gemfibrozil on its AUC was almost
five-fold, and strong CYP3A4 inhibition had no relevant
effect on the elimination of montelukast. Moreover,
although the exact role of CYP2C9 in the metabolism of
montelukast in vivo is still unknown, CYP2C9 is likely to
account only for a minor part of its biotransformation, thus
not affecting the usefulness of montelukast as a CYP2C8
probe.However,apart from a possible role of OATP2B1 [43],
the role of other membrane transporters in the pharmaco-
kinetics of montelukast has not been elucidated.

It can be concluded that CYP2C8 is the dominant
enzyme in the biotransformation of montelukast in
humans, accounting for about 80% of its metabolism.
CYP3A4 only mediates the formation of the minor metabo-
lite M5a/b of montelukast and is not important in the
elimination of montelukast. Montelukast may serve as a
safe and useful CYP2C8 probe drug.
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